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Abstract

Lithium ion (Li-ion) batteries are attracting significant and growing interest due to
their many applications, particularly in hybrid and electric vehicles. Their high en-
ergy and high power density render them an excellent option for energy storage in
these vehicles. Sophisticated battery management systems (BMS) that ensure long
battery life and efficient utilization are based on low order electrochemical models
that can accurately capture the battery dynamics. This thesis develops reduced
order, linear models of Li-ion batteries that can be used for model-based power
train simulation, design, estimation, and control in hybrid and electric vehicles.
First, a reduced order model is derived from the fundamental governing electro-
chemical charge and Li+ conservation equations, linearized at the operating state
of charge and low current density. The equations are solved using analytical and
numerical techniques to produce the transcendental impedance or transfer function
from input current to output voltage. This model is then reduced to a low order
state space model using a system identification technique based on least squares
optimization. Given the prescribed current, the model predicts voltage and other
variables such as electrolyte and electrode surface concentration distributions. A
second model is developed by neglecting electrolyte diffusion and modeling each
electrode with a single active material particle. The transcendental particle trans-
fer functions are discretized using a Padé Approximation. The explicit form of
the single particle model impedance can be realized by an equivalent circuit with
resistances and capacitances related to the cell parameters. Both models are then
tuned to match experimental EIS and pulse current-voltage data.

As Li-ion cells age, they experience power and energy fade associated with
impedance rise and capacity loss, respectively. Identification of key aging parame-
ters in lithium ion battery models can validate degradation hypotheses and provide
a foundation for State of Health (SOH) estimation. This thesis develops and sim-
plifies an electrochemical model that depends on three key aging parameters, cell
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resistance, solid phase diffusion time and the capacity factor. Off-line linear least
squares processing of voltage and current data from fresh and aged NCM and LFP
cells produce estimates of these aging parameters. An adaptive gradient based
recursive estimator is also designed that can estimate these aging parameters on-
board a vehicle in real time. The estimated parameters vary monotonically with
age, consistent with accepted degradation mechanisms such as solid electrolyte
interface (SEI) layer growth and contact loss.

Finally, a control oriented degradation model is developed for LFP cells by
incorporating the aging mechanism of SEI layer growth in the negative electrode
with a nonlinear single particle model. This is the major degradation mechanism
in LFP cells because the positive electrode does not appreciably age due to its
extreme stability. The model predicts the experimentally measured capacity loss
and increase in film resistance.
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3.3 Padé Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.4 First Principles Equivalent Circuit Model . . . . . . . . . . . . . . . 37
3.5 Experimental Validation . . . . . . . . . . . . . . . . . . . . . . . . 38

Chapter 4
State of Health Estimation 42
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.2 Least Squares Parameter Estimation Algorithm . . . . . . . . . . . 45

4.2.1 Experimental Data for NCM and LFP cells . . . . . . . . . 47
4.2.2 State of Health Estimation for NCM and LFP cells . . . . . 49

4.3 Recursive Parameter Estimation . . . . . . . . . . . . . . . . . . . . 54
4.3.1 Recursive Parameter Identification from Experimental Data

for fresh NCM cells . . . . . . . . . . . . . . . . . . . . . . . 55

Chapter 5
Development of a Control Oriented Degradation Model for a

Lithium Iron Phosphate Battery 58
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.2 Model Development . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.3 Calibration and Validation of the Degradation Model . . . . . . . . 63

Chapter 6
Conclusions and Future Work 68
6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

6.2.1 Development of Better Aging Models and Validation . . . . 69
6.2.2 Identification of Minimally Degrading Current Profiles . . . 70
6.2.3 Inclusion of the Effect of Temperature . . . . . . . . . . . . 70

vi



Bibliography 71

vii



List of Figures

1.1 Electrified vehicles (a) Hyundai Sonata Hybrid (b) Chevrolet Volt
(c) Nissan Leaf. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1 Lithium-Ion Cell Model. . . . . . . . . . . . . . . . . . . . . . . . . 12

3.1 Frequency Response: Transcendental transfer function (black) vs
Reduced order model (red). . . . . . . . . . . . . . . . . . . . . . . 30

3.2 Electrolyte Concentration Distribution, ce(x, t), Time Response:
5C discharge from 60% SOC at various times . . . . . . . . . . . . . 31

3.3 Solid Phase Surface Concentration Distribution, cs,e(x, t), Time Re-
sponse: 5C discharge from 60% SOC at various times . . . . . . . . 32

3.4 Current Density Distribution, j(x, t), Time Response: 5C discharge
from 60% SOC at various times. . . . . . . . . . . . . . . . . . . . . 33

3.5 Frequency response: full order SP model (Blue) vs padé approxi-
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Chapter 1
Introduction

1.1 Research Contributions and Motivation

1.1.1 Research Contribution

This dissertation presents contributions in the area of modeling and estimation

of lithium ion batteries, with focus on their application in battery management

systems of hybrid and electric vehicles. The highlights of this dissertation are as

follows:

1. Development of low order physics based battery models that can be easily

implemented on battery management systems.

2. Design of Off-line and On-line State of Health Estimators by identifying

aging parameters using a least squares approach and gradient update method

respectively.

3. Development of a control oriented degradation model for a lithium iron phos-

phate cell by incorporating the aging mechanism of SEI layer growth on the

negative electrode particle

1.1.2 Research Motivation

Hybrid and electric vehicles have tremendous potential to reduce greenhouse gases

in the atmosphere and the dependance on non renewables such as gasoline and
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diesel fuel. By 2020 it is estimated that more than half of the new vehicle sales

will mostly consist of hybrid-electric, plug-in hybrid, and all-electric models [1].

Lithium ion (Li-ion) batteries play a key role in this huge shift. High energy and

power density of Li-ion batteries render them a better option for energy storage

than nickel metal hydride batteries in these vehicles. Li-ion batteries also have a

longer cycle life, low self-discharge rate and no memory effects.

A class of Li-ion batteries, the lithium iron phosphate (LFP) batteries (in which

the positive electrode is made up of LiFePO4 ) compared to cells with other

positive electrode chemistries such as LiCoO2 (LCO) and LiNi1/3Co1/3Mn1/3O2

(NCM) are growing considerably particularly in their application of electric and

hybrid vehicles. Their low cost and highly safe nature make them an excellent

choice of energy and power for these type of vehicles. Moreover the material is

available in plenty and less toxic compared to cobalt, manganese or nickel. Padhi

et al [2] introduced and studied the olivine structured LiFePO4 (LFP) material

for the positive electrode in which the insertion/extraction proceeds via two phase

process. The ordered olivine crystalline structure renders the material extremely

stable and safe under high thermal and other abuse conditions [3]. MacNeil et

al [4] studied and compared the thermal stability of seven different cathode using

differential scanning calorimetry and ranked LFP material as the safest amongst

all.

Figure 1.1 shows three vehicles that employs Li-ion batteries as a source of

energy. Hyundai Sonata hybrid in Fig 1.1a is a hybrid electric vehicle (HEV)

which combines a 2.4-liter engine with six-speed automatic transmission, and a

30kW electric motor and lightweight lithium polymer batteries to produce a full

gasoline-electric hybrid with 37 miles per US gallon in the city and 40 miles per

US gallon on the highway (b) Chevrolet Volt is a plug-in hybrid (PHEVs) in which

the battery pack charges directly from the electric grid and runs the vehicle for

a distance in pure electric mode with zero gas consumption and emissions. The

2011 Chevrolet Volt has a 16 kWh / 45 Ah lithium-ion battery pack that can be

charged by plugging the car into a 120-240 V AC residential electrical outlet using

the provided charging cord. The vehicle also has an internal combustion engine

that can be used to extend the electric-only range or increase the speed above

the electric-only limit. After the batteries have been depleted to a specified level,
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Figure 1.1. Electrified vehicles (a) Hyundai Sonata Hybrid (b) Chevrolet Volt (c)
Nissan Leaf.

the vehicle operates in full hybrid mode until it can be fully recharged from the

grid. (c) Nissan leaf is an all electric vehicle( EV) that uses an 80 kW and 280

Nm front-mounted synchronous electric motor driving the wheels, powered by a

24 kWh lithium ion battery pack rated to deliver up to 90 kilowatts power.

However, today’s electric and hybrid electric vehicles employ an excess number

of batteries due to the overconservative charge and discharge limits designed by

the battery manufacturers to prevent premature battery degradation and hence

maintain a longer battery life. This substantially increases the total weight and

cost of the vehicle which are major obstacles in the widespread recognition and

adoption of electric vehicles. Bulk of this problem can be solved by the use of

a sophisticated battery management system which can efficiently utilize the bat-

teries and maintain long life. In general, the battery system is composed of the

battery pack and the battery management system (BMS). The BMS performs im-

portant functions such as controlling the charge and discharge by setting current

and voltage limits and hence protecting the battery from overcharging. The BMS

also provides accurate estimates of the State of Charge (SOC) and State of Health

(SOH), balances the cells in the pack and protects them from thermal runaway.

Such an advanced battery management system are based on electrochemical mod-

els that can accurately capture the internal battery dynamics and hence assist in

the efficient utilization of batteries.
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1.2 Background

1.2.1 Battery Models

The Li-ion electrochemical system is non-linear and infinite dimensional compli-

cating the development of an accurate model. Modeling of Li-ion batteries has

followed two main approaches: Equivalent circuit models and models based on the

fundamental principles of physics and electrochemistry. Equivalent circuit mod-

els [5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16] are the most widely developed and

studied models due to their low order and easy integration with the BMS elec-

tronics. Equivalent circuit models which consists of resistances and capacitances

do not retain any links with the underlying physicochemical processes in the cells.

Generally they are lumped models with less parameters. Often, these models are

empirical and cannot be used for integrated design of the battery pack and BMS.

On the other hand, fundamental models capture the essential battery dynamics

and have a much better prediction capability compared to empirical / equivalent

circuit models [17, 18, 19, 20] but their complexity can be a significant barrier to

BMS design. First principle electrochemical models using porous electrode and

concentrated solution theories were developed in [17, 18] to study the internal dy-

namics of a Li-ion battery. The governing partial differential equations are numer-

ically solved in a computational fluid dynamics framework, making this approach

computationally expensive and too slow for real time applications. Ramadass et

al. [21] incorporate capacity fade in the model. An extensive review of the existing

mathematical models for both Li-ion and Nickel battery systems is provided by

Gomadam et al [22]. In a typical HEV or Plug in HEV, batteries are usually pulse

charged and discharged within a relatively narrow state of charge(SOC) range from

30% to 70%. A reduced order model that has been linearized at 50% SOC, for

example, can be sufficiently accurate and low order for model-based BMS.

However, modeling of lithium iron phosphate batteries (LFP) cells is an ex-

tremely complex issue and still an open research topic with discrepancies and con-

tentions associated with the lithiation intercalation kinetics in the LFP electrode.

Malik et al [23] have done an extensive study in identifying and understanding

the kinetic mechanisms that are responsible for rapid charging and discharging in

LFP electrodes. They studied the LFP electrode kinetics at three different length
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scales - bulk, single particle and the multi-particle scale. Srinivasan and Newmann

[24] developed a physics based model that accounts for the distinct phases in the

lithiated and delithiated forms of the LFP electrode. A shrinking core approach

was used to model the phase change in which a core of one phase is covered with

a shell of the second phase with transport of Li-ions in the shell driving the move-

ment of the phase boundary. Several researchers have also done excellent work

on developing simple physics based mathematical models for LFP cells based on

a single particle approach [25, 26, 27]. From a controls perspective, Marcicki et al

[28] developed an improved Padé approximated single particle model by including

the concentration and potential dynamics of the electrolyte phase.

1.2.2 Degradation Mechanisms

Aging in Li-ion batteries which leads to its capacity and power fade is a very serious

and challenging issue. Battery degradation is an extremely complex process and

difficult to understand since it occurs from a number of reactions and interactions

in the electrodes and electrolyte. Capacity and power fade occur due to variety of

reasons such as growth of a passivation layer on the positive/negative electrodes,

decomposition of the electrolyte, melting and corrosion of the current collectors

etc. Diagnosis of aging can be done by both electrochemical techniques such as

galvanostatic cycling, hybrid pulse power characterization(HPPC),electrochemical

impedance spectroscopy and physical analysis techniques like X-ray diffraction, Ra-

man spectroscopy, scanning electron microscopy(SEM) and transmission electron

microscopy (TEM)[29]. Researchers have extensively studied and reviewed the var-

ious aging mechanisms in both the negative and positive electrodes [30, 31, 32, 33].

In the negative electrode, the reaction of the electrolyte with the electrode at the

interface is the major cause of aging. The electrolyte undergoes reductive decom-

position and irreversible consumption of lithium ions takes place at the electrode

/ electrolyte interface. The products form a protective solid electrolyte interface

(SEI) layer around the electrode. The SEI film consists of two layers, a thin inner

layer made of inorganic compounds and a thicker porous outer layer composed of

organic products [34]. The amount of irreversible charge capacity that is consumed

during the formation of the SEI was found to be dependent on the specific surface
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area of the graphite. On a long time scale, the SEI penetrates into pores of the

electrode and in addition may also penetrate into the pores of the separator. This

may result in a decrease of the accessible active surface area of the electrode. The

increase in electrode impedance is considered to be caused by the growth of the

SEI as well as by changes of the SEI in composition and morphology. Moreover,

contact loss (mechanical or electronic) within the composite electrode results in

higher cell impedance, and thus, has to be considered as another major cause for

aging. One inevitable source for contact loss is the volume changes of the active

anode material, which may lead to mechanical disintegration within the composite

electrode. Contact loss (i) between carbon particles, (ii) between current collector

and carbon, (iii) between binder and carbon, and (iv) between binder and current

collector can be the result. Also, the electrode porosity, which is a key feature for

good anode performance, since it allows the electrolyte to penetrate into the bulk

of the electrode, is certainly affected by the volume changes of the active material.

In lithium metal oxide cathodes (positive electrode), the capacity fading mech-

anisms are still not understood completely and hence are still of increasing research

interest. In general number of changes on the positive electrode such as degradation

of components like conducting agents, binder, corrosion of current collector, oxida-

tion of electrolyte and interfacial film formation are responsible for battery aging.

These effects do not occur separately and are influenced by cycling conditions. Ac-

cording to Vettel et al [30] charge capacity fading of positive electrode material are

caused by structural changes during cycling, chemical decomposition/dissolution

reaction and surface film modification.

1.2.3 Aging Models

From the perspective of battery management systems, it is extremely important

to develop models that can capture the aging dynamics accurately. This could

enable better prediction of battery state of health(SOH)and hence assist in the

development of control algorithms that can optimize the use of batteries by mini-

mizing degradation. However, modeling of battery aging is extremely complex and

a clear understanding of aging mechanisms is necessary to study life performance

of batteries. The SEI layer formation on the negative electrode is the most com-
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mon and studied mechanism which is responsible for a capacity loss in batteries by

their consumption of active lithium ions. Physics based degradation models have

been developed by incorporating the SEI layer growth [21, 35, 36]. Randall et al

[37] reduced the complexity of the aging model developed by Ramadass et al [21]

using a simple incremental approach. Aging models have also been developed for

cells with LFP positive electrode chemistry using the SEI layer growth mechanism

since the positive electrode does not undergo any degradation owing to its stable

olivine structure [38].

1.2.4 State of Health Estimation

State of health in a lithium ion battery is typically defined as the ratio of the

current capacity over the nominal capacity of a fresh battery and monotonically

decreases as the battery ages. Impedance also rises as a battery ages, decreasing the

maximum power output and efficiency. Researchers have extensively studied the

capacity and power fade in Li-ion batteries [39, 40, 41]. Power fade is primarily due

to an increase in internal resistance or impedance. Internal resistance causes ohmic

losses that waste energy, produce heat, and accelerate aging. Li-ion batteries lose

capacity over time due to degradation of the positive and negative electrodes and

the electrolyte. The degradation mechanisms are complex, coupled, and dependant

on cell chemistry, design, and manufacturer [30].

As mentioned before, considerable effort has been put into the development

of high fidelity battery models that accurately predict voltage given the input

current and model parameters [17, 19]. The model parameters that provide the

best match between the model predicted and experimentally measured voltage

change with age. The change in system parameters due to aging depends on the

degradation mechanism in a given cell. If the predominant degradation mecha-

nism can be determined then the parameters that are most closely associated with

that mechanism would be most likely to change. If the degradation mechanism

involves unmodeled dynamics in the cell, however, then the correlation between

the mechanism and system parameters becomes unclear.

Ramadass et al. [41] link cell aging to the change of only a few parameters in

an electrochemical battery model. For a Li-Ion cell, they find that the solid elec-
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trolyte film resistance and the solid state diffusion coefficient of the anodic active

material are linked to cell degradation. Schmidt et al. [42] found that electrolyte

conductivity and cathodic porosity are key parameters to estimate the rate capa-

bility fade and the capacity loss of a Li-Ion cell. Zhang et al [43] characterized the

cycle life of lithium ion batteries with LiNiO2 cathode and their study revealed

that the impedance rise and capacity fade during cycling are primarily caused by

the positive electrode. An SEI layer forms on the positive electrode and it thickens

and changes properties during cycling, causing cell impedance rise and power fade.

Parameter estimation techniques based on equivalent circuit models have been

developed to quantify the degradation in Li-ion battery. Remmlinger et al. [44]

monitor the state of health of Li-ion batteries in electric vehicles using an on-

board internal resistance estimation technique. Kalman filters [45, 46, 5, 6, 7] have

been developed to estimate the state of health using the equivalent circuit models.

Troltzsch et al. [47] characterize aging effects in Li-ion batteries using impedance

spectroscopy. Kim et al [48] implement a dual sliding mode observer to estimate

the capacity fade in lithium ion batteries.

1.3 Overview of the dissertation

Chapter 2 presents the development of an transcendental impedance transfer func-

tion for a Li-ion battery from the fundamental governing electrochemical charge

and Li+ conservation equations that are linearized at the operating state of charge

and low current density. The equations are solved using analytical and numerical

techniques to produce the transcendental impedance or transfer function from in-

put current to output voltage. A similar approach is used to develop an impedance

transfer function for a single particle model, by neglecting electrolyte diffusion and

modeling each electrode with a single active material particle.

Chapters 3 presents discretization methods to reduce the order of the transcen-

dental transfer functions developed in Chapter 2. The transcendental impedance

transfer function is then reduced to a low order state space model using a system

identification technique based on least squares optimization. Given the prescribed

current, the model predicts voltage and other variables such as electrolyte and

electrode surface concentration distributions. The transcendental particle transfer
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functions for the single particle model are discretized using a Padé Approximation.

The explicit form of the single particle model impedance can be realized by an

equivalent circuit with resistances and capacitances related to the cell parameters.

Both models are then tuned to match experimental EIS and pulse current-voltage

data.

Chapter 4 presents techniques to estimate SOH by tracking parameters that

vary as the battery degrades. An offline as well as an online parameter identifica-

tion algorithm is presented. The offline method employs a linear least squares tech-

nique to estimate the battery parameters whereas the online estimation technique

uses a recursive technique based on gradient update. The estimated parameters

can be correlated to the mechanisms responsible for the battery degradation. The

aging parameters are estimated for both NCM and LFP cells.

Chapter 5 presents the development of a control oriented degradation model

for an LFP cell using SEI layer growth mechanism as the major factor responsible

for capacity fade. The model is calibrated and predicts experimental capacity loss

and resistance increase.

Chapter 6 presents the conclusions and future work.



Chapter 2
Impedance Model Development

2.1 Introduction

This chapter presents the development of impedance models from the fundamen-

tal governing electrochemical charge and Li+ conservation equations that are lin-

earized at the operating state of charge and low current density. The governing

equations are solved using analytical and numerical techniques to produce a tran-

scendental impedance transfer function. Later, the chapter presents the develop-

ment of a single particle model under the assumption of a single electrode particle

and negligible electrolyte diffusion.

2.2 Working of a Lithium Ion Battery

Figure 2.1 shows a schematic diagram of the Li-Ion cell model. The 1D domain

from the negative current collector (x = 0) to the positive current collector (x = L)

consists of three domains: the negative composite electrode (width = δ−), separa-

tor (width = δsep), and positive composite electrode (width = δ+). Lithium metal

oxide (LiMO2) and lithiated carbon (LixC) are the active materials in the posi-

tive and negative electrodes, respectively. The metal in the positive electrode is a

transition metal, typically Co. The active materials are bonded to metal foil cur-

rent collectors at both ends of the cell and electrically insulated by a microporous

polymer separator film or gel-polymer. Liquid or gel-polymer electrolytes enable
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lithium ions (Li+) to diffuse between the positive and negative electrodes. The

lithium ions insert into or deinsert from the active materials via an intercalation

process. During discharge the Li+ ions diffuse to the surface of the negative elec-

trode spherical particle where it reacts and transfers into the electrolyte. These

positive ions migrate through the electrolyte to the positive electrode and reacts

with the positive electrode particle at the surface and diffuses into the inner regions.

The insulating separator forces electrons to follow an opposite path through an ex-

ternal circuit or load. The binder and filler in these composite electrodes improve

the electron transport across the solid phase.

In the positive electrode during charge, the active material is oxidized and

lithium ions are de-intercalated as follows

Li1−xCoO2 + xLi+ + xe−
discharge

�
charge

LiCoO2. (2.1)

In the negative electrode during charge, the active material is reduced and

lithium ions that migrate from the positive electrode travel through the electrolyte

via diffusion and ionic conduction and are intercalated as follows

LixC
discharge

�
charge

C + xLi+ + xe−. (2.2)

Reactions (2.1) and (2.2) reverse for discharge.

2.3 Governing Equations

Four partial differential equations govern the dynamics of Li-Ion batteries: Con-

servation of species and charge in the electrode and electrolyte. These equations

are coupled by the Butler-Volmer equation. The model presented here is often

termed a pseudo-2D model because one dimension is x and the other is the radial

dimension in the spherical particles r. The particles are assumed to be distributed

throughout the electrodes and modeled as a particles embedded in the electrode at

each value of x. Thus, at each x there is also a radial coordinate r corresponding

to the particle embedded at that point. It is called a pseudo-2D model because

the neighboring particles are not directly coupled unlike most 2D PDEs. The em-
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Figure 2.1. Lithium-Ion Cell Model.
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bedded particles couple to the electrode through the r direction and the electrode

is coupled through the x direction but there is no direct path for ions to flow from

inside one particle to an adjacent particle.

2.3.1 Conservation of Species

The composite electrodes are modeled using porous electrode theory, meaning

that the solid phase electrode particles are assumed to be uniformly distributed

throughout the electrolyte phase. Conservation of Li+ in a single spherical active

material particle is described by Ficks law of diffusion,

∂cs
∂t

=
Ds

r2

∂

∂r

(
r2∂cs
∂r

)
for r ∈ (0, Rs), (2.3)

where r ∈ (0, Rs) is the radial coordinate, cs(r, t) is the concentration of Li ions

in the particle as a function of radial position and time, and Ds is the solid phase

diffusion coefficient. We use the subscripts s, e, and s, e to indicate solid phase,

electrolyte phase, and solid/electrolyte interface, respectively. The boundary con-

ditions are
∂cs
∂r

∣∣∣∣
r=0

= 0, (2.4)

Ds
∂cs
∂r

∣∣∣∣
r=Rs

= − j

asF
, (2.5)

where j(x, t) is the rate of electrochemical reaction at the particle surface (with

j > 0 indicating ion discharge), F is Faraday’s constant (96487 C/mol), and as

the specific interfacial surface area. For the spherical active material particles

occupying electrode volume fraction εs, as = 3εs/Rs. Equations (2.3) - (2.5) are

applied on a continuum basis across each electrode giving solid phase concentration

a 2D spatial dependency, i.e. cs(x, r, t). The electrochemical model depends only

upon concentration at the particle surface, cs,e(x, t) = cs(x,Rs, t).

Conservation of Li+ in the electrolyte phase yields

εe
∂ce
∂t

= Deff
e

∂2ce
∂x2

+

(
1− to+

)
F

j for x ∈ (0, L), (2.6)

where ce(x, t) is the electrolyte phase Li concentration, εe is the electrolyte phase
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volume fraction, to+ is the transference number of Li+ with respect to the velocity of

solvent. The effective diffusion coefficient is calculated from a reference coefficient

using the Bruggeman relation Deff
e = Deε

p
e that accounts for the tortuous path

that Li+ ions follow through the porous media. We assume that εe, t
o
+, Deff

e are

constant within the negative electrode, separator, and positive electrode but can

have different values in the three domains. Equation (2.6) has zero flux boundary

conditions at the current collectors,

∂ce
∂x

∣∣∣∣
x=0

=
∂ce
∂x

∣∣∣∣
x=L

= 0. (2.7)

2.3.2 Conservation of Charge

Charge conservation in the solid phase of each electrode is described by Ohm’s law

σeff
∂2φs
∂x2

− j = 0 for x ∈ (0, L), (2.8)

where φs(x, t) and σeff are the potential and effective conductivity of the solid

matrix, respectively, with σeff evaluated from active material reference conductiv-

ity σ as σeff = σεs. Conductivity is assumed constant in the negative electrode

(σeff = σeff− for x ∈ (0, δ−)), the separator, and the positive electrode (σeff = σeff+

for x ∈ (δ− + δsep, L)). The boundary conditions at the current collectors are pro-

portional to applied current,

−σeff−
∂φs
∂x

∣∣∣∣
x=0

= σeff+

∂φs
∂x

∣∣∣∣
x=L

=
I

A
, (2.9)

where A is electrode plate area and I(t) is the applied current following the sign

convention that a positive current discharges the battery. The boundary conditions

at the separator require zero electronic current

∂φs
∂x

∣∣∣∣
x=δ−

=
∂φs
∂x

∣∣∣∣
x=δ−+δsep

= 0. (2.10)
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Electrolyte phase charge conservation yields

κeff
∂2φe
∂x2

+
κeffD

ce,0

∂2ce
∂x2

+ j = 0 for x ∈ (0, L), (2.11)

where φe(x, t) is the electrolyte phase potential and κeff the effective ionic con-

ductivity, calculated from the Bruggeman relation κeff = κεpe.

The boundary conditions for Eq. (2.11) are zero flux at the two current collec-

tors,
∂φe
∂x

∣∣∣∣
x=0

=
∂φe
∂x

∣∣∣∣
x=L

= 0. (2.12)

At the electrode separator interfaces, we have flux continuity as(
κeff

∂φe
∂x

+ κeffD

∂ce
∂x

)∣∣∣∣
int−

=

(
κeff

∂φe
∂x

+ κeffD

∂

∂x
ce

)∣∣∣∣
int+

, (2.13)

where int = δ− and δ− + δsep corresponding to the two separator interfaces.

2.3.3 Reaction Kinetics

The four governing PDEs (2.3), (2.6), (2.8), and (2.11) describing field variables,

cs,e(x, t), ce(x, t), φs(x, t), and φe(x, t), are coupled by the Butler-Volmer electro-

chemical kinetic expression

j = i0

{
exp

[
αaF

RT
η

]
− exp

[
−αcF
RT

η

]}
for x ∈ (0, L), (2.14)

where i0(x, t) is the exchange current density, η(x, t) is the overpotential, and αa

and αc are the anodic and cathodic transfer coefficients, respectively. The exchange

current density is related to both solid surface and electrolyte concentrations ac-

cording to

i0 = k(ce)
αa(cs,max − cs,e)αa(cs,e)

αc for x ∈ (0, L), (2.15)

where k is a kinetic rate constant and cs,max is the maximum solid phase Li con-

centration. In Eq. (2.14), j is driven by overpotential, defined as the difference

between solid and electrolyte phase potentials minus the thermodynamic equilib-
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rium potential, U , of the solid phase,

η = φs − φe − U for x ∈ (0, L). (2.16)

Equilibrium potential, U(cs,e), is evaluated as a function of the solid phase con-

centration at the particle surface and has different values in the two electrodes.

2.3.4 Cell Voltage

With boundary conditions applied galvanostatically as in Eq. (2.9), cell current,

I(t), is the model input. Voltage across the cell terminals is calculated from

V (t) = φs(L, t)− φs(0, t)− Rf

A
I(t) (2.17)

where Rf is an empirical contact resistance.

2.4 Impedance model formulation

2.4.1 Linearization

The Butler-Volmer Eq. (2.14) must be linearized at an equilibrium point in order to

produce a linear model. As a first step in the linearization process, the equilibrium

distributions for concentrations and potentials are calculated. At equilibrium, the

currents j = I = 0 so η = 0 from the Butler-Volmer equation and constant distribu-

tions (independent of space and time) satisfy the governing equations. Specifically,

cs(r, t) = c̄s = constant (independent of r and t) satisfies conservation of Li in the

solid phase Eq. (2.3) and boundary conditions (2.4) and (2.5) because ˙̄cs = 0.

Thus, the equilibrium Li concentration is uniform throughout the particle and

surface concentration equals the average concentration so cse(x, t) = cs(r, t) = c̄s.

Similarly, conservation of Li in the electrolyte phase Eq. (2.6) and boundary condi-

tions (2.7) are satisfied with ce(x, t) = c̄e = constant (independent of x and t). It is

safe to assume that c̄e = 0 because in equilibrium the Li ions are stored in either the

positive or negative electrode with very few remaining in the electrolyte. Charge

concentration in the solid phase at equilibrium is also constant with φs(x, t) = φ̄s.
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A constant electrolyte potential φe(x, t) = φ̄e satisfies charge concentration in the

electrolyte phase in equilibrium.

From the definition of overpotential in Eq. (2.16), we have the equilibrium

relationships

φ̄−s = Ū− + φ̄e, (2.18)

φ̄+
s = Ū+ + φ̄e, (2.19)

where Ū = U(c̄s). If we assign the negative terminal as ground then φ̄−s = 0,

φ̄e = −Ū− and

V̄ = φ̄+
s = Ū+ − Ū− (2.20)

equals the open circuit voltage.

In summary, the equilibrium variables for a Li-Ion cell are determined by the

specified or given value of the average concentration c̄s. Knowing c̄s is equivalent

to knowing the State of Charge (SOC) of the cell. Given the SOC or c̄s, the

equilibrium values of V , φs, and φe can all be calculated.

The second step in linearization is to use perturbation equations that set each

variable equal to its equilibrium value plus a small deviation indicated by the

variable with a tilde on top (e.g. cs(x, t) = c̄s + c̃s(x, t) where c̃s(x, t) is small).

For the variables with zero equilibrium values (η(x, t), ce(x, t), j(x, t), and φ−s ) the

tilde variables equal the original values (e.g. η(x, t) = η̃(x, t)) so we leave off the

tildes for simplicity.

Substitution of the perturbation equations into the governing equations, ex-

panding nonlinear terms using a Taylor series, canceling the equilibrium terms,

and keeping only first order terms in the tilde variables results in a set of linear

equations. For the Li-Ion model, all of the equations are linear with the exception

of the Butler-Volmer Eq. (2.14) and the overpotential Eq. (2.16). For the linear

equations, one can simply substitute all variables with tilde variables to obtain the

“linearized” equations. The nonlinear Eq. (2.14) linearizes to

η =
Rct

as
j, (2.21)

with charge transfer resistance, Rct = RT
ī0F (αa+αc)

and ī0 is calculated at ce = 0 and
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cs,e = c̄s. Eq. (2.16) linearizes to

η = φ̃s − φ̃e − Ũ (2.22)

where

Ũ =
∂U

∂c
c̃s,e (2.23)

with
∂U

∂c
=

∂U

∂cs,e

∣∣∣∣
cs,e=c̄s

(2.24)

assumed constant.

2.4.2 Impedance Solution

For the pseudo-2D model of a Li-Ion cell presented here, the embedded particles

complicate the problem to the point where an analytical solution is not possible.

In this section, we neglect electrolyte diffusion in order to obtain an analytical

solution for the remaining variables, including the current density distribution

j(x, t). Using this distribution as input to an FEM model of electrolyte diffusion

allows an approximate inclusion of this important effect. The approach presented

in this section follows that of [19].

The linearized particle diffusion equation is

∂c̃s
∂t

=
Ds

r2

∂

∂r

(
r2∂c̃s
∂r

)
(2.25)

with the boundary conditions
∂c̃s
∂r

∣∣∣∣
r=0

= 0 (2.26)

and

Ds
∂c̃s
∂r

∣∣∣∣
r=Rs

= − j
F
. (2.27)

Taking Laplace Transform of Eq. (2.25) subject to the boundary conditions yields

the transfer function [49]

C̃s,e(x, s)

J(x, s)
=

1

F

(
Rs

Ds

)[
tanh (β)

tanh (β)− β

]
= Gp(s), (2.28)
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where C̃s,e(x, s) and J(x, s) are the Laplace Transforms of c̃s,e(x, t) and j(x, t),

respectively, and β = Rs

√
s

Ds

.

The Laplace Transform of the linearized Butler-Volmer Eq. (2.21) is

N (x, s) =
Rct

as
J(x, s), (2.29)

where N (x, s) = L{η(x, t)}.
If we neglect electrolyte diffusion, then the remaining variables of interest are

(cs,e, φe, and φs). Under this assumption, the positive and negative electrodes are

decoupled from one another. The separator does not contribute to the analytical

solution because there are no particles or electrodes. We therefore seek analytical

solutions for cs,e, φe, and φs in a single electrode and define the dimensionless

spatial variable z =
x

δ
, where δ is the electrode thickness and z = 0 and 1 at the

current collector and separator interfaces, respectively.

The Laplace Transform of the solid phase charge conservation Eq. (2.8) is

σeff

δ2

∂2Φ̃s(z, s)

∂z2
− J(z, s) = 0 (2.30)

with x→ z. The boundary conditions are

−σ
eff

δ

∂Φ̃s

∂z

∣∣∣∣∣
z=0

=
I
A
, (2.31)

where I(s) = L{I(t)} and

∂Φ̃s

∂z

∣∣∣∣∣
z=1

= 0 (2.32)

Neglecting electrolyte diffusion, the Laplace Transform of the electrolyte charge

conservation Eq. (2.11) becomes

κeff

δ2

∂2Φ̃e

∂z2
+ J = 0 (2.33)
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with the boundary condition at the current collector

∂Φ̃e

∂z

∣∣∣∣∣
z=0

= 0. (2.34)

The boundary condition at the separator can be obtained by integration of the

charge conservation equation over the domain, or, equivalently, enforcing charge

conservation in the electrode as a whole. Integration of the solid phase charge

conservation Eq. (2.30)

∫ 1

0

Jdz =

∫ 1

0

σeff

δ2

∂2Φ̃s

∂z2
dz =

σeff

δ2

∂Φ̃s

∂z

∣∣∣∣∣
1

0

= − I
Aδ

, (2.35)

using the boundary conditions. From liquid phase charge conservation, Eq. (2.33),∫ 1

0

Jdz = −
∫ 1

0

κeff

δ2

∂2Φ̃e

∂z2
dz = −κ

eff

δ2

∂Φ̃e

∂z
(1, s), (2.36)

using the zero flux boundary condition at z = 0. Equating Eqs. (2.35) and (2.36)

provides the missing boundary condition on electrolyte phase potential at the sep-

arator,
κeff

δ

∂Φ̃e

∂z
(1, s) =

I
A
. (2.37)

The last equation needed for the analytical solution is the Laplace Transform

of Eq. (2.22)

N = Φ̃s − Φ̃e −
∂U

∂c
C̃s,e (2.38)

which depends only on the difference between the solid and electrolyte phase po-

tentials Φ̃s−e = Φs − Φ̃e. Combining Eqs. (2.30) and (2.33), we obtain

∂2Φ̃s−e

∂z2
= δ2

(
1

κeff
+ 1

σeff

)
J (2.39)

with boundary conditions

−σ
eff

δ

∂Φ̃s−e

∂z
(0, s) =

κeff

δ

∂Φ̃s−e

∂z
(1, s) =

I
A
, (2.40)
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obtained by combining the solid and electrolyte phase potential boundary condi-

tions.

Eq. (2.38) can be simplified using the transfer function (2.28) and linearized

Butler-Volmer (2.29) to produce

Φ̃s−e =

[
Rct +

∂U

∂c
Gp
]
J̃ . (2.41)

Combining Eqs. (2.39) and (2.41), we obtain a single ODE

∂2Φ̃s−e

∂z2
− δ2

(
1

κeff
+ 1

σeff

) [
Rct +

∂U

∂c
Gp(s)

]−1

Φ̃s−e = 0, (2.42)

with boundary conditions (2.40) in the single unknown Φ̃s−e(x, s). The beauty of

the transfer function approach taken here is that in the ODE (2.42) the Laplace

variable s is a parameter so one need only solve the linear, constant parameter

equation,
∂2Φ̃s−e

∂z2
− ν2Φ̃s−e = 0, (2.43)

where

ν(s) = δ
(

1
κeff

+ 1
σeff

) 1
2

[
Rct +

∂U

∂c
Gp(s)

]− 1
2

(2.44)

is independent of Φ̃s−e (linear) and z (constant parameter).

The solutions of Eq. (2.43) are exponentials of the form

Φ̃s−e(z, s) = C1(s) sinh [ν(s) z] + C2(s) cosh [ν(s) z] . (2.45)

Substitution of Eq. (2.45) into the boundary conditions (2.40) yields the coefficients

C1(s)

I(s)
= − δ

ν(s)Aσeff
, (2.46)

C2(s)

I(s)
=
δ
(
κeff cosh(v(s)) + σeff

)
Aκeffσeffν(s) sinh(v(s))

. (2.47)



22

Substitution of the coefficients (2.46) into Eq. (2.45) yields

Φ̃s−e(z, s)

I(s)
=

δ

Aν sinh ν

{
1

σeff
cosh [ν (z − 1)] +

1

κeff
cosh [ν z]

}
. (2.48)

Using Eq. (2.41), we obtain the transfer function

J(z, s)

I(s)
=

J(z, s)

Φ̃s−e(z, s)

Φ̃s−e(z, s)

I(s)
=

ν2σeffκeff

δ2(σeff + κeff )

Φ̃s−e(z, s)

I(s)

=
ν

δA(κeff + σeff ) sinh ν

{
κeff cosh [ν (z − 1)] + σeff cosh [ν (z)]

}
. (2.49)

From Eq. (2.29), we have
N (z, s)

I(s)
= Rct

J(z, s)

I(s)
(2.50)

and using Eq. (2.28),
C̃s,e(z, s)

I(s)
=
C̃s,e(s)

J(s)

J(z, s)

I(s)
, (2.51)

both of which use the transfer function (2.49).

2.4.3 FEM Electrolyte Diffusion

Now we reintroduce electrolyte diffusion using a FEM model that allows relaxation

of the simplifying assumption used to obtain an analytical solution in the previous

section. The current density solution in Eq. (2.49) is the input to a FEM electrolyte

diffusion model. Electrolyte diffusion correction terms are calculated using the

FEM model that add the effects of electrolyte diffusion to electrolyte potential

and hence voltage.

Eq. (2.6) governing conservation of Li in the electrolyte was not used in the

impedance model and the concentration coupling term in the electrolyte Eq. (2.11)

was neglected. Using the FEM method described in Appendix, we discretize these

two equations to

Mċe = −Kce + Fj (2.52)

and

Kφφe + Kcce(t) = Fφj, (2.53)
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where ce(t) and φe(x, t) are the nodal electrolyte concentrations c̃e(xi, t) and po-

tentials φ̃e(xi, t) and

jT (t) =
[
j−(x1, t), . . . j−(xn− , t), 0, . . . 0, j+(xncell−n++1, t), . . . j+(xncell

, t)
]

(2.54)

is the current density calculated at the n− nodal points in the negative electrode

and n+ nodal points in the positive electrode using the transfer function (2.49).

The current density is zero for the nodal points in the separator.

The electrolyte concentration distribution is calculated by taking the Laplace

transform of Eq. (2.52) and solving for Ce(s) = L(ce(t)) as

Ce(s)

I(s)
= (K + sM)−1FJ, (2.55)

where Ji = J(zi, s)/I(s).

Solution of the discretized electrolyte potential Eq. (2.53) requires inversion of

the matrix Kφ. This matrix is singular, however, due to the zero flux boundary

conditions at x = 0 and L. To avoid this problem, we define voltages relative

to φe(0, t) so that ∆φe(x, t) = φe(x, t) − φe(0, t) is calculated. Relative potential

is all that is required to calculate the voltage. It is not possible to enforce both

∆φe(0, t) = 0 and ∆φ′e(0, t) = 0 for a second order ODE, however, so we approxi-

mate this by subtracting the (1,1) element of Kφ from the first column of all rows

of Kφ as follows

K∆φ = Kφ − (Kφ)1,1


1 0 · · · 0

1 0
...

. . .

1 0 · · · 0

 , (2.56)

to produce an approximation of

∆Φe(s)

I(s)
= (K∆φ)−1

(
−K

∆Ce(s)

I(s)
+ F

∆J

I(s)

)
. (2.57)

where ∆Ce = Ce − (Ce)1,1 and ∆J = J− (J)1,1.
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2.4.4 Overall System Transfer Function

The voltage Eq. (2.17) can be expanded as

Ṽ (t) = φ̃e(L, t)− φ̃e(0, t) + η(L, t)− η(0, t)

+
∂U+

∂c
c̃s,e(L, t)−

∂U−

∂c
c̃s,e(0, t)−

Rf

A
I(t). (2.58)

After application of the Laplace Transform, the final, overall system impedance is

Ṽ (s)

I(s)
=

∆Φe(L, s)

I(s)
+

∆N (L, s)

I(s)
+
∂U+

∂c

C̃s,e(L, s)

I(s)
− ∂U−

∂c

C̃s,e(0, s)

I(s)
− Rf

A
, (2.59)

where ∆Φe(L, s) is the nthcell element of ∆Φe(s) and ∆N (x, s) = N (x, s)−N (0, s).

2.5 Single Particle Model

The single particle model is developed under two major assumptions

• Each electrode is represented by a single active spherical particle.

• The dynamics due to electrolyte diffusion is negligible.

From the linearized Butler-Volmer equation we get the transfer function relating

the overpotential to the current

N (s)

I(s)
=
Rct

as

J(s)

I(s)
=

Rct

asAδ
(2.60)

The solid phase diffusion impedance in the spherical active material particles

is given by

C̃s,e(s)

I(s)
=
Cs,e(s)

J(s)

J(s)

I(s)
=

1

asFAδ

(
Rs

Ds

)[
tanh (β)

tanh (β)− β

]
, (2.61)
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Substituting Eqs. (2.60) and (2.61) into (2.59), we obtain the cell impedance

Ṽ (s)

I(s)
= −

Rct+

as+

1

Aδ+

−
Rct−

as−

1

Aδ−

+
∂u

∂cs+

1

Aδ+

Rs

asFDs+

[
tanh (β)

tanh (β)− β

]
− ∂u

∂cs−

1

Aδ−

Rs

asFDs−

[
tanh (β)

tanh (β)− β

]
− Rf

A

(2.62)

2.6 Capacity Modeling

The nominal capacity of a cell C is defined to be the maximum number of ampere-

hours that can be drawn from the fully charged cell at room temperature and a

slow (e.g. C/30) rate. The remaining capacity Cr(t) is defined as the number of

ampere-hours that can be drawn from the cell starting from the current time t, at

room temperature, and at a C/30 rate.

The volume averaged Li concentration

csavg =
1

Vs

∫
csdVs, (2.63)

where Vs = πR3
s/3 and dVs = 4 ∗ πr2dr. This volume integration yields:

ċsavg =
3Ds

Rs

[
R2
sc
′
s(Rs, t)

]
= − 1

εsF
javg (2.64)

using the boundary conditions in Equations (2.4) and (2.5). The average current

density is obtained by averaging the conservation of charge equation (2.8):

javg =

∫ δ

0

σeffφ′s =
1

δA
I (2.65)

for both the positive and negative electrodes. Subsititing Eq. (2.65) into Eq. (2.64),

the concentration dynamics become

˙csavg =
1

δAεsF
I. (2.66)
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The State of Charge is defined as:

SOC =
Cr(t)

C
= − 1

C

∫ t

0

I(τ)dτ , (2.67)

assuming the initial SOC at t−0 is zero and I(t) is the applied current with I > 0

during discharge. SOC can be defined as

SOC =

csavg
csmax

− θ0%

θ100% − θ0%

(2.68)

for the negative electrode, positive electrode, or average of the two to get SOC

for the whole cell, where θ0% and θ100% are experimentally determined reference

stoichiometries. Using Eqns. (2.67),(2.68), and (2.66), the capacity is defined as

C = δAεFcsmax [θ100% − θ0%] . (2.69)



Chapter 3
Model Discretization

3.1 Introduction

The transcendental transfer functions derived in Chapter 2 include non-polynomial

functions such as hyperbolics and square roots. This chapter presents discretization

techniques to reduce the infinite order models to a low order state space form. The

impedance model with the distributed electrode particles and electrolyte diffusion

is discretized using a pole/residue expansion and the single particle impedance

model is discretized using a Padé approximation given by.

3.2 Pole/Residue Realization

To produce a standard transfer function in the form of a ratio of two polynomials

in s, we use the real pole and residue series approximation.

Ĝ(θ, s) =
N∑
k=1

Rk

s− pk
, (3.1)

where the model order N is given and the residues Rk and poles pk are unknown.

The parameter vector θ = [R1, . . . , RN , p1, . . . , pN ]. For stability, the poles are all

negative. The residues, however, can take on either sign.

To obtain a low order but accurate approximation system identification tech-

niques are used to find θ. For a given N, the θ that best matches the frequency
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response of the transcendental transfer function is determined in a least squares

sense by minimizing the sum of the squares of the errors. The cost function to be

minimized is the sum of the squares of the errors between the complex frequency

response data G(iωj) and the estimate Ĝ(θ, iωj),

e(θ, ωj) = G(iωj)− Ĝ(θ, iωj), (3.2)

where the frequency response data is provided at j = 1, . . . , Neval frequencies with

Neval > N/2. The cost function

CF =

Neval∑
j=1

(
[R {e(θ, ωj)}]2 + [I {e(θ, ωj)}]2

)
, (3.3)

where R and I indicate the real and imaginary parts, respectively. The objective

is to find θ that minimizes CF . The residuals are the error terms that are squared

in Eq. (3.4),

rj(θ) = R {e(θ, ωj)} = R {G(iωj)}+

N∑
k=1

Rkpk
p2
k + ω2

j

for j = 1, . . . , Neval

rj(θ) = I {e(θ, ωj)} = I {G(iωj)}+

N∑
k=1

Rkωj
p2
k + ω2

j

for j = Neval + 1, . . . , 2Neval

(3.4)

where the first Neval rj(θ) are associated with the real parts of the error and the

last Neval, the imaginary parts. Eq. (3.4) shows that the residuals are linear in Rk

but nonlinear in pk.

The Jacobian, J ∈ R2Neval×2N , is the gradient of the residuals of the cost

function with respect to the model parameters θ. Considering Rk as the only

unknown parameter, the Jacobian

JR(j, k) =
∂rj
∂Rk

=


pk

p2k+ω2
j

for j = 1, . . . , Neval

ωj

p2k+ω2
j

for j = Neval + 1, . . . , 2Neval

(3.5)
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for k = 1, . . . N is in R2Neval×N and independent of Rk but dependent on pk. For

pk, the Jacobian

Jp(j, k) =
∂rj
∂pk

=



Rk(ω2
j−p2k)

(p2k+ω2
j )

2

for j = 1, . . . , Neval,

− 2Rkpkωj

(p2k+ω2
j )

2

for j = Neval + 1, . . . , 2Neval,

(3.6)

for k = 1, . . . N is also in R2Neval×N .

Solving for Rk if pk is known constitutes a linear least squares problem because

the Jacobian JR is independent of Rj. We can rewrite the residuals as

r =


r1

...

r2Neval

 = g − JRR, (3.7)

where R = [R1, . . . , RN ]′, g(j) = R {G(iωj)} for j = 1, . . . , Neval and gj =

I {G(iωj)} for j = Neval + 1, . . . , 2Neval. The cost function then becomes

CF = |g − JRR|2 . (3.8)

The cost function in Eq. (3.8) is convex so the global minimum is at

∂CF

∂R
= 2JR

T (g − JRR) = 0, (3.9)

producing the normal equations

JRJR
TR∗ = JR

Tg, (3.10)

where R∗ is the global minimizer of CF . If JRJR
T is invertible then we can solve

Eq. (3.10) directly for R∗.

For the nonlinear least squares problem associated with finding the poles p

there are many algorithms that can be used. In our approach we have used the

matlab function which uses an algorithm that is explicitly designed for nonlinear
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Figure 3.1. Frequency Response: Transcendental transfer function (black) vs Reduced
order model (red).

least squares problems with an analytical Jacobian. The nonlinear optimization

problem associated with finding the poles is not convex and there can be a large

number of closely spaced minima. The poles are interchangeable so if two poles

switch the error will be unchanged. The minimum that the function returns is

very sensitive to the initial guess that is required by the algorithm.

Using the least squares optimization, a best fit eighth order (Reduced or-

der(RO)) model was obtained and the algorithm was validated by comparing the

frequency responses with the transcendental frequency response for a 3.1Ah Li-ion

cell with parameters in Tab.3.3. The RO model was obtained to match the actual

transfer function for a desired bandwidth upto 10 Hz as shown in Fig.3.1.

In many cases it is of interest to plot the time response of a distribution as

snapshots of the variable plotted versus x at several different times ti. This requires
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Figure 3.2. Electrolyte Concentration Distribution, ce(x, t), Time Response: 5C dis-
charge from 60% SOC at various times

the development of transfer functions at multiple values of x that can be simulated

in time. This was done for 25 points evenly distributed along the x axis for the

ce(x, t), cs,e(x, t), and j(x, t) transfer functions and the time responses are plotted

in Figs. 3.2, 3.3, and 3.4, respectively, for a 5C (30A) discharge from 60% SOC

initial condition. For 25 10th order approximations, the simulation model order

for each plot is 250 states. Model order reduction could easily reduce the number

of states because the dynamic characteristics of the transfer functions are very

similar.

Fig.3.2 shows that electrolyte concentration, ce(x, t), does approach a steady

state distribution due to offsetting source/sink terms in the j(x, t) distribution

in the negative/positive electrode regions. Surface concentrations cs,e(x, t) shown

in Fig. 3.3, fall/rise in a distributed manner consistent with the time history of
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Figure 3.3. Solid Phase Surface Concentration Distribution, cs,e(x, t), Time Response:
5C discharge from 60% SOC at various times

current density, j(x, t). While discharge continues, cs,e(x, t) continues to rise/fall

and never reaches steady state due to an electrode bulk concentration integrator.

As shown in Fig.3.4, initial spikes in reaction current, j(x, t), near the separator

decay as Li is de-inserted/inserted from the negative/positive electrode surface.

Equilibrium potentials rise/fall most rapidly near the separator penalizing further

reaction and over time j(x, t) becomes more uniform.

3.3 Padé Approximation

The infinite dimensional single particle model is discretized by a Padé Approxi-

mation [50], [51]. The Padé Approximation works well for infinitely differentiable

transfer functions that can be expanded in a power series at the origin. The N th
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order Padé approximation of a transfer function G(s) is a ratio of two polynomi-

als in s where the denominator is of order N. For a proper transfer function, the

numerator is of order N or less. The Padé Approximation Method can produce

transfer functions with numerators of order 1 to N but the highest accuracy is often

obtained when the numerator order is N. One may also choose the numerator order

to match asymptote. The computational speed of the model and any model-based

estimators and controllers depend strongly on the number of integrators in the

model or the order of the denominator. The order of the numerator, however, does

not influence computational speed as significantly.

We assume that the transfer function can be expanded in a power series at the
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origin as follows

G(s) =

2(N+1)∑
k=0

ck s
k, (3.11)

where the coefficients ck are calculated by repeated differentiation of G(s) and

evaluation at s = 0,

ck =
dk G(s)

dsk

∣∣∣∣
s=0

. (3.12)

If G(s) has a pole at the origin then we apply the power series expansion to

G∗(s) = s G(s).

The N th order Padé approximation transfer function

P (s) =

∑N
m=0 bm sm

1 +
∑N

n=1 an s
n

=
num(s)

den(s)
, (3.13)

where we assume that the denominator and numerator both have order N . To

determine P (s) we must calculate the N + 1 bm and N am coefficients. The zeroth

order term in the denominator is assumed to have a unity coefficient to normalize

the solutions. The 2N + 1 linear equations that can be solved for the coefficients

are determined from the polynomial equation

den(s)

2(N+1)∑
k=0

cks
k − num(s) = 0, (3.14)

where the coefficients ck are known from the power series expansion. Eq. (3.14)

produces a polynomial of order 2N(N + 1) in s. The left hand side equals zero

for all s so the coefficients must be zero. The first N + 1 coefficients of s depend

on both the unknown an and bn coefficients. The remaining coefficients depend

only on an. Thus, we set the coefficients of sN+2 to s2N+1 equal to zero to solve

for a1, . . . , aN . Then, we substitute these solutions a1, . . . , aN into the coefficients

of s0 to sN and set them equal to zero to solve for b0, . . . , bN . The order N chosen

is the minimum value for which the best frequency response match is obtained

between the transcendental and the reduced order transfer function in the desired

low frequency range extending upto 10Hz. This value of N can be chosen by a

simple trial and error approach.



35

10-5 10-4 10-3 10-2 10-1 100 101
-60

-40

-20

0

20
M

ag
ni

tu
de

(d
B

)

10-5 10-4 10-3 10-2 10-1 100 101
-100

-80

-60

-40

-20

0

P
ha

se
(o )

Frequency(Hz)

Figure 3.5. Frequency response: full order SP model (Blue) vs padé approximated SP
model (red).

A third order Padé approximation is generated for each particle transfer func-

tion resulting in the SP model impedance transfer function

Z(s) = RT +
b2s

2 + b1s+ b0

s3 + a2s2 + a1s
+
d2s

2 + d1s+ d0

s3 + c2s2 + c1s
(3.15)

where the numerator and denominator coefficients are shown in Tab. 3.1 with

C+ =
∂U+

∂c+
s,e

, C− =
∂U−

∂c−s,e
(3.16)
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Table 3.1. Coefficient values

Numerator Value Denominator Value

b0
10395C+[D+

s ]
2

AFa+s δ+[R+
s ]

5 a0 0

b1
1260C+D+

s

AFa+s δ+[R+
s ]

3 a1
3465[D+

s ]
2

[R+
s ]

4

b2
21C+

AFa+s δ+R
+
s

a2
189D+

s

[R+
s ]

2

d0
10395C−[D−

s ]
2

AFa−s δ−[R−
s ]

5 c0 0

d1
1260C−D−

s

AFa−s δ−[R+
s ]

3 c1
3465[D−

s ]
2

[R−
s ]

4

d2
21C−

AFa−s δ−R
−
s

c2
189D−

s

[R−
s ]

2

Equation (3.15) can be rewritten as

Z(s) = RT +
21C+s2 + 1260C

+

τ+D
s+ 10395 C

+

τ+D
2

s3 + 189
τ+D
s2 + 3465

τ+D
2 s

+
21C−s2 + 1260C

−

τ−D
s+ 10395 C

−

τ−D
2

s3 + 189
τ−D
s2 + 3465

τ−D
2 s

.

(3.17)

The simplified transfer function (3.17) depends only on five independent pa-

rameters

RT = −
Rct+

as+

1

Aδ+

−
Rct−

as−

1

Aδ−
− Rf

A

C+ =
C+

AFa+
s L

+R+
s

=
C+

3AFδ+εs+

τ+
D =

[R+
s ]

2

D+
s

C− =
C−

AFa−s L
−R−s

=
C−

3AFδ−εs−

τ−D =
[R−s ]

2

D−s
.
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where Q is the capacity of the battery and cs is the solid phase concentration

at the particular state of charge. The total resistance of the battery RT results

from the contact resistance and the charge transfer resistance in both electrodes.

The capacity factors C are inversely proportional to the electrode volume fraction

and directly proportional to the slope ∂U
∂cs,e

. The diffusion times τD is directly

proportional to the square of the particle radius and inversely proportional to the

solid phase diffusion coefficient.

The impedance frequency response of the Padé approximated SP model is

shown in Fig. (3.5). The Padé approximated model matched well for the desired

10 Hz bandwidth. The simplifying assumptions in the SP model are warranted if

only impedance is desired. The SP model, however, cannot provide the distribution

results shown in Figs. (3.2)-(3.4)

3.4 First Principles Equivalent Circuit Model

An advantage of the Padé approximated SP model is that the coefficients of the

impedance transfer function are explicit functions of the physical parameters. This

low order transfer function can be converted into an equivalent circuit with resistors

and capacitors where the resistances and capacitances can be physically related to

the model parameters. Fig. (3.6) shows an example equivalent circuit (the circuit

realization is not unique) that combines four parallel RC circuits in series with a

capacitor and a resistor.

The impedance of the equivalent circuit is

Z(s) = R1 +
1

C1s
+

1
C2

s+ 1
R2C2

+
1
C3

s+ 1
R3C3

+
1
C4

s+ 1
R4C4

+
1
C5

s+ 1
R5C5

. (3.18)

Equating Eq.(3.18) with the Padé approximated SP model transfer function

Eq.(3.17) yields the explicit relationships between resistances and capacitances

and physical parameters in Tab. (3.2).
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Table 3.2. Circuit parameters in terms of cell parameters

Capacitor Capacitance Resistor Resistance

C1
1

3(C++C−) R1 RT

C2
0.4583
C+ R2 0.1071C+τ+

D

C3
0.0632
C+ R3 0.0945C+τ+

D

C4
0.4583
C− R4 0.1071C−τ−D

C5
0.0632
C− R5 0.0945C−τ−D

R4 

Voc 

C3 C2 

R2 R3 R5 

C5 C4 

R1 C1 

 

Figure 3.6. Equivalent circuit of a padé approximated single particle model.

3.5 Experimental Validation

The RO model and the Padé approximated SP model developed in the previous

sections are experimentally validated in the frequency and time domains. Ex-

perimental electrochemical impedance spectroscopy (EIS) and pulse train time

response data are collected from a commercial 3.1 Ah NCM battery. The model

parameters shown in Tab. 3.3. A slow discharge/charge cycle is used to generate

the OCP curve which is numerically differentiated to generate the ∂U
cs,e

parameter.

The contact resistance and the electrode plate area were tuned to match the 3.1

Ah capacity and experimental EIS data. Fig. 3.7 shows EIS measured for fresh

cells after 1 hour rest following discharge from fully charged state at 1C-rate to

60% SoC. The impedance spectra are obtained with an AC amplitude of 5mV over

a frequency range of 0.005 Hz to 50,000 Hz on a Solartron SI 1287 electrochemical
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Table 3.3. Parameters for Li-Ion Cell Model.

PARAMETER NEGATIVE SEPARATOR POSITIVE

Design Specifications
Thickness, δ [cm] 50× 10−4 25.4× 10−4 43.5× 10−4

Particle radius, Rs [cm] 1× 10−4 1× 10−4

Polymer phase volume fraction, εp 0.048 0.5 0.110
Conductive filler volume fraction, εf 0.040 0.06
Porosity, εe 0.25 0.4 0.25
Electrode plate area, A [cm2] 4504
Li Ion Concentrations
Maximum solid phase concentration cs,max [mol cm−3] 16.1× 10−3 24.2× 10−3

Stoichiometry at 0% SOC, x0% 0.13 0.95
Stoichiometry at 100% SOC, x100% 0.68 0.34
Average electrolyte concentration, ce,avg [mol cm−3] 1.2× 10−3

Kinetic & Transport Properties
Exchange current density, io [A cm−2] 3.6× 10−3 2.6× 10−3

Charge-transfer coefficients, αa, αc 0.5, 0.5 0.5, 0.5
Solid phase Li diffusion coefficient, Ds [cm2 s−1] 2.0× 10−12 9.9× 10−12

Solid phase conductivity, σ [S cm−1] 1.0 0.1
Bruggeman porosity exponent, p 1.5 1.5 1.5
Electrolyte phase Li+ diffusion coefficient, De [cm2 s−1] 2.6× 10−6

Electrolyte phase ionic conductivity, κ [S cm−1] κ = 0.0063
Electrolyte activity coefficient, f± 1.0
Li+ transference number, to+ 0.363

interface coupled with Solartron SI 1255B frequency response analyzer. The model

frequency responses extends to lower frequencies not measured experimentally due

to equipment and testing time constraints. The experimental data includes fre-

quencies higher than the 10 Hz bandwidth of the models. For the frequency range

from 0.01 Hz to 10 Hz the agreement is quite good.

Pulse discharge and charge tests at 60% SoC and 2C, 5C and 10C rates are

conducted on an Arbin BT-2000 battery cycler for 2s, 10s and 30s pulse durations.

Fig. 3.8 shows that the model matches the experiment very well for the low

currents of 2C and 5C but has significant error at the higher 10C current due to

the linearization of the Butler Volmer equation.
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Figure 3.7. Impedance frequency response: transcendental transfer function (green-
dotted), reduced order model (blue dash-dotted), padé approximated single particle
model (red dashed), and experimental EIS (green-dotted).
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Chapter 4
State of Health Estimation

4.1 Introduction

This chapter describes techniques to estimate the State of Health (SOH) of a

lithium ion battery from current voltage measurements using the single particle

model. The aging parameters incorporated within the model is estimated via a

least squares method for both LiNi1/3Co1/3Mn1/3O2 (NCM) and LiFePO4 (LFP)

chemistries and their variation is correlated to the degradation mechanisms respon-

sible for the capacity fade and impedance rise in these cells. An online recursive

parameter estimator is also designed using a gradient update method.

From Chapter 3 the Padé approximated single particle model is given by

Z(s) = RT +
21C+s2 + 1260C

+

τ+D
s+ 10395 C

+

τ+D
2

s3 + 189
τ+D
s2 + 3465

τ+D
2 s

+
21C−s2 + 1260C

−

τ−D
s+ 10395 C

−

τ−D
2

s3 + 189
τ−D
s2 + 3465

τ−D
2 s

.

(4.1)

For the NCM chemistry, eqn. (4.1) is simplified by neglecting the impedance of

the negative electrode. This assumption is validated by comparing the frequency

responses as shown in Fig. 4.1. The positive electrode model closely matches the

original SP model over the entire frequency range.
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Figure 4.1. Impedance frequency response: SP model(blue-solid)and SP model with
only positive electrode(red-dashed).

The simplified transfer function

Z(s) =
R+
T s

3 + (21C+ + 189
R+

T

τ+D
)s2 + (1260C

+

τ+D
+ 3465

R+
T

τ+D
2 )s+ 10395 C

+

τ+D
2

s3 + 189
τ+D
s2 + 3465

τ+D
2 s

. (4.2)

However, for the LFP cells, the positive electrode has a flat open circuit poten-

tial for a wide range of operating state of charge as shown in fig. 4.2 and hence

C+ = ∂U
∂cs,e

is almost zero. Therefore we can neglect the positive electrode dynam-

ics from eqn. (4.1) and thereby the entire dynamics is solely contributed by the

negative electrode. Hence, we get the third order transfer function as follows
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Z(s) =
R−T s

3 + (21C− + 189
R−

T

τ−D
)s2 + (1260C

−

τ−D
+ 3465

R−
T

τ−D
2 )s+ 10395 C

−

τ−D
2

s3 + 189
τ−D
s2 + 3465

τ−D
2 s

. (4.3)

The above transfer functions (4.2) and (4.3) depends only on the three com-

posite parameters resistance R+,−
T , capacity factor C+,− and diffusion time τ+,−

D

(where superscript + is for NCM cells and - for LFP cells). Since the estimation of

these parameters in both the chemistries involves the same procedure, we remove

the +,- from the parameters for simplicity. These parameters can be estimated

from experimental data and hence can be used to monitor the state of health of

the battery.
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Figure 4.2. Open Circuit Potential of an LFP electrode.
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4.2 Least Squares Parameter Estimation Algo-

rithm

Using voltage measurements over a sufficiently long time and with persistently

exciting current input, a least squares technique [52] can be used to identify the

coefficients of the transfer functions (4.2) and (4.3) which has the form

V (s)

I(s)
=
b3s

3 + b2s
2 + b1s+ b0

s3 + a2s2 + a1s
(4.4)

The experimental current and voltage signals are passed through identical

fourth order filters, represented in state space form by

ẇ1 = Λw1 + bλI(t), (4.5)

ẇ2 = Λw2 + bλV (t), (4.6)

where

Λ =


0 1 0 0

0 0 1 0

0 0 0 1

−λ0 −λ1 −λ2 −λ3

 , bλ =


0
...

1

 . (4.7)

The coefficients λ0, . . . , λ3 are calculated to place the poles of Λ in the left half

of the complex plane at a desired filtering speed. The Laplace transform of Eqns.

(4.5) and (4.6) produces

W1(s)

I(s)
=

1

s4 + λ3s3 + λ2s2 + λ1s1 + λ0


1

s

s2

s3

 , (4.8)

W2(s)

V (s)
=

1

s4 + λ3s3 + λ2s2 + λ1s1 + λ0

[
s

s2

]
, (4.9)
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The linear parametrization

bTW1(s) + aTW2(s) = ΘTW(s), (4.10)

where bT = [b0, b1, b2, b3], aT = [−a1,−a2], ΘT = [bT , aT ],

and WT (s) = [WT
1 (s),WT

2 (s)] is expanded to obtain

ΘTW(s) =
b0 + b1s+ b2s

2 + b3s
3

s4 + λ3s3 + λ2s2 + λ1s1 + λ0

I(s)

+
−a1s− a2s

2

s4 + λ3s3 + λ2s2 + λ1s1 + λ0

V (s).

(4.11)

Simplifying the above expression using the impedance transfer function in Eq.

(4.4) we obtain

ΘTW(s) =
s3

s4 + λ3s3 + λ2s2 + λ1s1 + λ0

V (s) = Z(s) (4.12)

Therefore we have,

ẑ(t) = Θ̂Tw(t), (4.13)

where Θ̂ is the parameter estimate. The error is defined to be

e(t) = z(t)− ẑ(t) = z(t)− Θ̂Tw(t). (4.14)

The experimental voltage and current data is fed through the filters to produce

J = [w(0),w(∆t), . . . ,w((Neval − 1)t)] . (4.15)

where ∆t is the sample time and Neval is the total number of data points.

The least squares cost function

CF = |z− Θ̂TJ|2, (4.16)
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so the Θ̂ that minimizes the CF is given by

Θ̂ls =
[
JJT

]−1
Jz. (4.17)

In order to choose the poles of the filter, we write the characteristic equation of

the filter in the form (τs+ 1)4 where τ is the time constant of the filter. The filter

time constant τ is chosen such that the estimated model captures the dynamics of

the experimental voltage response accurately. The coefficients of the characteristic

equation are given by

λ0 = −1/τ 4, (4.18)

λ1 = −4/τ 3, (4.19)

λ2 = −6/τ 2, (4.20)

λ3 = −4/τ, (4.21)

(4.22)

The six parameters in Θ̂ls are the coefficients of the transfer function (4.4) that

best-fit the experimental data in a least squares sense. The value of the filter time

constant τ was chosen by a simple trial and error approach. If the model is accurate

then the best-fit coefficients should correspond to a unique set of parameters RT ,

C, τD in the transfer functions (4.1) and (4.2). Equating transfer functions (4.4)

and (4.1),(4.2) results in six nonlinear equations for the three unknown parameters.

The best results were obtained by equating the two highest order coefficients in the

numerator to produce RT = b̂3 and C = b̂2− â2b̂3 and the highest order coefficients

in the denominator to produce τD = 189
â2

.

4.2.1 Experimental Data for NCM and LFP cells

Seven commercial 3.1Ah NCM cells were cycled continuously at 5C-rate between

3.0 V and 4.2 V at 45oC and four commercial 2.3Ah LFP cells were cycled contin-

uously at 5C-rate between 2.0 V and 3.6 V at 50oC on an Arbin BT-2000 battery

cycler. The cycling of the seven NCM cells was terminated after 500, 1000, 2000,
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3000, 4000, 5000 and 6000 cycles, respectively. For LFP cells, the cycling of the

four cells was terminated after 3000 cycles. After cycling termination, the capac-

ity, electrochemical impedance spectroscopy (EIS) data, and hybrid pulse power

characterization(HPPC) [53] were measured. Figures 4.3 and 4.4 shows the mea-

sured capacity of these aged cells and a fresh cell. The pulse charge/discharge

data from the HPPC test was obtained for each of the fresh and aged cells at

60% State of Charge (SOC), C-rates of 2C and 5C for different pulse durations

(2s,10s and 30s), and at 25oC. Figures 4.5 and 4.6 shows the input pulse train and

the experimentally measured cell voltage response for a fresh NCM and LFP cell

respectively.

0 1000 2000 3000 4000 5000 6000
2.3

2.4

2.5

2.6

2.7

2.8

2.9

3

3.1

3.2

Age (cycles)

C
a

p
a

ci
ty

 (
A

h
)

Figure 4.3. Experimentally measured capacity versus age for NCM cells
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Figure 4.4. Experimentally measured capacity versus age for LFP cells

4.2.2 State of Health Estimation for NCM and LFP cells

The proposed methodology of SOH estimation from model parameter estimation

is based on the following conditions:

• The model parameters must be estimable from real-time measurements of volt-

age and current. This requires that the model be sufficiently simple with few

parameters and the voltage/current data must be sufficiently rich so that the

parameters converge close to their actual values. The parameters RT , C, τD
are estimated using the least squares technique from the experimental pulse

current and voltage data, demonstrating that they satisfy this condition.

Figures 4.5 and 4.6 shows the excellent match between the experimental and

identified model voltage responses for a fresh cell using the estimated model
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parameters. The overall response and the peaks/valleys match very well,

including the high current and long duration 5C pulses. The SOC only devi-

ates by 4% during these pulses, however, so the linearized OCV assumption

applies.

• The SOH or instantaneous capacity of the cell must be related to the model

parameters by an invertible function. The SOH as a function of parameter

value must be invertible because the parameter will be estimated in real-

time and the SOH calculated through this inverse function. The inverse

function must be one-to-one so that a given parameter value only results in

one possible SOH. Non-invertible functions that do not produce one-to-one

results will have multiple possible SOH values for the same parameter value.

This may be overcome by tracking the SOH over the life of the cell and using

the value closest to the previous value. If the estimator ever ”forgets” (e.g.

power loss to microprocessor) the previous value, however, then it cannot

be recovered. Parameters that vary monotonically with age are excellent

candidates for SOH estimation because they are invertible and produce one-

to-one inverse functions. The least squares technique is applied to all the

eight NCM cells and five LFP cells. Figures 4.7 and 4.8 shows the estimated

parameters as functions of age for NCM and LFP cells respectively.

• The aging cycle test data must be representative of actual battery usage. The

way a battery ages can depend on usage. The current and temperature in-

puts must be representative of typical usage. The algorithm should then be

validated against extreme cases to determine if the methodology holds up

under those conditions. This would be a crucial step prior to adoption in

practice.

The total resistance RT includes the charge transfer resistance of the electrode

and the contact resistance and the parameter estimate R̂T increases significantly

as the battery ages. Charge transfer resistance increase can be explained by the

growth of a resistive SEI layer on the active particles of the electrode. Contact

resistance generally increases with age due to contact loss between the electrode

and the current collectors from corrosion.
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Figure 4.5. NCM - Pulse Charge/Discharge Response: (a) Input current and (b)
Measured voltage (black-solid) and fitted model response (red-dashed)

For the NCM cells, the diffusion time parameter estimate τ+
D monotonically

increases as the battery ages. The increase in the time taken for the Li+ ions

to diffuse can also be attributed to the growth of an SEI passivation layer on

the active particles in the positive electrode which reduces the effective diffusion

rate of Li+. Whereas for the LFP cells even under the presence of an SEI layer

on the surface of the negative electrode particle, the diffusion time parameter

estimate monotonically decreases. This trend in the diffusion time for LFP cells

can be attributed to the reduction in the crystallite size of the negative electrode.

The reduction in crystallite size can be explained by the possibility of graphite

exfoliation that could have occurred during the battery’s life [29].
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Figure 4.6. LFP - Pulse Charge/Discharge Response: (a) Input current and (b) Mea-
sured voltage (black-solid) and fitted model response (red-dashed)

Based on the empirical results in Fig. (4.7) and (4.8), three possible SOH

estimates are

ˆSOHRT
(t) =

R̂T (t)

R̂T (0)
(4.23a)

ˆSOHτD(t) =
τ̂D(t)

τ̂D(0)
(4.23b)

ˆSOHC(t) =
Ĉ(t)
Ĉ(0)

(4.23c)

Figure (4.7) shows that the capacity factor estimate C+ for NCM cells rises

slowly, reaching a maximum of 17 % at 4000 cycles. The estimate then decreases
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Figure 4.7. Estimated Resistance (R̂T ,+), diffusion time (τ+
D , o), and capacity factor

(C+, •) versus age for NCM cells.

almost back to its fresh cell value at end of life. This non-monotonic variation

renders SOH estimation based on capacity factor impossible because the capacity

factor estimate is the same at different ages as shown in Fig. (4.7). The capacity

factor estimate cannot be inverted to infer the capacity because the inverse function

is not one-to-one. However for the LFP cells as seen in fig. (4.8), the capacity factor

shows a steady increase with age rendering it a good SOH indicator.

All three of the parameter estimates change in a fairly uniform way with little

apparent random variations. This validates the modeling and least squares esti-

mation approach and reflects the uniform degradation over time that is expected

in the tested cells. The total resistance and diffusion time increase monotoni-

cally with age, making them excellent candidates for SOH estimation in both the
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Figure 4.8. Estimated Resistance (R̂T ,+), diffusion time (τ−D , o), and capacity factor
(C−, •) versus age for LFP cells.

chemistries. The capacity factor for LFP cells can be used as an SOH indicator due

to its monotonic increase, however the capacity factor estimate curve for NCM cells

is not invertible, because old and new cells give the same capacity factor estimate

and hence will not make a good SOH indicator.

4.3 Recursive Parameter Estimation

The least squares approach provides a means of finding the best fit parameters

for the SP model using a batch of current/voltage data and off-line processing.

For real-time implementation onboard a vehicle, recursive parameter identifica-

tion continually updates the parameter estimates using the all of the measured



55

the voltage and current data up to and including the current time instant. The

estimation loop is run in the battery monitoring control software at a fixed sample

rate and continually updates the estimates in real-time. This software is relatively

simple and fast to execute, resulting in less burden on the battery monitoring

microprocessor. This would be a crucial step prior to adoption in practice.

Fig. 4.9 shows the block diagram for the gradient based parameter estimator

that is proposed for real-time parameter (and SOH via Eqs. 4.23) estimation.

The objective is to estimate the parameter vector θT from the voltage and current

data in real-time using a recursive algorithm that continually updates the param-

eter estimates as information becomes available. The parameter estimator include

the input and output filters given by eqns. (4.5) and (4.6), respectively and two

gradient update laws

˙̂
b = γ1e(t)w1(t) (4.24)

˙̂a = γ2e(t)w2(t) (4.25)

that are integrated in real-time to produce the time-varying estimates of the nu-

merator b̂(t) and denominator â(t) coefficients. The gradient update laws depend

on the filtered current and voltage, the error

e(t) = z(t)−
(
b̂w1(t) + âw2(t)

)
(4.26)

and the adaptation gain γ1 and γ2.

4.3.1 Recursive Parameter Identification from Experimen-

tal Data for fresh NCM cells

To demonstrate the functionality of the recursive parameter estimator, the fresh

cell voltage and current data is processed in real-time as shown in Fig. 4.10. In

this simulation, all of the coefficients are initialized to their least square, best fit

values, except for the coefficients associated with the two SOH indicators, R̂+
T (t)

and τ+
D (t), which are initialized to 5% of their actual values. The adaptation

gains are adjusted to provide fast parameter convergence with minimal oscillation.
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Figure 4.9. Recursive parameter estimator block diagram

The current excitation is sufficiently rich to ensure that the parameter estimates

converge to within 99% of their least square, best fit values in less than 200 s.
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Figure 4.10. Gradient based recursive parameter estimation for a fresh NCM cell:(a)
Current, (b) Voltage, (c) Error, (d) Normalized parameter estimates (Resistance (blue),
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Chapter 5
Development of a Control Oriented

Degradation Model for a Lithium

Iron Phosphate Battery

5.1 Introduction

This chapter presents the development of a reduced order aging model for a lithium

ion battery by incorporating the solid electrolyte interphase (SEI) layer on the

negative electrode particle surface. The SEI layer brings about a capacity fade in

these cells by consuming cyclable lithium ions. The rate of degradation increases

with increasing operating state of charge and with higher charging current. This

degradation model is particularly well suited to explain the aging in lithium iron

phosphate (LFP) batteries since the SEI layer formation in the negative electrode

is the major factor responsible for degradation [29]. In other chemistries, the

degradation in the positive electrode must also be considered to improve the model

fidelity however in an LFP cell the positive electrode is extremely stable due to

its olivine crystalline structure. The aging model is tuned and calibrated against

experimental data.



59

5.2 Model Development

This model considers side reactions in the negative electrode leading to the forma-

tion of a SEI layer on the electrode surface to be the sole mechanism responsible

for capacity fade and other mechanisms such as lithium plating is neglected. A

very slow reduction process near the surface of the negative electrode leads to the

formation of a passive film on the surface. The side reaction is expressed as

Solvent+ 2Li+ + 2e− → Product (5.1)

The negative electrode used in an LFP battery is made up of a carbonaceous

material, for e.g LiC6. Ethylene Carbonate (EC) is a commonly used organic

solvent and it undergoes reduction at the surface to form a mixture of organic and

inorganic compounds. The SEI layer is made up of an inner thin compact inorganic

layer and an outer porous organic layer. Due to the small thickness of the inner

layer we assume the SEI layer to be a single phase uniformly covering the surface

of the negative electrode particle. Moreover, the side reaction is assumed to be

irreversible. We also assume that side reaction occurs only during the charging

reaction.

In this model, we couple the aging equations with a nonlinear single particle

model for the LFP cell. The model is valid for the entire range of state of charge

and incorporates the nonlinear Butler Volmer kinetics as well.

In the single particle model we assume the total current density across the

electrode domain to be uniform, hence we have the intercalation current density

for the positive electrode to be equal to the total current density given by j(t) = I(t)
Aδ

where I is the applied current, A is the total surface of the cell, δ is the electrode

thickness. However in the negative electrode the intercalation current density is

given by the difference of the total current density and the side reaction current

density.

j−(t) =
I(t)

Aδ
− jsei(t). (5.2)

where jsei(t) is the side reaction current density.

From Chapter 4, the third order Padé approximated solid phase diffusion
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impedance is given by

Cs,e(s)

J(s)
=

−21R4
ss

2 − 1260R2
sDss− 10395D2

s

asFR5
ss

3 + 189asFR3
sDss3 + 3465asFRsD2

ss
. (5.3)

The Butler Volmer equation that relates the intercalation current to the over-

potential,

j− = asio

{
exp

[
αaF

RT
η−

]
− exp

[
−αcF
RT

η−

]}
. (5.4)

This relation can be inverted to obtain

η− =
RT

αF
sinh−1(

j−
2asi0

). (5.5)

The relationship between the overpotential in the negative electrode, the solid

phase potential and the open circuit potential is given by

η− = φs,− − U(cs,e−)− j

as
Rsei. (5.6)

The side reaction current density jsei is driven by the side reaction overpotential

and is described by the Tafel equation, analogous to the Butler Volmer equation,

jsei = asio,s exp

[
αcF

RT
ηsei

]
. (5.7)

The side reaction overpotential is similarly related to the solid phase potential

and the open circuit potential by

ηsei = φs − Usei −
j

as
Rsei. (5.8)

Eqns. (5.8) and (5.6) can be subtracted to give

ηsei = U(cs,e−)− Usei − η−. (5.9)

The output voltage of the cell is given by

V = φs,+ − φs,− −
Rf

A
I. (5.10)
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Eqn. (5.10) can be rewritten in terms of the overpotential and the open circuit

potential to give the final form of the output voltage equation.

V = U(cs,e+)−U(cs,e−)+
RT

αF
sinh−1(

j+

2as+i0
)−RT

αF
sinh−1(

j−
2as−i0

)−Rf

A
I. (5.11)

The increase in degradation parameters such as SEI film thickness δsei and its

associated resistance Rsei can be calculated from

∂δsei
∂t

= − Msei

as−ρseiF
jsei, (5.12)

where Msei and ρsei are the molar mass and density of the SEI film respectively,

and

Rsei = Rsei,0 +
δsei
κsei

, (5.13)

where Rsei,0 is the initial film resistance and κsei is the film conductivity.

The capacity loss is caused by the consumption of active Li+ ions by the side

reaction current and are related to each other by

∂Q

∂t
=

∫ δ−

0

jseiAdx (5.14)

where Q is the capacity of the battery.

For any given input current cycle and a user initialized state of charge, the

algorithm to compute the capacity fade at the end of the cycle can be described

as follows.

At every time step i and for input current I(i) with a sample time of ∆t

1. Computation of Electrode Surface Concentration.

The surface concentration cs,e at the spherical electrode particle is calcu-

lated using the discrete state space form of the Pade approximated transfer

function defined in eqn (5.3). The third order state space model for each

electrode is given by

x(i+1) = Ax(i) + BI(i) (5.15)

cs,e(i) = Cx(i)



62

where x is the state and A,B,C are the state space matrices. In the negative

electrode the input current is updated at every time step by subtracting the

current loss due to the SEI layer growth.

2. Computation of Open Circuit Potential.

The electrode surface concentration obtained from the simulation of the state

space model in the previous step is used to calculate the open circuit potential

of the negative and positive electrode using the equations given in Table 5.1.

The stoichiometry θ for the electrode is defined as θ = cs,e
cs,max

3. Computation of Exchange Current Density.

The exchange current density is computed using

i0(i) = k(ce)
αa(cs,max − cs,e(i))αa(cs,e(i))

αc . (5.16)

4. Computation of Negative Electrode Overpotential.

The overpotential in each electrode is calculated using the inverted Butler

Volmer equation given by

η−(i) =
RT

αF
sinh−1(

j−(i)

2asi0(i)
). (5.17)

5. Computation of Side Reaction Overpotential.

The side reaction overpotential is computed using

ηsei(i) = η−(i) + U−(cs,e(i))− Usei (5.18)

6. Computation of Side Reaction Current Density.

The side reaction current density is computed using

jsei(i) = asio,s exp

[
αcF

RT
ηsei(i)

]
. (5.19)

7. Computation of film resistance.
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The increase in film thickness and hence resistance is calculated using the

discretized form of eqns. (5.12) and (5.13)

δsei(i+ 1) = δsei(i)−
Msei∆t

as−ρseiF
jsei(i) (5.20)

Rsei(i+ 1) = Rsei(i)−
Msei∆t

as−ρseikseiF
jsei(i) (5.21)

8. Computation of Capacity Fade.

The capacity fade is calculated using the discretized form of eq. (5.14)

Q(i+ 1) = Q(i) +
Aδ−∆tjsei(i)

3600
(5.22)

9. Update negative electrode intercalation current density

j−(i+ 1) =
I(i)

Aδ−
− jsei(i) (5.23)

5.3 Calibration and Validation of the Degrada-

tion Model

Most of the model parameters particularly the ones pertaining to the geometry

of the cell such as electrode surface area and electrode thickness were taken from

[26, 38]. We find that the negative electrode area is designed to be more than the

positive electrode in order to avoid occurrence of lithium plating. The model was

initially calibrated by tuning the stoichiometries of both the electrodes and simu-

lating the model voltage response for a 0.1C discharge to match the experimental

voltage response as shown in fig. 5.1.

The solid phase diffusion coefficient for the negative electrode was chosen to

match the diffusion time estimated using the least squares approach described in

chapter 4. The diffusion coefficient is calculated by Ds = Rs
2

τd
. The radius of the

electrode particle was taken from [54]. The contact resistance was also calculated

from the least square estimates of the total resistance. Table 5.1 lists the model

parameters.
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Figure 5.1. Discharge Response at 0.1C: Measured voltage (black-solid) and model
response (red-dashed)

The cells were aged by continuously cycling it at 5C rate between 3.6V and

2.0V and at a temperature of 50 ◦C for accelerated aging. The model was calibrated

against the measured capacity data of these aged cells. The degradation model is

capable of predicting a linear drop in capacity fade and a linear increase in SEI

film resistance. The model predicted capacity is compared to the experimentally

measured capacity in Fig. 5.2. The primary tuning parameter is the exchange

current density for the side reaction. The exchange current density term also

incorporated the variation in temperature by the Arhennius relation. The exchange

current density was tuned to match the experimental capacity loss at 500 cycles.

The increase in film resistance was also found to match the increase in resistance

estimated using least squares. The conductivity of the SEI film was tuned to match
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Figure 5.2. Measured capacity (black-solid) and model predicted capacity (red-dashed)

the resistance increase at the end of 500 cycles under the assumption that the initial

rise in impedance can be solely contributed to the film thickness. The tuned value

of the film conductivity was in close proximity to the value in [21]. From Fig. 5.3

we find that after around 1000 cycles the least square estimate of the resistance

deviates from the model predicted SEI resistance possibly due to factors such as

corrosion of current collector etc.
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Figure 5.3. Estimated Resistance Increase (black-solid) and model predicted film re-
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Table 5.1. Parameters for the LFP Cell Aging Model.

PARAMETER NEGATIVE POSITIVE

Thickness, δ [cm] 3.4× 10−3 7.0× 10−3

Particle radius, Rs [cm] 3.5× 10−4 3.65× 10−6

Active material volume fraction, εs 0.048 0.110
Solid Phase Diffusion Coefficient, Ds [cm2/s] 3.29× 10−11 1.18× 10−14

Stoichiometry at 0% SOC, x0%, y0% 0.035 0.7767
Stoichiometry at 100% SOC, x100%, y100% 0.8685 0.035
Maximum Lithium Concentration cs,max [mol/cm3] 31.370× 10−3 22.906× 10−3

Electrode Area, A [cm2] 1755 01694

Open Circuit Potential [V]

U+(y) = 3.4323− 0.8428exp(−80.2493(1− y)1.3198)− 3.2474× 10−6exp(20.2645(1− y)3.8003) + 3.2482× 10−6exp(20.2646(1− y)3.7995)

U−(x) = 0.6379 + 0.5416exp(−305.5309x) + 0.044tanh(−x+0.1958
0.1088 )− 0.1978tanh(x−1.0571

0.0854 )− 0.6875tanh(x+0.0117
0.0529 )− 0.0175tanh(x−0.5692

0.0875 )

Side Reaction Parameters

Side Reaction Equilibrium Potential,Uside [V] 0.4
Side Reaction Exchange Current Density, i0,s [A/cm2] 2.595× 10−11

SEI layer Molar Mass, Msei[mol/kg] 0.162
SEI layer density, ρsei [kg/cm3] 1690× 10−6

SEI Ionic Conductivity [S/cm],ksei 0.0600
Activation Energy of Side Reaction [J/mol] 6× 104



Chapter 6
Conclusions and Future Work

6.1 Conclusions

Two linear control oriented models of a Li-ion battery based on the governing con-

servation and linearized Butler Volmer equations were developed. The frequency

and time domain responses of these reduced order models match well with experi-

mental results for a 3.1Ah NCM battery. The reduced order (RO) model captures

the dynamics of internal variables such as electrolyte and electrode surface con-

centration distributions. The single particle (SP) model uses a 5th order Padé

approximation and can be realized by an equivalent circuit where the resistances

and capacitances are explicitly related to the physical parameters of the battery

A third order, single particle, single electrode model of Li-ion cells enables

the development of least square and recursive parameter estimators. Least square

estimates of the composite parameters of total resistance and diffusion time are

shown to increase monotonically with age of commercial NCM cells that have

been charged/discharged at 5C at 45oC for up to 6000 cycles. These results are

consistent with the growth of an SEI layer that increases resistance and limits

the diffusion rate of aged cells. With sufficiently rich current excitation, the total

resistance and diffusion time estimates converge to within 99% of their best fit

values in 200 s using a gradient parameter update law in real time. The total

resistance and diffusion time estimates provide two independent measures of NCM

battery SOH that can be calculated in real time, on-board a vehicle. A similar

approach was implemented for lithium iron phosphate cells where a third order
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single particle model was developed by including only the dynamics of the negative

electrode and neglecting the positive electrode due to the flat open circuit potential

of the LFP electrode. The least square estimates of the total resistance and the

capacity factor are shown to increase monotonically with age of commercial LFP

cells that have been charged/discharged at 5C at 50oC for up to 3000 cycles. The

increase in resistance can be attributed to the growth of the SEI layer on the surface

of the negative electrode particle and corrosion of current collectors. However the

diffusion time in the negative electrode was found to decrease monotonically which

can be explained by the reduction in crystallite size due to graphite exfoliation.

The steady increase/decrease in these three parameters render all of them to be

excellent SOH indicators for an LFP cell.

Finally, a control oriented degradation model was developed by incorporating

the aging mechanism of SEI layer growth in the negative electrode with a nonlinear

single particle model. This is the major degradation mechanism in LFP cells

since its olivine structured positive electrode does not age appreciably due to its

extreme stability. The model predicts the experimentally measured capacity loss

and increase in film resistance.

6.2 Future Work

6.2.1 Development of Better Aging Models and Validation

It is extremely important to develop high fidelity control oriented aging models

by incorporating different aging mechanisms responsible for impedance rise and

capacity fade. Perkins et al [55] developed a control oriented reduced order model

of lithium deposition on overcharge (lithium plating). Overcharging leading to

lithium plating causes an irreversible loss of lithium ions and hence a severe drop

in capacity. Highly accurate models can also be developed by considering the

side reactions and aging mechanisms in the positive electrode as well. Researchers

[43]have studied the presence of a passive layer that is formed on the positive

electrode particle surface which can cause an increase in the cell impedance. A

more reliable control oriented aging model can be developed by incorporating the

degradation mechanisms in both the positive and negative electrodes.
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Another major failure mechanism in lithium ion batteries is the coupled me-

chanical chemical degradation of electrodes [56, 57]. Irreversible capacity loss oc-

curs due to diffusion induced stresses (DISs) that cause pre-existing cracks on the

electrode surfaces to grow gradually upon cycling, leading to the growth of SEI on

the newly exposed electrode surfaces. It would be challenging and interesting to

model the crack propagation due to diffusion induced stress in a control oriented

framework. These aging models must be validated against experimental data and

the parameters must be estimated and identified accurately.

6.2.2 Identification of Minimally Degrading Current Pro-

files

A high fidelity and validated degradation model can be used to identify current

profiles that induces minimum degradation via optimal control algorithms. For

example, using a single particle physics based capacity fade model and dynamic

optimization, Rahimian et al [58] found that the life of a lithium ion cell can be

maximized by applying different charge rates during cycling.

6.2.3 Inclusion of the Effect of Temperature

It is extremely important to incorporate the effect of temperature and the corre-

sponding variation in the model parameters to develop an accurate thermal model

in a control oriented manner. First principles based electro-thermal models have

been developed by incorporating the heat generation and the temperature depen-

dence of the various transport, kinetic and mass transfer parameters [59, 60, 61].

Guo et al [62] extended the single particle electrochemical model developed by San-

thanagopalan et al [63] to include the energy balance as well as the temperature

dependence of the solid phase diffusion coefficient of the lithium in the interca-

lation particles, the electrochemical reaction rate constants, and the open circuit

potentials of the positive and negative electrodes. Temperature also plays a critical

role in aging. At high temperatures the battery ages faster along with an increase

in resistance [64]. In the future, a high fidelity control oriented thermo-coupled

aging model will be an excellent and very useful tool for the electrified vehicle and

battery communities.
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