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Abstract

Generating quality body-fitting meshes for complex composite microstructures is a non-trivial task. In particular, micro-
T images of composites can contain numerous irregularly-shaped inclusions. Among the methods available, immersed
oundary methods that discretize bodies independently provide potential for tackling these types of problems since a matching
iscretization is not needed. However, these techniques still entail the explicit parameterization of the interfaces, which may
e considerable in number. In this work, immersed volumetric Nitsche methods are developed in order to avoid the difficulty
f generating body fitting meshes for composite materials with complicated microstructures, and overcome the issues in the
urface-type methods. These approaches are developed using Nitsche’s techniques to enforce volumetric continuity between the
nclusion and background domains. It is shown that the proposed weak forms are fully consistent with the strong form of the
omposite problem. The present approach permits C0 approximations for the foreground discretization, and C1 approximations

for the background. The effectiveness of these methods is demonstrated by solving homogeneous and inhomogeneous composite
benchmark problems, where it is shown that the non-symmetric version of Nitsche’s approach is the most robust in all settings.
c⃝ 2021 Elsevier B.V. All rights reserved.
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1. Introduction

Composite analysis is an important class of problems in solid mechanics. For problems involving a great number
f inclusions with irregular geometry, such as the CT-scan of a composite microstructure shown in Fig. 1, it is
ime-consuming and difficult to construct a high quality body-fitting mesh for the traditional finite element method
FEM). On the other hand, non-body-fitting frameworks such as the immersed class of methods do not require a
onforming discretization and therefore alleviate these difficulties.

The continuity condition at the inclusion interface in these methods can be imposed weakly by utilizing the
agrange multiplier method [1–4], or Nitsche’s method [5–11]. These approaches involve an interface contour
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Fig. 1. Micro-CT of a polymer–ceramic composite specimen.

integral and are herein termed surface-type. In [1,2], the Lagrange multiplier method was employed for the Dirichlet
condition on the interface for the fictitious domain type approach. Hansbo et al. [3] introduced Lagrange multipliers
for non-conforming finite element discretizations, and this was further developed as an interior penalty method for
the purpose of stabilization [4]. Hansbo et al. [6,7] also developed a Nitsche method-based unfitted finite element
method for the discontinuous problem. The method captures the interface by enforcing the jump condition. A robust
Nistche formulation was proposed by Annavarapu et al. [8]. A weighting parameter was introduced to address the
instability in the classical variational form of Nitsche’s method for interface problems, and this approach was further
extended to frictional sliding cases [9,10]. A Nitsche embedded-mesh method was introduced by Sanders et al. [11]
for embedded finite element constraints, which alleviates mesh locking in the traditional mortar type approach. Li
et al. [12] introduced the Cartesian grid method for the interface problem, which allows for both conforming and
non-conforming meshes in FEM.

Enforcing the continuity condition or jump condition via traditional methods can still suffer from instabili-
ties [13]. In [13], several traditional surface-type methods were studied, where the Lagrange multiplier method and
penalty method were found to exhibit issues with both stability and accuracy. For stabilization in interface problems,
Burman [14] developed a ghost penalty concept to enhance the robustness of the fictitious domain method, which is
a commonly used technique for interface problems. A jump-stabilized Lagrange multiplier method with penalty-type
stabilization was discussed by Burman et al. [4] for elliptic interface problems.

While many of these methods have shown to be effective, all of these methods fall into the class of surface-type,
and for complicated composite topology such as the CT-scan shown in Fig. 1, significant effort is still required to
parameterize the interfaces between the inclusion and matrix domains.

Generalized FEM [15,16], or more generally, the class of partition of unity (PU) methods [17], are able to embed
arbitrary enrichment functions extrinsically into a formulation such as FEM when solution features are known a
priori, such as singularities, discontinuities, etc. This provides flexibility in constructing approximation functions
relatively independent of a mesh, and can capture the interface conditions in inhomogeneous problems. Based on
the concept of PU methods, the extended finite element method (XFEM) [18–20] considers local enrichment of the
solution with the functions only embedded where special physical behavior exists. Arbitrary discontinuities can also
be captured without remeshing, and the computational cost is not significantly increased due to the locally enriched
shape functions [18,21]. Nevertheless, the class of PU methods with enrichments still requires special techniques to
deal with issues such as quadrature, stability, blending, and time integration [22–25]. Meanwhile, these approaches
still require parameterization of the interfaces at hand.
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Although developed for fluids, among the methods which can avoid explicit definition of interfaces, the immersed
oundary method (IBM) [26,27], which discretizes bodies independently without any conforming requirements,
rovides great potential for realizing the desired framework of effortless analysis of composites with arbitrarily
omplex microstructures. In the original immersed boundary method [26], the immersed body was assumed to be
volumeless fiber-like material that obtains its deformation by interpolating the velocity field of the fluid, exerting
force via an approximate Dirac delta function. The immersed concept was further developed into the immersed
nite element method (IFEM) [28], where the immersed solid body is allowed to occupy a finite domain, and the

nteraction force is given by the difference of the residual of the linear momentum equation in the immersed solid
nd background fluid, and the reproducing kernel was employed rather than the original approximate delta function
o allow more complex interface geometries. IFEM has been further improved to consider the deformation in the
mmersed solid body instead of passively being displaced by the fluid velocity field [29]. In [30], the authors derived

new system of equations based on a weak form for IFEM, which avoids the adoption of an approximate Dirac
elta function. Nevertheless, only theoretical work was provided in the paper without numerical examples.

Still under the general IBM framework, in [31] the continuity condition was approximately ensured by
nterpolating the velocity unknowns in the solid in terms of the background fluid using shape functions. As a result,
owever, the condition is only met at the solid’s node positions unless a conforming mesh is used throughout
he immersed domain. In [32] using meshfree methods for composite solids, the continuity condition across the
nterface was ensured at nodal positions by constructing convex generalized meshfree approximations that possess
he Kronecker-delta property. Using this approach, the condition is also only met at nodal positions, and this method
s also fairly complicated in implementation.

A volumetric-type constraint has been proposed by Blanco et al. in [33] using Lagrange multipliers, and unlike
BM methods, this approach is mathematically well-justified by the fact that the weak form attests to the strong form
f the problem. The surface continuity conditions are replaced by volumetric continuity in the overlapping domains.
ue to the relative regularity of the approximations required in the weak formulation, the surface compatibility

onditions are satisfied. However, extra degrees of freedom are introduced, and this method suffers from possible
adyzhenskaya–Babuška–Brezzi (LBB) instabilities. Still within the volumetric continuity scope, the Arlequin

method [34–37] considers the superposition of domains glued together in the overlapping area. The total energy
is conserved by the use of a weighting parameter with the partition of unity feature. The volumetric continuity in
the overlapping domain is enforced by using the Lagrange multiplier approach. In [38], Nguyen et al. developed
a diffuse Nitsche method by converting the surface integral to a diffuse volumetric integral under the standard
Nitsche framework with the aid of phase field gradients. The normal vector that appears in many interface integrals
is approximated by the implicit phase field representation, which finally leads to a weak formulation which is
approximate.

In summary, the difficulties that remain an open problem in composite micro-structural analysis which the authors
wish to address in this work are: (1) body-fitting meshes for conforming approaches; (2) parameterizing multiple and
complex inclusion boundaries for surface-type and enriched approaches; (3) IBM methods which are not generally
grounded in weak-form principles; and (4) The volumetric approach with associated LBB stability condition. Thus,
a framework which can avoid the relative shortcomings of each of these classes of methods is highly desirable.

Based on the volumetric Lagrange multiplier approach in [33], in order to tackle the problem of simulating
complicated composite inclusion problems, volumetric Nitsche methods are developed in this work as an effective
solution to address the previously discussed difficulties. That is, within the general immersed framework, these
methods work on non-body-fitting meshes and provide extreme flexibility in discretization necessary for relatively
effortless model development of complex microstructures. The key idea of the proposed work is to first identify
the weak form that attests to the strong form of the composite problem, with the continuity condition satisfied over
the whole inclusion domain rather than at the interface. Then, the physical meaning of the Lagrange multiplier is
identified following the Nitsche concept, which is then employed in the weak form to avoid extra degrees of freedom,
and a penalty term is added for stability. The non-symmetric version of this method is also then developed. As will
be seen, the proposed volumetric Nitsche/non-symmetric Nitsche methods require a background approximation
space with C1 continuity, which can be easily accomplished using meshfree [39], or isogeometric [40] approaches.
Meanwhile, the method is also developed to allow C0 continuity in the foreground to yield flexibility for the
nclusion discretization. Because of the consistency of the weak forms developed, the resulting formulations are

ermed consistent immersed volumetric Nitsche (CIVN) methods in this work.

3



J. Wang, G. Zhou, M. Hillman et al. Computer Methods in Applied Mechanics and Engineering 385 (2021) 114042
Fig. 2. Two-dimensional illustration of the computational composite domain.

This paper is organized as follows. The strong form of the problem, and the weak form using the volumetric
immersed approach are discussed in Section 2. The volumetric penalty approach and the proposed Nitsche/non-
symmetric Nitsche approaches are then introduced in Section 3 and Section 4, respectively. In Section 5, discretized
forms of these methods using the meshfree reproducing kernel approximation are presented. Numerical results are
given in Section 6 to demonstrate the effectiveness of the proposed method, followed by conclusions and a discussion
in Section 7.

2. Strong and weak form of composite inclusion problems

2.1. Strong form

Following the immersed framework, as shown Fig. 2, the domains involved in the problem at hand are defined
as follows: ΩB is the background domain consisting of the total space occupied by both the matrix and inclusions,
with boundary ΓB = Γg ∪ Γt , and Γg ∩ Γt = ∅, where Γg and Γt are the essential boundary, and natural
boundary, respectively; ΩF ⊂ ΩB is the immersed foreground domain; the physical matrix domain is defined by the
compliment ΩB\ΩF , and the interface between the two domains is denoted ΓI . In this work, the subscript of field
variables is used to denote where the variable is defined: “B” denotes background, “F” denotes foreground and “I”
denotes the interface.

Here the background domain is a conceptually constructed domain for computational purposes, containing the
entire physical space of the problem, with the material properties of the matrix.

Without loss of generality, we have considered a single inclusion completely surrounded by a matrix, as illustrated
in Fig. 2. That is, ΩF is completely immersed in the computational domain ΩB yielding ΓB ∩ ΓI = ∅. In addition,
linear elastostatic problems are considered, which can later be extended to nonlinear or dynamic problems if desired.
The corresponding strong form at hand is:

∇ · σ B + bB = 0 in ΩB\ΩF (1a)

uB = ū on Γg (1b)

n · σ B = t̄ on Γt (1c)

∇ · σ F + bF = 0 in ΩF (1d)

nI · (σ F − σ B) = 0 on ΓI (1e)

uB = uF on ΓI (1f)

where σ B = C B : εB and σ F = C F : εF are the Cauchy stress tensors in the background domain ΩB and foreground
domain ΩF , respectively; εB = ∇

s uB and εF = ∇
s uF are the associated strain tensors and C B and C F are the

associated elasticity tensors; bB and bF are the body force vectors in ΩB and ΩF respectively, uB and uF are the
displacement vectors for the background and foreground domains respectively, ū is the prescribed displacement on
the essential boundary Γg , t̄ is the given traction on the natural boundary Γt , and nI denotes the outward normal

vector of the inclusion domain ΩF .

4



J. Wang, G. Zhou, M. Hillman et al. Computer Methods in Applied Mechanics and Engineering 385 (2021) 114042

a
E

2

d

T

Eqs. (1a) and (1d) state the equilibrium equations of two domains, while the corresponding boundary conditions
re specified in Eqs. (1b) and (1c). The compatibility conditions of traction and displacement are described in
qs. (1e) and (1f), respectively.

.2. Weak form

Following the key idea in [33] to apply the Lagrange multiplier in the immersed domain to enforce volumetric
isplacement compatibility rather than surface compatibility on the contour ΓI , the variational formulation of a

linear elastostatic composite inclusion problem defined by Eqs. (1a)–(1f) is augmented, which leads to the following
weak formulation: Find uB ∈ H 1

g (ΩB), uF ∈ H 1
g (ΩF ), and λ ∈ H−1 (ΩF ), such that for all wB ∈ H 1

0 (ΩB),
wF ∈ H 1 (ΩF ) and γ ∈ H−1 (ΩF ), the following equation holds [33]:∫

ΩB

∇
swB : σ BdΩ −

∫
ΩB

wB · bBdΩ +

∫
ΩF

∇
swF : (σ F − σ B)dΩ −

∫
ΩF

wF · (bF − bB)dΩ

−

∫
Γt

wB · t̄dΓ +

∫
ΩF

γ · (uF − uB)dΩ +

∫
ΩF

(wF − wB) · λdΩ = 0
(2)

where λ is the Lagrange multiplier with test function γ defined in the inclusion domain ΩF , which enforces the
continuity condition. Comparing the first and third terms, and the second and fourth terms, it can be seen that
this form follows the immersed strategy, where the quadrature can be carried out on independent domains with
independent quadrature rules without computing any intersections. As will be seen, at the discrete level including
quadrature, no intersections of the domains need to be computed in the present approach, as indicated by the
above formula, which is the basis of the method. Here we also mention that while in mesh-based discretizations
the quadrature is usually tied directly to the approximation, an inverse mapping can be performed (as commonly
required in immersed formulations) so that background variables can always be defined at foreground quadrature
points and there is still no need to compute intersections.

After performing integration by parts on the energy terms in Eq. (2), one obtains:

−

∫
ΩB\ΩF

wB · (∇ · σ B + bB)dΩ +

∫
Γt

wB · (n · σ B − t̄)dΓ −

∫
ΩF

wB · (∇ · σ B + bB + λ)dΩ

−

∫
ΩF

wF · [(∇ · σ F + bF ) − (∇ · σ B + bB) − λ]dΩ +

∫
ΓI

wF · [nI · (σ F − σ B)]dΓ

+

∫
ΩF

γ · (wF − wB)dΩ = 0.

(3)

hus, from the above, the following strong form is recovered:

wB is arbitrary in ΩB\ΩF ⇒ ∇ · σ B + bB = 0 in ΩB\ΩF (4a)

wB is arbitrary on Γt ⇒ n · σ B = t̄ on Γt (4b)

wB is arbitrary in ΩF ⇒ ∇ · σ B + bB + λ = 0 in ΩF (4c)

wF is arbitrary in ΩF ⇒ (∇ · σ F + bF ) − (∇ · σ B + bB) − λ = 0 in ΩF (4d)

wF is arbitrary on ΓI ⇒ nI · (σ B − σ F ) = 0 on ΓI (4e)

γ is arbitrary in ΩF ⇒ uF = uB in ΩF . (4f)

It is obvious that Eqs. (4a), (4b), and (4e) are nothing but Eqs. (1a), (1c), and (1e). Here Eq. (4f) implies that
uB = uF on the interface (i.e. Eq. (1f) is satisfied). Finally, subtracting equation (4c) from (4d) indicates (1d)
is met, which completes the proof of the equivalence of Eq. (2) and Eq. (1). Note that this particular weak form
directly embeds the traction compatibility condition without additional effort or explicit description of the interface.

Remark 1. It appears that the form of Eq. (2) cannot be derived from a variational viewpoint. That is, there is
apparently no potential associated with Eq. (2). In [33], the constrained variational equation with Lagrange multiplier
was augmented with additional terms after-the-fact, which enables Eq. (2) to recover (1a)–(1f). In other words
without this augmentation of the variational equation, which does not appear to be obvious, the strong form is not

recovered.
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Although no contour integral terms are introduced, the two main concerns about the Lagrange multiplier
pproach, introducing extra degrees of freedom, and potentially suffering from LBB instability, remain to be
ddressed, which motivates the derivation of the formulations in the following sections.

. Immersed volumetric penalty method

To eliminate the additional degrees of freedom caused by the Lagrange multiplier, one strategy could be to
irectly replace the Lagrange multiplier terms by a penalty constraint leading to the following form:∫

ΩB

∇
swB : σ BdΩ −

∫
ΩB

wB · bBdΩ +

∫
ΩF

∇
swF : (σ F − σ B)dΩ −

∫
ΩF

wF · (bF − bB)dΩ

−

∫
Γt

wB · t̄dΓ + β

∫
ΩF

(wB − wF ) · (uB − uF )dΩ = 0.

(5)

hat is, the last term in Eq. (5) is equivalent to taking the variational derivative of the penalty-type residual

Rβ = β/2
∫
ΩF

(uB − uF ) · (uB − uF )dΩ . (6)

To examine if the weak form with a volumetric penalty constraint is equivalent to the strong form, one can
erform integration by parts on Eq. (5) and obtain:

−

∫
ΩB\ΩF

wB · (∇ · σ B + bB)dΩ +

∫
Γt

wB · (n · σ B − t̄)dΓ +

∫
ΓI

wF · [nI · (σ F − σ B)]dΓ

−

∫
ΩF

wB · [(∇ · σ B + bB) + β(uF − uB)]dΩ +

∫
ΩF

wF · [∇ · (σ B − σ F ) + (bB − bF ) + β(uF − uB)]dΩ

= 0.

(7)

ased on Eq. (7), the following strong form is found:

wB is arbitrary in ΩB\ΩF ⇒ ∇ · σ B + bB = 0 in ΩB\ΩF (8a)

wB is arbitrary on Γt ⇒ n · σ B = t̄ on Γt (8b)

wB is arbitrary in ΩF ⇒ ∇ · σ B + bB + β(uF − uB) = 0 in ΩF (8c)

wF is arbitrary in ΩF ⇒ −(∇ · σ F + bF ) + (∇ · σ B + bB) + β(uF − uB) = 0 in ΩF (8d)

wF is arbitrary on ΓI ⇒ nI · (σ B − σ F ) = 0 on ΓI . (8e)

he combination of Eqs. (8c) and (8d) immediately gives:

∇ · σ F + bF = 0 in ΩF . (9)

qs. (8a)–(8b) and (8e)–(9) take the same form as the strong form found by Lagrange multiplier. However, for the
ompatibility condition of displacement described in Eq. (1f), (8c) implies:

uF = uB −
1
β

(∇ · σ B + bB) (10)

which means, as β → ∞, uF → uB . When β is small, the compatibility condition of displacement cannot be
recovered, which leads to the derivation of the immersed volumetric Nitsche methods in the next section.

4. Consistent immersed volumetric Nitsche methods

This section develops a volumetric Nitsche method to eliminate the aforementioned underlying issues with the
Lagrange multiplier and penalty approaches. The strategy to achieve this is first to determine the physical quantity
that the volumetric Lagrange multiplier represents and use this quantity to replace it in the original weak form such
that no additional degrees of freedom are introduced. A penalty term is then added to ensure coercivity, which is
similar to the surface-type Nitsche method for enforcing essential boundary conditions [41]. Since these methods
are derived from the Lagrange multiplier approach which has shown to be consistent with the strong form, the
proposed Nitsche method will inherit the consistency.
6
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4.1. Immersed volumetric Nitsche method

Following the derivation in Section 2.2, the following physical quantities associated with the Lagrange multiplier
re apparently:

λ = −(∇ · σ B + bB) in ΩF (11a)

λ = (∇ · σ F + bF ) − (∇ · σ B + bB) in ΩF . (11b)

As discussed previously, a solution to these two equations can be found by subtracting one from another:

∇ · σ F + bF = 0 in ΩF (12)

which is the equilibrium of the inclusion in the inclusion domain. Using this result, it seems that both Eqs. (11a)
and (11b) indicate that the physical meaning of Lagrange multiplier is the (negative) residual of the background
domain in the foreground.

However, we posit that a convex linear combination of the two meanings can be taken, similar to the Nitsche
methods employed for surfaces in [11], and later verify the consistency between weak and strong form:

λ = (1 − α) [(∇ · σ F + bF ) − (∇ · σ B + bB)] − α(∇ · σ B + bB)
≡ (1 − α) [r(uF ) − r(ub)] − αr(uB)
= (1 − α) r(uF ) − r(uB)

(13)

here r(u) ≡ ∇ ·σ +b denotes the residual of the equilibrium equations. Using this notation, one may write Eq. (3)
s:

−

∫
ΩB\ΩF

wB · (∇ · σ B + bB)dΩ +

∫
Γt

wB · (n · σ B − t̄)dΓ −

∫
ΩF

wB · (r(uB) + λ)dΩ

−

∫
ΩF

wF · [r(uF ) − r(uB) − λ]dΩ +

∫
ΓI

wF · [nI · (σ F − σ B)]dΓ

+

∫
ΩF

γ · (wF − wB)dΩ = 0.

(14)

hen with Eq. (13) in hand, we have for Eq. (14):

−

∫
ΩB\ΩF

wB · (∇ · σ B + bB)dΩ +

∫
Γt

wB · (n · σ B − t̄)dΓ − (1 − α)
∫
ΩF

wB · r(uF )dΩ

− α

∫
ΩF

wF · r(uF )dΩ +

∫
ΓI

wF · [nI · (σ F − σ B)]dΓ +

∫
ΩF

[(1 − α)r(wF ) − r(wB)] · (uF − uB)dΩ = 0.

(15)

o, in place of Eqs. (4c) and (4d):

wB is arbitrary in ΩF ⇒ (1 − α)r(uF ) = 0 in ΩB\ΩF (16a)

wF is arbitrary in ΩF ⇒ αr(uF ) = 0 in ΩB\ΩF . (16b)

dding the above, we have r(uF ) = 0 which shows that the convex combination of (11a) and Eq. (11b) attests
o the strong form. Thus the choice of α is arbitrary, at least in the continuous sense. In this work, we consider
he choice of α = 1 (that is Eq. (11a)), as it keeps the formulation as simple as possible, and so that the resulting
ormulation admits C0 approximations (such as finite elements) for the foreground (in contrast to the choice of
q. (11b), which would require higher-order continuity for both the foreground and background).

The essential idea of Nitsche’s method is to use this physical meaning of the Lagrange multiplier to eliminate
he extra variable, while adding a penalty term associated with the constraint, to ensure coercivity. With Eq. (2) and
13) in hand, and a penalty term in the form of β

∫
ΩF

(wB − wF ) · (uB − uF )dΩ added, and a volumetric Nitsche
mmersed formulation is obtained as: Find u ∈ H 2 Ω and u ∈ H 1 Ω , such that for all w ∈ H 2 Ω and
B g ( B) F ( F ) B 0 ( B)

7
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wF ∈ H 1 (ΩF ), the following equation holds:∫
ΩB

∇
swB : σ BdΩ −

∫
ΩB

wB · bBdΩ +

∫
ΩF

∇
swF : (σ F − σ B)dΩ −

∫
ΩF

wF · (bF − bB)dΩ

−

∫
Γt

wB · t̄dΓ −

∫
ΩF

∇ · σ (wB) · (uF − uB)dΩ −

∫
ΩF

(wF − wB) · (∇ · σ B + bB)dΩ

+ β

∫
ΩF

(wB − wF ) · (uB − uF )dΩ = 0.

(17)

ote that the background approximation in this weak form involves a residual-type term, and requires higher-order
egularity than usually employed. A few possibilities are quadratic C1 B-splines [40], or meshfree approxima-
ions [39].

emark 2. Since the formulation does not emanate from a potential as mentioned previously, the derivation
f Eq. (17) from a weighted residual viewpoint is provided in the Appendix, in order to provide generality and
round the method in weak-form principles. Then later, the proposed method can be developed for problems such
s fluid–structure interaction using the weighted residual formulation.

Now, to prove consistency with the strong form of the proposed formulation, an integration by parts of Eq. (17)
ields:

−

∫
ΩB\ΩF

wB · (∇ · σ B + bB)dΩ +

∫
Γt

wB · (n · σ B − t̄)dΓ +

∫
ΓI

wF · [nI · (σ F − σ B)]dΓ

−

∫
ΩF

wF · [(∇ · σ F + bF ) + β(uB − uF )]dΩ −

∫
ΩF

∇σ (wB) · (uF − uB)dΩ

+ β

∫
ΩF

wB · (uB − uF )dΩ = 0.

(18)

he associated strong form based on Eq. (18) is then:

wB is arbitrary in ΩB\ΩF ⇒ ∇ · σ B + bB = 0 in ΩB\ΩF (19a)
wB is arbitrary on Γt ⇒ n · σ B = t̄ on Γt (19b)
wB is arbitrary in ΩF ⇒ ∇ · σ F + bF + β(uB − uF ) = 0 in ΩF (19c)
wF is arbitrary on ΓI ⇒ nI · (σ B − σ F ) = 0 on ΓI (19d)
wB is arbitrary in ΩF ⇒ uF − uB = 0 in ΩF (19e)

σ (wB) is arbitrary in ΩF ⇒ uF − uB = 0 in ΩF . (19f)

It is easy to observe that the combination of Eqs. (19c) and (19e) yields:

∇ · σ F + bF = 0 in ΩF . (20)

Therefore the proposed weak form is fully consistent with the strong form of the composite problem (1). As such,
the proposed formulation (17) is termed a consistent immersed volumetric Nitsche formulation.

4.2. Immersed volumetric non-symmetric Nitsche method

Alternatively, the formulation of a so-called non-symmetric Nitsche method can be obtained by changing the
sign of the volumetric constraint term in Eq. (17), which yields:∫

ΩB

∇
swB : σ BdΩ −

∫
ΩB

wB · bBdΩ +

∫
ΩF

∇
swF : (σ F − σ B)dΩ −

∫
ΩF

wF · (bF − bB)dΩ

−

∫
Γt

wB · t̄dΓ +

∫
ΩF

∇ · σ (wB) · (uF − uB)dΩ −

∫
ΩF

(wF − wB) · (∇ · σ B + bB)dΩ

+ β

∫
(wB − wF ) · (uB − uF )dΩ = 0.

(21)
ΩF

8
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It can be shown that the weak form defined in Eq. (21) is still equivalent to the strong form following previous
derivations. The non-symmetric Nitsche formulation can be derived from the weighted residual formulation as well,
the details are provided in the Appendix.

Remark 3. Although the formulation is the so called non-symmetric version, the final assembled global matrix is
on-symmetric for both volumetric approaches, which will be discussed in the next section.

. Discretization

.1. Reproducing kernel approximation

In this work, the meshfree reproducing kernel (RK) approximation [42] is used to discretize the Galerkin form
f the newly derived weak forms, due to the regularity required in the present Nitsche formulations. The RK
pproximation uh(x) of a vector function u(x) using a set of NP nodes in two dimensions is:

uh(x) =

∑
I∈Sx

ΨI (x)d I (22)

where ΨI (x) and d I are the shape function and the generalized displacement for the I th node, respectively, and
Sx = {I |ΨI (x) ̸= 0}. The shape function is constructed as a correction to a kernel function φa(x − x I ) with a
compact support a:

ΨI (x) = HT(x − x I )b(x)φa(x − x I ) (23)

where H(x) =
[
1, x, y, x2, · · · , yn

]T is a column vector of complete nth order monomials, b(x) is a
olumn vector containing all the associated unknown coefficients of each component in H , and φa(x − x I ) is the

kernel function which defines the locality and order of smoothness in the approximation. The cubic spline kernel
function is employed in this work, which possesses C2 continuity:

φa(z) =

⎧⎨⎩
2
3 − 4z2

+ 4z3 z ⩽ 1
2

4
3 − 4z + 4z2

−
4
3 z3 1

2 < z ⩽ 1
0 z > 1

(24)

where z ≡ ∥x − x I ∥ /a is a normalized relative distance. The unknown coefficient vector b(x) is determined by
enforcing the nth order reproducing conditions:∑

I∈Sx

ΨI (x)x i
I y j

I =x i y j , i + j = 0, 1, . . . , n (25)

which is equivalent to the following matrix form:∑
I∈Sx

ΨI (x)HT(x − x I ) =HT(0). (26)

ubstituting Eq. (23) into Eq. (26) yields:

b(x) = M−1(x)H(0) (27)

here M(x) =
∑

I∈Sx
H(x − x I )HT(x − x I )φa(x − x I ) is the so-called moment matrix. Using Eq. (27), the RK

hape function is obtained:

ΨI (x) = HT(0)M−1(x)H(x − x I )φa(x − x I ). (28)

Note that the order of smoothness of ΨI (x) is inherited by the kernel function φa(x − x I ). Since the cubic spline
ernel function employed is C2 continuous, the shape function is also C2, which is sufficient for the proposed weak

orms in Eqs. (17) and (21).

9
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5.2. Matrix form

We choose to formulate the framework in two-dimensional space in this work, which can be extended to the
hree-dimensional case without any special considerations. The trial and test function spaces of the weak forms in
qs. (5), (17) and (21) are discretized by applying the RK approximation in the background domain ΩB and the

mmersed foreground domain ΩF :

uh
B(x) =

[
uh

Bx (x)

uh
By(x)

]
= N B d B (29a)

wh
B(x) =

[
wh

Bx (x)

wh
By(x)

]
= N B cB (29b)

uh
F (x) =

[
uh

Fx (x)

uh
By(x)

]
= N F d F (29c)

wh
F (x) =

[
wh

Fx (x)

wh
Fy(x)

]
= N F cF (29d)

ith:

N =

[
Ψ1 0 Ψ2 0 · · · ΨN P 0
0 Ψ1 0 Ψ2 · · · 0 ΨN P

]
(30a)

d =
[
d1x d1y d2x d2y · · · dN Px dN Py

]T
(30b)

c =
[
w1x w1y w2x w2y · · · wN Px wN Py

]T
(30c)

where the subscripts are implied in the above.
Substituting the approximation for the test and trial functions (29) into the weak forms in Eqs. (5), (17) and (21),

the following matrix forms are obtained:

(K + Kβ)d = F P for penalty (31a)

(K + Kβ
+ K N

+ (K N )
T
)d = FN for Nitsche (31b)

(K + Kβ
+ K N

− (K N )
T
)d = FN for non-symmetric Nitsche (31c)

where:

d =

[
d B

d F

]
(32a)

K =

[
K B B 0
K F B K F F

]
(32b)

Kβ
=

[
K̄β

B B K̄β

B F

K̄β

F B K̄β

F F

]
(32c)

K N
=

[
K̄ B B 0
K̄ F B 0

]
(32d)

F P
=

[
F P

B

F P
F

]
(32e)

FN
=

[
FN

B

FN
F

]
(32f)

with the entries in the above given as:

K B B =

∫
BT

B C B BBdΩ (33a)

ΩB

10
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K F B = −

∫
ΩF

BT
F C B BBdΩ (33b)

K F F =

∫
ΩF

BT
F C F BF dΩ (33c)

K̄β

B B = β

∫
ΩF

NT
B N BdΩ (33d)

K̄β

B F = −β

∫
ΩF

NT
B N F dΩ (33e)

K̄β

F B = −β

∫
ΩF

NT
F N BdΩ (33f)

K̄β

F F = β

∫
ΩF

NT
F N F dΩ (33g)

K̄ B B =

∫
ΩF

NT
B C̄ B DBdΩ (33h)

K̄ F B = −

∫
ΩF

NT
F C̄ B DBdΩ (33i)

F P
B =

∫
Γt

NT
B t̄dΓ +

∫
ΩB

NT
B bBdΩ (33j)

F P
F =

∫
ΩF

NT
F (bF − bB)dΩ (33k)

FN
B =

∫
Γt

NT
B t̄dΓ +

∫
ΩB

NT
B bBdΩ −

∫
ΩF

NT
B bBdΩ (33l)

FN
F =

∫
ΩF

NT
F bF dΩ (33m)

where the I th components of B and D are:

B I =

[
ΨI,x 0 ΨI,y

0 ΨI,y ΨI,x

]T

(34a)

D I =

[
ΨI,xx ΨI,xy ΨI,yy 0 0 0

0 0 0 ΨI,xx ΨI,xy ΨI,yy

]T

. (34b)

Furthermore, the material matrices are given by the following:

C =
Ẽ

1 − ν̃2

⎡⎣1 ν̃ 0
ν̃ 1 0
0 0 (1 − ν̃)/2

⎤⎦ (35a)

C̄ =
Ẽ

1 − ν̃2

[
1 0 (1 − ν̃)/2 0 (1 + ν̃)/2 0
0 (1 + ν̃)/2 0 (1 − ν̃)/2 0 1

]
(35b)

here:

Ẽ =

{
E for plane stress

E/(1 − ν2) for plane strain (36a)

ν̃ =

{
ν for plane stress

ν/(1 − ν) for plane strain (36b)

n which E and ν are Young’s modulus and Poisson’s ratio of the material respectively.
In the above, one can observe the salient and essential feature of an immersed approach: while numerical

uadrature needs to be carried out for overlapping computational domains in Eqs. (33a)–(33m), the overall
ormulation is devoid of integrals that involve the computation of the intersection of these two domains. That is, all
11
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Table 1
Order of matrix terms for Nitsche formulation in surface and volume constraints in
dimension d with maximum of problem constants C . Combining the last two rows
results in matrices on the same order.

Surface type Volumetric type

Stiffness matrix O(Chd−2) O(Chd−2)
Constraint matrix O(Chd−2) O(Chd−2)
Penalty matrix without parameter O(hd−1) O(hd )
Scaled penalty parameter O(Ch−1) O(Ch−2)

domain integrals are over ΩB or ΩF , and never performed over ΩB\ΩF . Therefore, the present formulation provides
complete independence of both the approximation and quadrature on ΩB and ΩF .

Remark 4. In the matrix form, the stiffness matrix K N comes from the change of the Lagrange multiplier to its
hysical meaning. Meanwhile, Kβ is a result of the penalty terms in all formulations. A special component in the
tiffness matrix K common to all formulations is K F B , which works as a natural coupling matrix that builds the
onnection between domains via the consistent weak enforcement of the traction compatibility. Thus the additional
ff-diagonal coupling terms enforce displacement capability; the terms absent from the penalty method in K N are
equired for consistency of the strong form.

emark 5. Both Nitsche formulations contain K N , which is not symmetric. Therefore the change of sign in the
non-symmetric” version of Nitsche’s method does change the symmetry of the formulation, and nothing is lost by
his change of signs in terms of the symmetry of the global system.

emark 6. The choice of β has the effect on both accuracy and stability of the numerical solution. As the
omponent of matrices are N ∼ 1, B ∼ 1/h and D ∼ 1/h2, with h the nodal spacing, the integrals of the
atrices K and K N are not on the same order as Kβ as shown in Table 1, and maximum of problem constants C

e.g., Lamé’s first and second parameters, diffusivity). Therefore, in this paper, a normalized penalty parameter is
uggested as βnor

= β/h2, with β ∈ [CB, CF ], where CB and CF are the maximum of the problem constants in
he matrix and inclusion domains, respectively, rather than a fixed β, to keep the matrix terms on the same order

and avoid ill-conditioning and under-penalization under refinement. As will be seen in the numerical examples, the
spacing h in both the foreground and background must be refined in order for the solution to converge, therefore
the spacing should maintain a fixed ratio and the penalty parameter can scale with either.

Remark 7. The coercivity of the symmetric Nitsche’s approach is achieved by adding a penalty term, which in turn
requires a minimum value for stability [5,43]. For the present volumetric constraint this term is β

∫
ΩF

(wB − wF ) ·

uB − uF )dΩ . Here it can be readily seen that the associated discretized matrix form Kβ in Eq. (32c) is a positive-
efinite matrix, and increases the coercivity of the numerical solution. A functional analysis can be performed to
stimate the minimum value of β for stability, c.f. [43]; however in this paper we focus on the consistency of the
olumetric formulations and study the selection of the parameter numerically in the examples section. In addition,
he non-symmetric approach developed in this paper has been found to be robust and not sensitive to the parameter,
s expected, and can resolve the issue of careful selection of the parameter.

. Numerical examples

In this section, several benchmark problems are tested to evaluate the effectiveness of the proposed methods
f immersed Nitsche and immersed non-symmetric Nitsche, which are compared to the pure penalty method.
he essential boundary conditions are enforced using the traditional Nitsche’s method. All penalty parameters
re normalized by the nodal spacing h as h−2. Unless otherwise stated, linear basis in the RK approximation is
mployed, along with cubic spline kernels. The error in the L2 norm, H 1 semi-norm (denoted Hs1), and energy
orm used to evaluate the methods are defined as follows:

L2 error =

(∫
(uB − uh

B) · (uB − uh
B)dΩ +

∫
(uF − uh

F ) · (uF − uh
F )dΩ

)1/2

(37a)

ΩB\ΩF ΩF

12
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Fig. 3. Description of inhomogeneous 1D bar problem.

Hs1 error =

(∫
ΩB\ΩF

[∇ ⊗ (uB − uh
B)] : [∇ ⊗ (uB − uh

B)]dΩ

+

∫
ΩF

[∇ ⊗ (uF − uh
F )] : [∇ ⊗ (uF − uh

F )]dΩ
)1/2

(37b)

Energy error =

(∫
ΩB\ΩF

(εB − εh
B) : (σ B − σ h

B)dΩ +

∫
ΩF

(εF − εh
F ) : (σ F − σ h

F )dΩ
)1/2

(37c)

hich are evaluated by 20-point Gaussian quadrature in 1D and 5 × 5 point Gaussian quadrature in 2D.

.1. 1D bi-material elastic bar problem

Analogous to the 1D example in [44], consider a 1D inhomogeneous bar with length L = 1 with a hard inclusion
n the middle, as shown in Fig. 3. A distributed body force acts on the entire bar. The governing equation of this
roblem reads:⎧⎨⎩

d
dx (Ẽ du

dx ) + b(x) = 0 ]0, L[
u(0) = 0
u(L) = ū

(38)

where Ẽ is Young’s modulus taking the following form:

Ẽ =

{
E (2) x ∈ [L/3, 2L/3]
E (1) else . (39)

To study the effectiveness of proposed methods, the material constant in the matrix domain is selected as E (1)
= 1,

while the inclusion material property E (2) is varied to yield different cases. The bar is subject to two essential
boundary conditions u(0) = 0 and u(L) = ū. The analytical solution can be obtained by integrating the governing
equation 3. With the aid of the left boundary condition, the analytical solution can be found as:

u(x) =

∫ x

0

1

Ẽ

[
c0 −

∫ t

0
b(τ )dτ

]
dt (40)

here c0 is an integration constant that can be determined by the second boundary condition u(L) = ū. Since c0 and
¯ are related, in this problem, we manufacture ū by setting c0 = 1. Three meshfree discretizations are constructed
s shown in Fig. 4 for analysis. Here, non-conforming background and foreground domain discretizations are first
onsidered. Linear basis and a normalized support size of 1.8 are taken in the meshfree approximation.

.1.1. Piece-wise linear displacement in bar
First, a body force of zero is considered, i.e., b(x) = 0, which is can be considered a linear patch test for both

omogeneous and inhomogeneous problems, depending on the ratio of moduli.
Taking the homogeneous case, i.e., E (2)/E (1)

= 1, which is the standard (homogeneous) linear patch test, the
esults for the displacement and strain with varying β are shown in Figs. 5 and 6, respectively, for the finest
iscretization in Fig. 4(c). It can be seen that when the penalty parameter is zero, the penalty method yields spurious
13



J. Wang, G. Zhou, M. Hillman et al. Computer Methods in Applied Mechanics and Engineering 385 (2021) 114042

r
t
e
i
s

o
w
s
i
n

6

i
fi

s
o

Fig. 4. Non-conforming meshfree discretization for 1D bar problem: (a) 15 particles; (b) 31 particles; (c) 54 particles.

Fig. 5. Displacement results for the 1D bi-material bar problem with zero body force, E (2)/E (1)
= 1.

esults in the displacement field. However, the strain field is close to exact. Recall that for all three methods,
he traction compatibility is consistently weakly enforced, but the displacement compatibility is only consistently
nforced for the Nitsche methods. For all other cases, all other methods yield acceptable results and the patch test
s essentially passed. Importantly, this also serves as a verification that the Nitsche methods do in fact attest to the
trong form of the composite problem.

Next, the inhomogeneous case is tested for the discretization in Fig. 4(c) with E (2)/E (1)
= 100, with comparisons

f displacement and strain shown in Figs. 7 and 8, respectively. Due to the inhomogeneity, the exact solution is piece-
ise linear in the displacement field and is discontinuous in the strain field. The solution via the penalty method is

trongly dependent on the penalty parameter. The proposed Nitsche methods agree well with the analytical solution
n both displacement and strain, even when the penalty parameter is relatively small. In addition, the solutions are
ot strongly dependent on the choice of parameter overall.

.1.2. High-order displacement in bar
To further study the effectiveness of the proposed method, a cubic body force of b(x) = 1 + 25x − 10x2

+ x3,
s considered to provide a convergence analysis, since now the highest order of polynomials in the true solution is
ve, while linear basis is employed.

First, a homogeneous material is considered to assess the convergence of the proposed methods in problems
ufficiently regular that yield the standard error estimate i.e., with optimal convergence rates associated with the

rder of approximation employed. The corresponding convergence studies for different penalty parameters are given

14
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Fig. 6. Strain results for the 1D bi-material bar problem with zero body force, E (2)/E (1)
= 1.

Fig. 7. Displacement results for the 1D bi-material bar problem with zero body force, E (2)/E (1)
= 100.

Fig. 8. Strain results for the 1D bi-material bar problem with zero body force, E (2)/E (1)
= 100.

in Figs. 9 and 10 for the displacement and strain respectively. From the results, the optimal second-order convergence
rates in the L2 norm and first-order rate in the Hs1 can be obtained by the proposed Nitsche methods when the
material is homogeneous. The error in the solution is relatively insensitive to the value of the parameter, and the
optimal rate is obtained in all cases. In contrast, the penalty method is slightly more sensitive to the value of the
parameter, and does not converge in the displacement for β = 0.
15
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Fig. 9. Convergence comparison of the L2 error norm for the 1D bi-material bar problem with different penalty parameters, E (2)/E (1)
= 1.

Fig. 10. Convergence comparison of the HS1 error norm for the 1D bi-material bar problem with different penalty parameters, E (2)/E (1)
= 1.

Next, E (2)/E (1)
= 100 is chosen, and the rate of convergence drops by half as the regularity of the true solution

s decreased, as shown in Figs. 11 and 12. Both figures indicate that a lower penalty parameter will lead to
he inaccurate solution for the penalty method, and in this case the solution is highly sensitive to the value of
he parameter. However, both Nitsche and non-symmetric Nitsche’s methods enable a much more flexible choice
f penalty parameter, with solutions either converging at either half optimal rate as expected, or in some cases
xhibiting super convergence. Likely, an optimal value can be obtained using a related eigenvalue analysis [43], but
his is considered beyond the scope of this work.

A comparison of the distribution of displacement and strain is shown in Figs. 13 and 14 respectively, for the
nest discretization shown in Fig. 4(c). It can be seen that the solution of the pure penalty method is sensitive to

he penalty parameter, and that a sufficiently large value is necessary for good accuracy. Meanwhile, the Nitsche
ethods are not sensitive to the parameter, and yield solutions which are accurate across the range of values chosen.

.1.3. High-order displacement in bar with foreground refinement
In this subsection, the error and convergence of the proposed methods are further studied under a refinement

f the foreground domain only, as shown in Fig. 15. The L2 error comparisons are provided in Tables 2 and 3,
or homogeneous and inhomogeneous problems, respectively. As seen in the two tables, the global L2 error norm
s clearly influenced by the error from the background, even though the foreground discretization is refined. For
he homogeneous case in Table 2, the error starts to decrease under the first refinement (from discretization 1 to
iscretization 2) but remains same after the second refinement (from discretization 2 to discretization 3), and thus
tops converging. For the inhomogeneous case in Table 3, the result does not converge at all. Both results indicate

hat the global error is governed by both the foreground and background solutions. As seen in Section 6.1.1, the
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Fig. 11. Convergence comparison of the L2 error norm for the 1D bi-material bar problem with different penalty parameters, E (2)/E (1)
= 100.

Fig. 12. Convergence comparison of the HS1 error norm for the 1D bi-material bar problem with different penalty parameters, E (2)/E (1)
=

100.

Fig. 13. Displacement results comparison for the 1D bi-material bar problem with cubic body force and different penalty parameters,
E (2)/E (1)

= 100.

ethod is able to pass the patch test, indicating the numerical consistency of the overall formulation regardless of

he foreground and background discretization. Nevertheless, here it is shown that refinement of both foreground and

ackground domains is necessary for convergence.
17
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Fig. 14. Strain results comparison for the 1D bi-material bar problem with cubic body force and different penalty parameters, E (2)/E (1)
= 100.

Fig. 15. Non-conforming meshfree discretization for 1D bar problem with refinement of the inclusion domain only: (a) 15 particles; (b) 18
particles; (c) 24 particles.

Fig. 16. Conforming meshfree discretization with 49 background particles and 25 foreground particles.

Table 2
L2 error norms for the 1D bi-material under the refinement of the inclusion only with β = E (1),
E (2)/E (1)

= 1.

Discretization 1 Discretization 2 Discretization 3

Penalty method 3.102E−3 1.988E−3 1.978E−3
Nitsche’s method 4.746E−3 2.055E−3 2.074E−3
Non-symmetric Nitsche’s method 4.439E−3 2.110E−3 2.109E−3

6.1.4. High-order displacement in bar with conforming domains
Since both Nitsche methods outperform the penalty method so far and yield similar results, a conforming

discretization as shown in Fig. 16 is next considered to compare the two methods’ robustness. Here, the position
of the boundary nodes of the immersed domain are coincident with nodal locations in the background domain. A
18
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Table 3
L2 error norms for the 1D bi-material under the refinement of the inclusion only with β = E (1),
E (2)/E (1)

= 100.

Discretization 1 Discretization 2 Discretization 3

Penalty method 1.469E−1 1.469E−1 1.469E−1
Nitsche’s method 9.707E−2 9.702E−2 9.702E−2
Non-symmetric Nitsche’s method 9.776E−2 9.783E−2 9.784E−2

Fig. 17. Displacement comparisons for the 1D bi-material bar problem with different penalty parameters and conforming meshfree
discretization, E (2)/E (1)

= 100.

Fig. 18. Gradient comparisons for the 1D bi-material bar problem with different penalty parameters and conforming meshfree discretization,
E (2)/E (1)

= 100.

ubic body force is again considered with the inhomogeneous case of E (2)/E (1)
= 100. As seen in Figs. 17 and 18,

inaccurate results are observed for the standard volumetric Nitsche’s method, with solutions sensitive to the value of
the penalty parameter. In particular, when low penalty parameters are employed, the solution is extremely inaccurate.
This issue can be solved by using the non-symmetric Nitsche’s method, where the solution is consistently accurate

across all values.
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Fig. 19. Problem description for the 2D inhomogeneous heat conduction problem.

To conclude, in these one dimensional examples, the penalty method performs relatively poorly and necessitates
a large penalty parameter to yield reliable results. The non-symmetric Nitsche method is able to provide expected
convergence rates and solutions that are not sensitive to the value of the penalty parameter, regardless of whether a
conforming or non-conforming discretization is employed. This phenomenon is consistent with the one discussed
by Burman in [45]. Since the choice of penalty parameter is not sensitive in non-symmetric Nitsche approach, this
seems to allow for the omission of penalty terms in the non-symmetric framework. The standard Nitche method
performs equally well, but only as long as the discretization is non-conforming. Therefore the non-symmetric version
should be the method of choice based on these examples.

6.2. Inhomogeneous heat conduction

Next, consider the inhomogeneous heat conduction problem shown in Fig. 19, which is governed by the following
strong form:⎧⎨⎩−∇ · (κ∇u) + m2rm−2

= 0 in Ω
κ∇u · n = t̄ on Γt

u = ū on Γg

(41)

with r the distance to the origin and

κ =

{
κ (2) r ∈ [0, r0]
κ (1) else . (42)

he exact solution corresponding to Eq. (41) is [12]:

u =

{
rm/κ (2) r ⩽ r0

rm/κ (1)
+ (1/κ (2)

− 1/κ (1))rm
0 r > r0

. (43)

he boundary conditions in (41) are straightforwardly obtained from the above solution. Here, the free parameter
is set to three.
The three meshfree discretizations are plotted in Fig. 20, which are utilized to perform a convergence study.

inear basis functions with a normalized support size of 1.3 are adopted. The mesh shown is not used for
he construction of the approximation, but rather to clearly depict the relationship between the background and
oreground domains.

First, the convergence comparisons of volumetric penalty and Nitsche methods with different conductivity ratios
re given in Figs. 21 and 22, where the penalty parameter used in the simulation is selected as κ (2). From the figures,

both L2 and Hs1 norms yield convergent results under the volumetric framework. For the case when ratio is one,

which means the problem is no longer inhomogeneous, the solution will possess sufficient regularity for optimal
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β

Fig. 20. Meshfree discretizations for the 2D inhomogeneous heat conduction problem: (a) 146 particles; (b) 522 particles; (c) 1970 particles.

Fig. 21. Convergence comparison of the L2 error norm for the 2D inhomogeneous heat problem with different ratios of conductivity,
= κ (2).

Fig. 22. Convergence comparison of the HS1 error norm for the 2D inhomogeneous heat problem with different ratio of conductivity,
β = κ (2).

convergence rates. As the ratio increases, the rate is decreased to the expected rate of half the optimal. Among the
methods tested, the penalty method and non-symmetric Nitsche’s method preform the most consistently.

To further examine the performance of these methods, convergence comparisons varying the penalty parameters
are shown in Figs. 23 and 24. Here we test a range of six orders of magnitude of the penalty parameter (104 to

−2
10 ) to examine the effect. The results are consistent with the bar example: the error in the penalty method is
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Fig. 23. Convergence comparison of the L2 error norm for the 2D inhomogeneous heat problem with different penalty parameters,
(2)/κ (1)

= 100.

Fig. 24. Convergence comparison of the Hs1 error norm for the 2D inhomogeneous heat problem with different penalty parameters,
κ (2)/κ (1)

= 100.

seen to be highly sensitive to the penalty value. Meanwhile, the Nitsche methods are relatively insensitive, with
the non-symmetric version yielding the most consistent results. Here, superconvergence is again observed in the
derivatives of the solution.

6.3. Inhomogeneous cell with multiple inclusions subject to tension loading

Consider the two-dimensional plane strain unit cell subject to tension loading shown in Fig. 25. The cell is
loaded on the top edge with a vertical displacement of 0.01 m. The two immersed circular inclusion domains have
the same material properties of Young’s modulus E (2)

= 100.0 MPa and Poisson’s ratio ν(2)
= 0.3, while the matrix

as different material properties of Young’s modulus E (1)
= 0.1 MPa and Poisson’s ratio ν(1)

= 0.3. The material
arameters, non-symmetric locations and varying sizes of the two inclusions are designed to create a complex
olution field to further evaluate the proposed methods.

Due to the complexity of the problem, there is no analytical solution available, so an FEM solution using a fine
onforming mesh with 75,950 nodes and 75,449 elements is utilized as a reference solution. L2 convergence studies
ased on this solution are performed using the discretizations shown in Fig. 26.

First, the average of the two Young’s moduli is taken as the penalty parameter, and the results are shown in
able 4. Here, the error in the L2 norm for all three approaches are comparable, consistent with previous results.
t can be seen that the error is reduced by roughly half with each refinement, and the solution converges. This
eduction in error corresponds to a rate of one as expected.

Next, β = E (1) is selected, and the error norms are given in Table 5. Consistent with previous results, the

on-symmetric volumetric Nitsche method yields the best performance. The error is decreased by roughly half,
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Fig. 25. Schematic of unit cell with two inclusions subject to tension loading; units are m. Problem taken from [32].

Fig. 26. Non-conforming discretization of the unit cell with two inclusions: (a) 547 particles; (b) 2051 particles; (c) 7939 particles.

Table 4
L2 error norms for the 2D inhomogeneous elasticity problem with β = (E (1)

+ E (2))/2.

Discretization 1 Discretization 2 Discretization 3

Penalty method 2.107E−2 1.119E−2 5.109E−3
Nitsche’s method 4.260E−2 4.315E−2 5.138E−3
Non-symmetric Nitsche’s method 2.109E−2 1.120E−2 5.114E−3

Table 5
L2 error norms for the 2D inhomogeneous elasticity problem with β = E (1).

Discretization 1 Discretization 2 Discretization 3

Penalty method 5.659E−2 3.190E−2 1.686E−2
Nitsche’s method 4.260E−2 4.315E−2 8.717E−3
Non-symmetric Nitsche’s method 2.848E−2 1.445E−2 8.089E−3

which indicates the expected convergence rate of one in the L2 norm. In contrast, the penalty method and standard
Nitsche method do not converge at this rate, and the Nitsche method is noticeably worse than the non-symmetric
version.
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Fig. 27. Contour of the effective displacement for the 2D inhomogeneous elasticity problem with β = E (1) using 549 particles: (a) penalty
method; (b) Nitsche’s method; (c) non-symmetric Nitsche’s method; (d) reference solution by FEM.

Fig. 28. Problem description of CT scanned composite.

The contours of the displacement magnitude of the reference and numerical solutions by using 547 meshfree

particles are given in Fig. 27, where the non-symmetric Nitsche’s method yields the best displacement result among

three methods.
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Fig. 29. Meshfree simulation of CT scanned model with 2576 particles: (a) problem description and meshfree discretization; (b) displacement
magnitude; (c) σyy .

6.4. CT scan of a composite microstructure

The last example involves segmented CT scans of a composite microstructure, shown in Fig. 28, as a
emonstration. Here we note that in the presence of a complex microstructure, the present method provides
relatively effortless approach since both the discretization and quadrature can be constructed and performed

ompletely independently over the two domains, without consideration of intersections or explicit definition of
nterfaces whatsoever. The matrix is polymer epoxy (EPO-TEK 203, Epoxy Technology Inc., Billerica, MA) with
oung’s modulus E = 3.2 GPa and Poisson’s ratio ν = 0.4. The inclusions in the matrix are Alumina (Saint-
obain, Malvern, PA) with a very different Young’s modulus of E = 380 GPa, and Poisson’s ratio ν = 0.3.
wo-dimensional slices of the reconstructions are used to analyze the mechanical behavior of the composite. While

he complexity of the current example is reduced by the dimensionality and the level of “zoom-in”, this method
s currently implemented in a serial MATLAB code such that the capabilities are limited. However the current
ormulation can be implemented into a large-scale code, where the complex three-dimensional microstructure in
ig. 29 can be handled using the present immersed approach without any complex solution procedures.

Two meshfree discretizations of 2D slices of the segmented micro-CT are shown in Figs. 29(a) and 30(a), where
gain a mesh is shown for visualization of the domains. A roller boundary condition is applied at the bottom of the
odels, with a pin support at the center. A prescribed displacement corresponding to 10% tensile engineering strain

s applied to the top of the model. The non-symmetric Nitsche method is selected for analysis based on the previous
esults. The displacement magnitude and stress contours shown in Figs. 29(b–c) and 30(b–c), respectively, exhibit
he inhomogeneous response of composite solids: the displacement contours deviate from the linear distribution
xpected from homogeneous material, and stress concentrations can be observed along the interface of inclusions,
articularly around rough geometry. Some other interesting features can be observed, such as much higher stress
agnitudes on the top right of Fig. 29(c), and a force chain-like response in 30(c) with tensile stresses above average

ontinuously distributed down a line of inclusions near the middle-right.

. Conclusions and discussion

In this work, consistent immersed volumetric Nitsche (CIVN) methods are developed by using the Nitsche
pproach to enforce a volumetric continuity condition between computational composite domains. The methods do
ot require additional degrees of freedom, and the numerical simulations will not suffer from the LBB instability
ondition, in contrast to the Lagrange multiplier method. The immersed volumetric Nitsche’s methods are shown to
e fully consistent with strong form. Due to the regularity of test and trial functions, these volumetric-type constraint
pproaches remain consistent with the surface constraints in the original strong form of the composite problem.
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Fig. 30. Meshfree simulation of CT scanned model with 10,592 particles: (a) problem description and meshfree discretization; (b) displacement
agnitude; (c) σyy .

By using the immersed volumetric approach, no contour integral at the interfaces is required, nor computation of
ell intersections, which avoids computational complexity, the need for conforming meshes, and enables relatively
ffortless analysis of composite problems with arbitrarily complicated geometry. The effectiveness of the proposed
IVNs is demonstrated with several numerical examples, including real geometries of composite microstructures.

Consistent with earlier findings, Nitsche methods in the present context deliver more accurate results and exhibit
uch less sensitivity to the choice of the penalty parameter. This makes the Nitsche approach more robust for

ractical applications. In addition, when using the Nitsche technique, there is no need to select large values of the
enalty parameter to obtain accurate results, which improves conditioning of the left-hand-side matrices in implicit
alculations and increases the stable time-step size in explicit calculations.

A surprising finding of this work is that the non-symmetric Nitsche technique showed better accuracy and
obustness than its symmetric counterpart. Symmetric Nitsche techniques, which require higher values of the
enalty parameter for stability than their non-symmetric counterparts, are nevertheless favored for more traditional
pplications (e.g., weak enforcement of essential boundary conditions for elliptic problems) because they preserve
ymmetry of the system matrix and are adjoint-consistent, leading to optimal convergence in lower-order norms.
n the present case, however, adjoint consistency does not play an obvious role, and the non-symmetric Nitsche
echnique clearly benefits from the additional stability brought about by the skew-symmetric form of the operator.
n addition, the symmetric Nitsche method in this context does not lead to a symmetric system matrix anyway.

The proposed CIVN framework requires C1 continuity of the background, but only C0 continuity of the
oreground. In this work, meshfree approximations were utilized to satisfy these conditions. However, methods such
s isogeometric analysis (IGA) can also be utilized to satisfy the smoothness criteria. Thus, several combinations
f methods are possible for background–foreground discretizations, for instance: IGA–IGA, IGA–meshfree, IGA–
EM, meshfree–FEM, etc. Recent work [46] can also facilitate the computation of the divergence of stress for the
ackground if finite elements are desired.

A limitation of this method is the smoothness of the numerical solution; inherently, a smooth approximation is
equired, and meanwhile the true solution in composite problems will not possess sufficient regularity to obtain
he standard optimal convergence rate. However, great flexibility is gained by this approach, and the solutions are
onetheless convergent.

In future work, the CIVN approach will be applied to fluid–structure interaction problems involving material
ailure, where the problem of parameterizing contours is severely compounded by continuously evolving topological
hanges of the immersed solid domain.
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ppendix

In this appendix, the proposed weak forms are derived from a weighted residual point of view. A weighted
esidual form of Eqs. (1a)–(1e) can be stated as:

R =

∫
ΩB\ΩF

wB · (∇ · σ B + bB)dΩ −

∫
Γt

wB · (n · σ B − t̄)dΓ

+

∫
ΩF

wF · (∇ · σ F + bF )dΩ −

∫
ΓI

wF · [nI · (σ F − σ B)]dΓ

= 0.

(44)

fter integration by parts, we arrive at the following weak form:

R =

∫
ΩB\ΩF

∇
swB : σ BdΩ −

∫
ΩB\ΩF

wB · bBdΩ −

∫
Γt

wB · t̄dΓ

+

∫
ΩF

∇
swF : σ F dΩ −

∫
ΩF

wF · bF dΩ −

∫
ΓI

(wF − wB) · (nI · σ B)dΓ

= 0.

(45)

rom Eq. (45), one can see that this formulation still contains a contour integral on the interface. To eliminate this
erm, first define the following:

R(1)
=

∫
ΩF

∇
swB : σ B − wB · bBdΩ

R(2)
=

∫
ΩF

∇
swF : σ B − wF · bBdΩ .

(46)

ext, we modify Eq. (45) by adding and subtracting the terms in Eq. (46):

0 = R + (R(1)
− R(1)) + (R(2)

− R(2))

=

∫
ΩB

∇
swB : σ B − wB · bBdΩ −

∫
Γt

wB · t̄dΓ

+

∫
ΩF

∇
swF : (σ F − σ B) − wF · (bF − bB)dΩ −

∫
ΓI

(wF − wB) · (nI · σ B)dΓ

−

∫
ΩF

∇
swB : σ B − wB · bBdΩ +

∫
ΩF

∇
swF : σ B − wF · bBdΩ .

(47)

n integration by parts on Eq. (47) directly eliminates the boundary integral:

0 =

∫
ΩB

∇
swB : σ B − wB · bBdΩ −

∫
Γt

wB · t̄dΓ

+

∫
ΩF

∇
swF : (σ F − σ B) − wF · (bF − bB)dΩ

−

∫
ΩF

(wF − wB) · (∇ · σ B + bB)dΩ .

(48)

rom the derivation, the above weak form attests to Eqs. (1a)–(1e), yet the compatibility condition (1f) still needs

o be enforced.
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Now, instead of enforcing compatibility on interface (1f), consider the following augmented weighted residual
orm by enforcing uB = uF on ΩF :

R̄ = R +

∫
ΩF

w · (uF − uB)dΩ = 0 (49)

n which a new test function is introduced. In order to derive the CIVNs from Eq. (49), one can select w as follows:

w =

{
−∇ · σ (wB) for Nitsche
∇ · σ (wB) for non-symmetric Nitsche . (50)

inally, the volumetric immersed formulation is obtained from Eqs. (48)–(50), with the addition of a penalty term:∫
ΩB

∇
swB : σ BdΩ −

∫
ΩB

wB · bBdΩ +

∫
ΩF

∇
swF : (σ F − σ B)dΩ

−

∫
ΩF

wF · (bF − bB)dΩ −

∫
Γt

wB · t̄dΓ −

∫
ΩF

∇ · σ (wB) · (uF − uB)dΩ

−

∫
ΩF

(wF − wB) · (∇ · σ B + bB)dΩ + β

∫
ΩF

(wB − wF ) · (uB − uF )dΩ = 0

(51)

hich is the same as the proposed formulation in Eq. (17). The derivation for the non-symmetric version follows
irectly. Thus, although the proposed method cannot be obtained from a variational viewpoint, it can still be
rounded in the weighted residual formulation.

One final comment, consider the variational derivative of the Lagrange multiplier to enforce volumetric
ompatibility:

δ [(uF − uB) · λ] = (δuF − δuB) · λ + δλ · (uF − uB). (52)

ikewise, the terms in weak form (51) can be thought of as emanating from the following variational derivative:

δ [(uF − uB) · (∇ · σ B + bB)] = (δuF − δuB) · (∇ · σ B + bB) + ∇ · δσ B · (uF − uB). (53)

omparing Eqs. (52) and (53), it is apparent that one has by analogy:

λ = ∇ · σ B + bB, (54)

hich also indicates that the constraint terms in the weak form (51) are equivalent to using the physical meaning
f the Lagrange multiplier to enforce the constraint. Finally, in a variational form, (51) with the aid of (54) can be
ewritten as follows:∫

ΩB

∇
sδuB : σ BdΩ −

∫
ΩB

δuB · bBdΩ +

∫
ΩF

∇
sδuF : (σ F − σ B)dΩ −

∫
ΩF

δuF · (bF − bB)dΩ

−

∫
Γt

δuB · t̄dΓ +

∫
ΩF

δλ · (uF − uB)dΩ +

∫
ΩF

(δuF − δuB) · λdΩ = 0
(55)

hich is identical to the form in [33], and demonstrates that the method can be grounded in weighted residual
rinciples.
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