Insect Flight: from Physics Flight to Flight Controls

ME590 Seminar Speaker Dr. Jane Wang

Bio: Jane Wang is professor of Physics and Mechanical Engineering at Cornell. She has devoted much of her work to understand the physics and neural feedback control of insect flight: how do insects fly, why do they fly the way they do, and how can we infer their 'thoughts' from their flight dynamics. Her recent works build new connections between the physics of flight and insect's neural behavior. Jane is a fellow of the American Physical Society. Her supports include a NSF Early Career Award, an ONR Young Investigator Award, a David and Lucille Packard Fellowship in Science and Engineering, a Radcliffe Fellowship in Science, and a Simons Fellowship in Mathematics. 

Additional Information:

Abstract: 

Why do animals move the way they do? Bacteria, insects, birds, and fish share with us the necessity to move so as to live. Although each organism follows its own evolutionary course, it also obeys a set of common laws. At the very least, the movement of animals, like that of planets, is governed by Newton’s law: All things fall. On Earth, most things fall in air or water, and their motions are thus subject to the laws of hydrodynamics. Through trial and error, animals have found ways to interact with fluid so they can float, drift, swim, sail, glide, soar, and fly. This elementary struggle to escape the fate of falling shapes the development of motors, sensors, and mind. Perhaps we can deduce parts of their neural computations by understanding what animals must do so as not to fall.

We have been seeking mechanistic explanations of the complex movement of insect flight. Starting from the Navier-Stokes equations governing the unsteady aerodynamics of flapping flight, we worked to build a theoretical framework for computing flight and for studying the control of flight.  I will discuss our recent computational and experimental studies of the balancing act of dragonflies and fruit flies:  how a dragonfly recovers from falling upside-down and how a fly balances in air. In each case,  the physics of flight informs us about the neural feedback circuitries underlying their fast reflexes.

 

Share this event

facebook linked in twitter email

Media Contact: Mechanical Engineering

 
 

About

With more than 60 faculty members, 330 graduate students, and 1,000 undergraduate students, the Penn State Department of Mechanical Engineering embraces a culture that welcomes individuals with a diversity of backgrounds and expertise. Our faculty and students are innovating today what will impact tomorrow’s solutions to meeting our energy needs, homeland security, biomedical devices, and transportation systems. We offer B.S. degrees in mechanical engineering as well as resident (M.S., Ph.D.) and online (M.S.) graduate degrees in mechanical engineering. See how we’re inspiring change and impacting tomorrow at me.psu.edu.

Department of Mechanical Engineering

137 Reber Building

The Pennsylvania State University

University Park, PA 16802-4400

Phone: 814-865-2519