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ABSTRACT 
 

Batteries directly contribute to the advancement of technologies ranging from 

portable electronics to fuel-efficient vehicles.  In high power applications such as hybrid 

electric vehicles (HEVs), monitoring algorithms use current and voltage measurements to 

estimate battery state of charge (SOC) and available power.  Despite increased cost, these 

systems commonly employ conservative, oversized batteries due to poor prediction of 

current/voltage dynamics and imprecise real-time estimation.  This dissertation introduces a 

general, electrochemical model-based approach for safe and efficient integration of Li-ion 

batteries into transient, pulse power-type systems. 

A transient solid-state diffusion model is incorporated into a previously developed 1D 

electrochemical model.  The nonlinear model, solving 4 coupled partial differential equations 

by a computational fluid dynamics (CFD) technique, is validated against low rate constant 

current, pulse power, and transient driving cycle data sets from a 6 Ah Li-ion HEV battery.  

Solid-state Li transport (diffusion) significantly limits high rate performance, and end of 

discharge at the 2.7 V minimum limit is caused by depleted/saturated active material surface 

concentrations in the negative/positive electrodes for pulses lasting longer than around 10 

seconds.  The 3.9 V maximum limit, meant to protect the negative electrode from side 

reactions such as lithium plating, is overly conservative for pulse charging. 

Increased power capability may be realized by using a real-time electrochemical 

model to estimate internal states and control the battery within appropriate limits.  

Development of a fast, stable, and accurate model is difficult however, given the infinite-

dimensional, distributed nonlinear processes governing battery dynamics.  Here, an 

impedance model is derived from the electrochemical kinetic, species and charge transport 

equations and, using a model order reduction technique developed herein, the high order 

transfer functions/matrices are numerically reduced to an observable/controllable state 

variable model in modal form.  Open circuit potential and electrode surface concentration 

nonlinearities are explicitly approximated in the model output equation on a local and 

electrode-averaged basis, respectively.  Validated against the 313th order CFD model, a 12th 

order state variable model with 0-10 Hz bandwidth predicts terminal voltage to within 25 mV 
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(<1%) for pulse and constant current profiles at rates up to 50C.  The modeling methodology 

is valid for all types of porous electrode Li-ion batteries not operating under severe 

electrolyte transport limitations. 

A linear Kalman filter is designed for real-time estimation of internal potentials, 

concentration gradients, and SOC.  A reference current governor predicts operating margin 

with respect to electrode side reactions and surface depletion/saturation conditions 

responsible for damage and sudden loss of power.  Estimates are compared with the 

nonlinear CFD model.  The linear filter gives to within ~2% performance in the 30-70% SOC 

range except in the case of severe current pulses that drive electrode surface concentrations 

near saturation and depletion, although the estimates recover as concentration gradients relax.  

With 4 to 7 states, the filter has low order comparable to equivalent circuit methods presently 

employed for battery management but, unlike those empirical methods, enables pulse 

charging/discharging beyond conservative voltage limits.  For the 6 Ah HEV battery, the 

method increases power density by 22% and streamlines the systems integration process for 

families of battery/vehicle designs. 
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Chapter 1 – INTRODUCTION  
 

Batteries directly contribute to the advancement of technologies ranging from 

portable electronics to fuel-efficient vehicles.  When introduced in hybrid electric vehicles 

(HEVs) for example, the lithium ion (Li-ion) battery chemistry is expected to reduce battery 

pack weight and volume by a factor of two compared to the nickel metal-hydride chemistry 

presently used. 

Model-based battery monitoring algorithms, of particular importance in high power 

applications, use current and voltage measurements to estimate state of charge (SOC), 

available power, and state of health (SOH) with interacting systems basing control action 

upon these estimates [1].  Despite increased cost, hybrid power system designs must often 

employ conservative, oversized batteries due to imprecise estimation.  The objective of the 

present work is to develop fundamental models of the Li-ion battery and employ those 

models in real-time algorithms for accurate battery state estimation and management. 

The electrochemical modeling of batteries is fairly well established [2,3] however 

these high order models (with hundreds of states) are typically only employed offline as they 

run slower than real-time and can sometimes be unstable.  In real-time battery monitoring 

applications, equivalent circuit models are generally favored for their low order (just 2-5 

states) and relative ease of identification [1,4].  These empirical models, however, are unable 

to predict proximity to side reactions and saturation/depletion conditions responsible for 

damage and sudden loss of power, respectively, and instead must control the battery within 

conservative current and voltage limits. 

Development of an accurate online electrochemical model is difficult given the 

nonlinear, infinite-dimensional, distributed mass-transport processes governing battery 

dynamics [5,6].  A significant challenge for the present work is the one of model order 

reduction, that is, how we may extract from the governing physical equations a meaningful 

low order battery model with the stability and execution speed required for real-time 

application. 

In this chapter, we introduce the operating principles of the Li-ion battery and review 

relevant literature in the areas of fundamental Li-ion battery modeling, model order 



reduction, and battery estimation/control.  The chapter closes with an overview of this 

dissertation. 

1.1 Operating Principles  

Figure 1.1 shows a schematic of the Li-ion cell, or battery consisting of three 

domains: the negative composite electrode, separator, and positive composite electrode.  

During discharge, Li ions diffuse to the surface of LixC6 active material particles (solid 

phase) in the negative electrode where they undergo electrochemical reaction 
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 LixC6  Li⎯⎯⎯⎯⎯⎯
⎯⎯⎯⎯⎯←

discharge

charge      
0C6 + xLi+ + xe- (1.1) 

and transfer into a liquid or gelled electrolyte solution (electrolyte phase).  The positively 

charged ions travel through the electrolyte solution via diffusion and ionic conduction to the 

positive electrode, where they react 

 Li0MO2 + yLi+ + ye-  Li⎯⎯⎯⎯⎯⎯
⎯⎯⎯⎯⎯←

discharge

charge      
yMO2

 (1.2) 

and diffuse towards the inner regions of metal oxide active material particles (solid phase).  

The porous separator serves as an electronic insulator, forcing electrons to follow an opposite 

path through an external circuit or load.  Both composite electrodes contain binder and filler 

(not shown in Fig. 1.1) to enhance electron transport across the solid matrix.  End of 

discharge/charge, accompanied by sudden voltage decay/rise, occurs when solid phase Li 

concentrations at either electrode surface become saturated or depleted, or electrolyte phase 

Li concentration becomes depleted in either electrode. 

Following industry convention, we use “C-rate” terminology to describe current rate.  

For a typical HEV battery with 6Ah capacity, a 1C (6 Amp) discharge rate is sustainable for 

roughly 1 hour from the fully-charged (100% SOC) initial condition.  In practice, ohmic and 

transport limitations reduce available capacity to less than the nominal nameplate capacity, 

particularly at high C-rates.  For the 6 Ah HEV battery considered in this work, a 50C (300 

Amp) rate is available for just 12 seconds from 100% SOC, having discharged only 1 Ah 

capacity before negative electrode solid surface concentrations become depleted.  Given time 
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for concentration gradients to relax, further discharge is possible at the 50C rate. 

1.2 Electrochemical Modeling  

Hybrid electric vehicles use a battery as a high rate transient power source cycled 

about a relatively fixed state of charge (SOC).  In the literature, however, most 

fundamentally-based battery models focus on predicting performance at various constant 

current discharge rates beginning from the fully charged state [7,8,9].  Cell phone, laptop, 

and electric vehicle batteries are typically discharged over some hours and it is common in 

the literature to term discharge rates of only 4C (four times the manufacturer’s nominal one 

hour Ah rating, lasting on the order of 15 minutes) as “high-rate”.  In contrast, Hitachi states 

that their 5.5 Ah HEV cell can sustain 40C discharge from 50% SOC for approximately 5 

seconds.  Phenomenological models capable of capturing ultra-high-rate transient behavior 

are needed to understand and establish the operating limitations of HEV cells. 

 Doyle, et al. [2,3] were the first to model the lithium ion cell using porous electrode 

and concentrated solution theories.  Their 1D model captures relevant transport limitations 

and is general enough to adopt a wide range of active materials and electrolyte solutions with 

variable properties [7,8,9,10,11].  In [7], Doyle et al. validated the model against constant 

current data (with rates up to 4C) from similar cells of three different electrode thicknesses.  

Solid and electrolyte phase mass transport properties were adjusted to fit measured data, and 

in particular, the solid diffusion coefficient for LixC6 (Ds- = 3.9x10-10 cm2/s) was chosen to 

capture rate-dependent end of discharge.  Interfacial resistance was used as an adjustable 

parameter to improve the model’s fit across the three cell designs.  More recently, the 1D 

isothermal model was validated against a 525 mAh Sony cell phone battery [8].  The authors 

used a large Bruggeman exponent correcting for tortuosity in the negative electrode (p = 3.3) 

leading to the conclusion that the battery was electrolyte phase limited.  Though the model 

successfully predicted end of discharge for rates up to 3C, the voltage response during the 

first minutes of discharge did not match and was found to be sensitive to values chosen for 

interfacial resistances. 

 While the majority of the modeling literature is devoted to voltage prediction during 

quasi-steady state constant current discharge and charge, we note several discussions of 
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transient phenomena relevant to HEV cells.  Neglecting effects of concentration dependent 

properties (that generally change modestly with time), the three transient processes occurring 

in a battery are double-layer capacitance, electrolyte phase diffusion, and solid phase 

diffusion.  Due to the facile kinetics of lithium ion cells, Ong et. al. [12] demonstrated that 

double-layer effects occur on the millisecond time scale and can thus be neglected for current 

pulses with frequency less than ~100 Hz. 

 Unlike double-layer capacitance, electrolyte and solid phase diffusion both influence 

low frequency voltage response and the relative importance of various diffusion coefficient 

values can be judged either in the frequency domain [13,14] or through analysis of 

characteristic time scales [3,11].  Fuller et. al. [11] studied the practical consequence of these 

transient phenomena by modeling the effect of relaxation periods interspersed between 

discharge and charge cycles of various lithium ion cells.  Voltage relaxation and the effect of 

repeated cycling were influenced very little by electrolyte concentration gradients and were 

primarily attributed to equalization of local state of charge across each electrode.  Non-

uniform active material concentrations would relax via a redistribution process driven by the 

corresponding non-uniform open-circuit potentials across each electrode. 

Thermal behavior of Li-ion batteries is of interest due to their potential for thermal 

runaway and explosion under high temperature operation.  Researchers have approached the 

problem through both experiment and modeling [15,16,17,18,19,20,21].  Gu and Wang [9] 

modeled secondary current distributions arising due to temperature gradients within a large 

electric vehicle battery cooled only from the top.  Their 2D electrochemical model 

considered ohmic and reaction heat generation effects.  Srinivasan and Wang [22] 

subsequently included the entropic heat effect.  Nelson et al. [21] used a simpler, lumped-

parameter model to explore the ability of HEV cell designs of various geometry to meet 

PNGV power and thermal requirements.  Integrated within a vehicle simulator, the model 

predicted worst-case system cooling requirements during aggressive driving. 

1.3 Model Order Reduction  

The fundamental models described above use four coupled partial differential 

equations (PDEs) to describe species and charge conservation in the solid and electrolyte 



phases.  (Energy conservation is also considered for the non-isothermal models).  Standard 

estimation and control methods [23,24], however, require a dynamic model expressed as a 

low order set of ordinary differential equations (ODEs), referred to as a state variable model.  

For a system with input u(t) and output y(t) the general state variable model has linear form 
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and nonlinear form 
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where x(t) is the vector of model states.  Equivalent circuit models are readily expressed in 

state variable form.  For a circuit built from resistor and capacitor elements, the states x(t) 

represent individual capacitor voltages. 

Diffusive mass transport processes, with an infinite number of negative real 

eigenvalues [25], cause batteries to respond across a range of time scales.  Karden et al. 

report battery dynamics as slow as 35 µHz [26], while at very high rates a HEV battery may 

become solid state diffusion-limited in seconds [27].  Equivalent circuit models with just 2 to 

3 states cannot be expected to accurately predict current/voltage behavior across such 

disparate time scales.  By neglecting fast dynamics however, these empirical models may 

accurately predict low rate discharge behavior [28], or, by neglecting slow dynamics, high 

rate perturbations within a small SOC range [29].  In the literature, empirical model 

parameters are commonly fit to a representative data set with little discussion of model 

bandwidth and region of validity (SOC range, admissible current inputs, etc.). 

Representation of an infinite-dimensional diffusion, or parabolic PDE system in 

matrix ODE form requires some sort of truncation and/or lumping procedure.  The response 

of parabolic PDE systems is generally dominated by a finite number of slow modes and, for 

control purposes, the eigenspectrum of the spatial differential operator can be partitioned into 

finite-dimensional (possibly unstable) slow and infinite-dimensional stable fast subspaces 

[30].  Using this concept, Christophides [25] develops a general approach for robust control 

of quasi-linear parabolic PDE systems.  Galerkin’s method approximates the PDE system as 
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a system of ordinary differential equations (ODEs), with the ODE system truncated via 

singular perturbations.  Though their models are not used for control, Bhikkaji and 

Söderström also reduce the order of 1-D [31] and 2-D [32] diffusion systems via singular 

perturbation, or what we more generally term modal truncation. 

A drawback of Galerkin, collocation, and similar methods is that admissible functions 

must be identified prior to application of the method, limiting them to systems defined on 

regular domains.  It is often unclear a priori which function or method will most efficiently 

represent a particular problem [33].  While spatial discretization methods such as the finite 

difference and finite element method are widely applicable to both regular and irregular 

domains, they generally result in a high order model [25,34].  Karhuenen-Loève 

decomposition [35], combined with the method of snapshots [36], provides an alternative 

numerical approach, identifying “empirical” eigenfunctions using time simulation results 

from a high order finite difference or finite element model.  With the dominant 

eigenfunctions employed as basis functions in a Galerkin procedure, the low degree of 

freedom model accurately represents the system.  Park et al. successfully apply this method 

in the modeling [34], identification [37], and control [38] of multidimensional linear and 

nonlinear thermal fluid systems on regular and irregular domains. 

The present work takes a similar approach to that of Park, although we numerically 

identify low order models in the frequency domain rather than time domain.  A modal 

grouping procedure is also developed, providing intuition as to the relationship between high 

order, possibly infinite-dimensional diffusion systems and the low order approximate models. 

1.4 Estimation and Control  

State of charge estimation is the classical topic occupying most of the battery 

estimation literature and good reviews are given by Piller et al. [6] and Pop et al. [39].  

Common methods include: (i) Bookkeeping, in which measured voltage is compared to pre-

determined thresholds, (ii) Coulomb-counting or Amp-hour integration, in which measured 

current is integrated to carry an initial SOC estimate (generally based upon rest voltage 

measured at system start-up) forward in time, and (iii) Model-based methods, in which 

measured current and voltage are compared to a dynamic reference model to determine SOC. 



Model-based methods are best suited in dynamic applications, particularly for the 

HEV application where accurate estimation of available power is far more important than 

available energy (SOC).  Examples include the generalized recursive least squares algorithm 

of Verbrugge et al. [1] and the extended Kalman filter algorithm of Plett [4].  Both 

algorithms use an assumed empirical battery model (with 4-5 states) to predict state of charge 

(SOC) and maximum pulse power available within some fixed, predetermined voltage limits.  

In pulsed-power applications, fixed current/voltage limits can be overly conservative, 

particularly for short duration, high-rate current pulses that give rise to large ohmic voltage 

perturbations [40].  Manufacturers sometimes rate high power batteries with multiple 

current/voltage limits that depend on the duration of the pulse event [41], although such 

control limits are difficult to realize in practice. 

For the Li-ion battery, physical limits of charge and discharge are saturation/depletion 

of Li concentration at the electrode surfaces, cs,e, and depletion of Li concentration in the 

electrolyte solution, ce.  To avoid sudden loss of power, Li concentrations must be 

maintained within constraints 
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To avoid damaging side reactions, the solid/electrolyte phase potential difference, 

eses φφφ −=− , must be maintained within constraints 
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where Uside rxn is the equilibrium potential of a side reaction occurring when Li ions are either 

inserted into or de-inserted from active material particles.  The reference governor [42], is an 

effective method to control a system within constraints and has been used, for example, to 

prevent fuel cell oxygen starvation by dynamically limiting fuel cell load current [43].  In the 

case of a battery, where only current and voltage can be measured in real time, internal 

electrochemical states must be estimated based on a fundamental model rather than an 

empirical model. 

As noted earlier, derivation of a dynamic electrochemical model suitable for battery 

state estimation is difficult given the infinite dimensionality of the underlying partial 
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differential equation (PDE) system.  By spatially discretizing the PDEs, fundamental model-

based estimation algorithms have been developed for the lead-acid battery [44] and the nickel 

metal-hydride battery [45], though with high order (30-100 states) compared to equivalent 

circuit model-based algorithms (2-5 states).  Tenno et al. [44] sequentially solve diagonal 

ODE systems representing lead acid battery distributed concentrations/potentials and use a 

PID controller to tune model states to match current/voltage measurements during slow 

discharge.  For nickel metal-hydride battery SOC estimation, Barbarisi et al. [45] neglect 

electrolyte phase and negative electrode solid state transport, assume uniform reaction 

current, and discretize the positive electrode solid state diffusion PDE (albeit in the incorrect 

spatial direction) to a 32nd order system of ODEs.  Model order reduction techniques offer the 

potential to provide low order fundamental model-based estimation algorithms without the 

restrictive assumptions of previous work. 

1.5 Overview of the Present Work  

In this dissertation, Chapter 2 summarizes the electrochemical [2,3] and thermal [46] 

model governing equations.  For their solution, a previously developed computational fluid 

dynamics (CFD) model [9] is extended to include transient solid state diffusion, also 

described in Chapter 2.  In Chapter 3, the CFD model is validated with constant current, 

pulse current, and driving cycle test data provided by DOE/Argonne National Labs from a 6 

Ah Li-ion battery designed and built under the FreedomCAR program [47].  Solid state 

diffusion effects relevant to pulse operation of HEV batteries are discussed.  Chapter 4 

applies the CFD model to predict battery pack power rate capability and physical limits of 

operation with respect to DOE Partnership for Next Generation Vehicle (PNGV) goals [48].  

The CFD model is integrated into a vehicle simulator to predict battery heat generation rates 

expected in a midsize HEV passenger car for a range of driving cycles and operating 

temperatures. 

Departing from the CFD model, Chapter 5 develops a frequency domain model order 

reduction technique for 1D diffusion systems.  Transcendental transfer functions (obtained 

from analytical solution) and numerical transfer matrices (obtained from finite element 

discretization) are reduced by grouping, or lumping together modes with similar eigenvalues.  
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The grouped models are compared to optimal models in which the frequency response error 

between the full and reduced model is minimized in a least-squares sense. 

Chapter 6 derives an impedance (frequency domain) model for the complete battery 

from the governing equations (Chapter 2) under the assumptions of quasi-linear behavior and 

local reaction current decoupled from electrolyte concentration.  The impedance model 

transfer functions/matrices are reduced to low order state variable models, dominant 

nonlinearities are explicitly approximated, and the resulting reduced order battery model is 

validated against CFD model time domain results. 

In Chapter 7, a linear Kalman filter based on the reduced order battery model is 

designed to estimate internal potentials, concentration gradients, and SOC from external 

current and voltage measurements.  A reference current governor predicts operating margin 

with respect to electrode side reactions and surface depletion/saturation conditions 

responsible for damage and sudden loss of power.  The estimation and reference current 

control methods are demonstrated with the CFD model and higher order state variable 

models simulating the plant. 
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Figure 1.1.  Schematic of the Li-ion cell model. 
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Chapter 2 – MATHEMATICAL MODEL  
 

For the Li-ion battery, the one-dimensional model of Doyle, Fuller, and Newman 

[2,3] captures relevant solid state and electrolyte diffusion dynamics and accurately predicts 

current/voltage response.  Temperature dependency is considered by coupling the 1-D 

electrochemical model with a lumped thermal model [46].  Model equations summarized in 

this chapter serve as the basis for the entire dissertation (though thermal effects are explored 

only in Chapter 4). 

2.1 1-D Electrochemical Model 

Composite electrodes are modeled using porous electrode theory, meaning that the 

solid and electrolyte phases are treated as superimposed continua without regard to 

microstructure.  Conservation of Li in a single spherical active material particle is described 

by Ficks law of diffusion, 
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with boundary conditions 
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In Eqs. (2.1-3), c represents Li concentration and the subscript s denotes the solid phase.  Ds 

is the solid phase diffusion coefficient, jLi the volumetric rate of electrochemical reaction at 

the particle surface (with jLi > 0 indicating ion discharge), as the specific interfacial surface 

area, and F is Faraday’s constant (96487 C/mol).  For spherical active material particles of 

radius Rs occupying electrode volume fraction εs, the interfacial surface area is as = 3εs/Rs.  

Equations (2.1-3) are applied on a continuum basis across each electrode giving solid phase 

concentration a 2D spatial dependency, i.e. cs(x,r,t) where x is the particle position, r is the 

radial position within a particle, and t is time.  The electrochemical model depends only upon 
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concentration at the particle surface, cs,e(x,t) = cs(x,Rs,t), where the subscript s,e denotes the 

solid/electrolyte interface. 

 Conservation of Li in the electrolyte phase yields 
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with zero flux boundary conditions at the current collectors, 
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where ce(x,t) is electrolyte phase Li concentration, εe is electrolyte phase volume fraction, and 

 is the transference number of Liot+
+ with respect to the velocity of solvent.  The effective 

diffusion coefficient is calculated from a reference coefficient using the Bruggeman relation 

 that accounts for the tortuous path that Lip
ee

eff
e DD ε= + ions follow through the porous 

media.  Equation (2.4) assumes constant . ot+

 Charge conservation in the solid phase of each electrode is described by Ohm’s law  
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with boundary conditions at the current collectors proportional to applied current, 
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and zero electronic current at the separator, 
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In Eqs. (2.6-8), ),( txsφ  and σeff are the potential and effective conductivity of the solid matrix, 

respectively, with σeff evaluated from active material reference conductivity σ as σeff = σ εs.  A 

is electrode plate area and I(t) is the applied current following the sign convention that a 

positive current discharges the battery. 

Electrolyte phase charge conservation yields 
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with boundary conditions 
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In Eqs. (2.9-10), ),( txeφ  is the electrolyte phase potential and κeff the effective ionic 

conductivity, calculated from the Bruggeman relation  .  Derived from 

concentrated solution theory, effective diffusional conductivity is 
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where R is the universal gas constant (8.3143 J/mol K), T is temperature, and  is the 

activity coefficient, assumed in the present work to be constant. 

±f

 The four governing PDEs (2.1), (2.4), (2.6), and (2.9) describing field variables, cs,e, 

ce, sφ , and eφ , are coupled by the Butler-Volmer electrochemical kinetic expression 
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In Eq. (2.12), jLi is driven by overpotential, η, defined as the difference between solid and 

electrolyte phase potentials minus the thermodynamic equilibrium potential, U, of the solid 

phase 

 Ues −−= φφη . (2.13) 

Equilibrium potential, U(cs,e), is a function of the solid phase concentration at the particle 

surface.  In Eq. (2.12), exchange current density, i0, is related to both solid surface and 

electrolyte concentrations according to 

  (2.14) caa
esesse ccccki ααα )()()( ,,max,0 −=

where k is a kinetic rate constant and αa and αc are the anodic and cathodic transfer 

coefficients, respectively. 

 With boundary conditions applied galvanostatically (2.7), cell current, I(t), is model 

input.  Voltage across the cell terminals is calculated as 
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where Rf is an empirical contact resistance. 

2.2 Lumped Thermal Model  

Physiochemical property values are made temperature dependent, coupling the 1-D 

electrochemical model to the lumped thermal model.  An Arrhenius equation defines the 

temperature sensitivity of a general physiochemical property, Ψ , as 
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where  is the property value defined at reference temperature TrefΨ ref  = 25˚C.  Activation 

energy, , controls the temperature sensitivity of each individual property, . Ψ
actE Ψ

Conservation of energy for a Li-ion cell with lumped thermal capacity balances heat 

accumulation, convective dissipation, and generation terms as 

   ( ) ( ) ( cjrs
p qqqTThA
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Tcd
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describing the evolution of cell temperature, T, with time.  In Eq. (2.17), h is the heat transfer 

coefficient for forced convection from each cell, As is the cell surface area exposed to the 

convective cooling medium (typically air), and  is the free stream temperature of the 

cooling medium. 

∞T

 Total heat generated is taken as the sum of reaction and joule (ohmic) heats.  Local 

reaction heat is equal to reaction current, jLi, times overpotential, η.  The total reaction heat, 

qr, is obtained by integrating across the 1-D cell domain 
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Note that there is no reaction, and thus no reaction heat generated in the separator region. 

Local ohmic heats arise from the current in each phase carried with finite 

conductivity.  This i2R (or i2/σ)-type heating is expressed in terms of potential gradients by 

utilizing the conservation of charge relationship for each phase.  Total ohmic heat, qj, across 
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the 1-D cell domain is  
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The first term inside the integral of Eq. (2.19) expresses ohmic heat of the solid phase; the 

second and third terms express that of the electrolyte phase.  Note that while the first and 

second terms are always positive, the third term is generally negative, since Li+ ions carried 

via diffusion in the electrolyte solution reduce the ionic current (migration) in the electrolyte 

phase. 

 Additional ohmic heat arises due to contact resistance, Rf, between current collectors 

and electrodes.  Total heat generated in the cell due to contact resistance, qc, is 
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Since contact resistance, Rf, represents an empirical parameter in an otherwise 

fundamentally-based model we list qc separately in Eq. (2.17) from the previously mentioned 

ohmic heats, qj. 

 Reversible heating is neglected in the present work.  Srinivasan and Wang [22] 

incorporated empirical data from LixC6 and LiyMnO4 electrodes into a 2-D Li ion cell model 

and showed the reversible heating effect, important at low discharge rates, to be dominated 

by irreversible (reaction and ohmic) heating at high discharge rates relevant to automotive 

applications.  For the typical HEV application where the battery is alternately pulse-

discharged and charged about a fixed SOC, reversible heats will alternately heat and cool the 

cell and, over time, the net reversible heat will be near zero. 

2.3 CFD Model Numerical Implementation 

The nonlinear governing PDEs and constitutive relationships are numerically solved 

within a computational fluid dynamics (CFD) framework.  (This dissertation builds upon the 

CFD model previously developed by Gu and Wang [9] by including transient solid state 

diffusion effects.)  The 1-D macroscopic domain is discretized into approximately 50 control 

volumes.  Described in Appendix A, a finite element solution to the transient solid state 

diffusion problem, Eqs. (2.1-3), is separately applied within each control volume of the 
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negative and positive electrodes.  For input current I(t), the five governing equations are 

solved simultaneously for field variables ce(x,t), cs,e(x,t), eφ (x,t), and sφ (x,t), and lumped cell 

temperature T(t). 
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Chapter 3 – SOLID STATE DIFFUSION LIMITATIONS ON PULSE OPERATION*  
 

The CFD model described in Chapter 2 is validated against constant current and 

hybrid pulse power characterization (HPPC) experimental data from a 6 Ah cell designed for 

hybrid electric vehicle (HEV) application.  Reaction current distribution and redistribution 

processes occurring during discharge and current interrupt, respectively, are driven by 

gradients in equilibrium potential that arise due to solid diffusion dynamics.  The model is 

extrapolated to predict voltage response at discharge rates up to 40C (240 A) where end of 

discharge is caused by negative electrode active material surface concentrations near 

depletion.  Simple expressions are derived from an analytical solution to describe solid state 

diffusion limited current for short duration, high rate pulses.  The suitability of various solid 

state diffusion solution methods is addressed. 

3.1 Electrochemical Model Parameterization 

Low-rate constant current discharge/charge, hybrid pulse power characterization 

(HPPC), and transient driving cycle data [47] were provided by the DOE FreedomCAR 

program for a 276V nominal HEV battery pack consisting of 72 serially-connected cells.  For 

the purpose of HEV systems integration modeling, we were tasked to build a mathematical 

model of a single cell of that pack and present all data on a single cell basis by dividing 

measured pack voltage by 72.  Due to the proprietary nature of the prototype FreedomCAR 

battery we were unable to disassemble cells to measure geometry, composition, etc. and 

therefore adopt values from the literature and adjust them as necessary to fit the data. 

By expressing capacity of the negative and positive electrodes as 
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low-rate capacity data provides a rough gauge of electrode volume and stoichiometry cycling 

range, assuming electrode composition and electrode mass ratio from [2].  This mass ratio is 

later shown to result in a well-balanced cell at both high and low rates.  Discharge capacity at 
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lithium ion cell for hybrid electric vehicles,” J. Power Sources, 161 (2006) 628-639. 
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the 1C (6 Amp) rate was measured to be 7.2 Ah and we define stoichiometry reference points 

for 0% and 100% SOC (listed in Table 3.1) on a 7.2 Ah basis. 

 The negative electrode active material almost certainly consists of graphite (LixC6) 

given its widespread use in reversible lithium ion cells.  Shown in Fig. 3.1, we use the 

empirical correlation for LixC6 open circuit potential, U-, from [8].  The positive electrode 

active material could consist of LiyMn2O4, LiyCoO2, LiyNiO2, or some combination of metal 

oxides.  Listed in Table 3.1, we fit our own correlation for U+ by subtracting U- from the 

cell’s measured open circuit voltage. 

 Figure 3.2 compares the model using parameters listed in Table 3.1 to 1C (6 Amp) 

constant current discharge and charge data.  This low rate data set is relatively easy to fit as it 

deviates little from open circuit voltage. 

In contrast, the voltage perturbation of the transient HPPC data set is more difficult to 

fit.  The HPPC test procedure, defined in [47], consists of a 30 A discharge for 18 seconds, 

open-circuit relaxation for 32 seconds, 22.5 A charge for 10 seconds, followed by open-

circuit relaxation as shown in the top window of Fig. 3.3.  The onset of constant current 

discharge and charge portions of the HPPC profile are accompanied by brief (0.1 second) 

high-rate pulses to estimate high frequency resistance.  Unable to decouple values of SEI 

layer resistance from contact film resistance (or cell-to-cell interconnect resistance for that 

matter), we fit ohmic perturbation using a contact film resistance of Rf = 20 Ω cm2. 

 Neglecting double layer capacitance (whose transient effects occur on a millisecond 

time-scale [8]) the only transient phenomena accounted for in the mathematical model [2,3] 

are electrolyte diffusion and solid diffusion.  A parametric study showed that while it was 

possible to match the observed voltage drop at the end of the HPPC 30 A discharge by 

lowering De several orders of magnitude from a baseline value of 2.6x10-6 cm2 s-1 [8], the 

voltage drop at short times was too severe.  Significant decrease in De also caused predicted 

voltage to diverge from the measured voltage over time due to severe electrolyte 

concentration gradients.  While recent LiPF6-based electrolyte property measurements [49] 

show diffusion coefficient, De, and activity coefficient, f±, both exhibiting moderate 

concentration dependency, it is beyond the scope of this work to consider anything beyond 



the first approximation of constant De and unity f±. 

 In investigating solid state diffusion transient effects, we note that measured voltage 

response only allows observation of characteristic time t = Rs
2/Ds and will not provide Rs and 

Ds independently.  SEM images, such as that shown by Dees et al. [50] (their Fig. 1) of a 

LiNi0.8Co0.15Al0.05O2 composite electrode, often show bulk or “secondary” active material 

particles (with radii ~5 µm) having finer “primary” particles (with radii ~0.5 µm) attached to 

the surface.  Dees achieved good description of LiNi0.8Co0.15Al0.05O2 impedance data in the 

0.01 to 1 Hz frequency range using a characteristic diffusion length of 1.0 µm.  As active 

material composition and structure are unknown for the present cell, we adopt this value as 

the particle radius in both electrodes. 

Though LixC6 is often reported to have more sluggish diffusion than common positive 

electrode active materials, a parametric study on Ds- using the transient solid diffusion model 

found no value capable of describing both the ~0.047 V drop in cell voltage from 2 to 20 

seconds of the HPPC test as well as the slow voltage relaxation upon open-circuit at 20 

seconds.  Assuming for the moment that the ~0.047 V drop is caused solely by solid 

diffusion limitations in the negative electrode, we estimate that surface concentration cs,e- 

would need to fall from its initial value by 4.3x10-4 mol cm-3 (a substantial amount) to cause 

the observed 0.047 V change in U-.  Wang et. al. [46] give an empirical formula for the 

evolution of a concentration gradient within a spherical particle subjected to constant surface 

flux as 
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At steady state (where the exponential term goes to zero) and with the assumption of uniform 

reaction current, , we manipulate Eq. (3.2) to obtain a rough estimate of the 

negative electrode diffusion coefficient, 
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of 1.6x10-12 cm2 s-1.  A corresponding characteristic time whereby the operand of the 

exponential term in Eq. (3.2) equals unity is 140 seconds.  Our conclusion is that, while a 
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negative electrode solid diffusion coefficient of Ds- = 1.6x10-12 cm2 s-1 might cause the cell 

voltage to drop ~0.047 V, that voltage drop would take much longer to develop than what we 

observe in the data.  Repeating calculations for concentration gradient magnitude and 

characteristic time under a variety of conditions revealed that the observed transient behavior 

might be described by solid state diffusion in the negative electrode if the slope ∂U- / ∂cs-  

were roughly 8 times steeper.  This is indeed the case in the positive electrode, where at 50% 

SOC the open circuit potential function has almost 7x greater slope with respect to 

concentration than the negative electrode.  Chosen via parametric study, final values of Ds- 

(2.0x10-12 cm2 s-1) and Ds+ (3.7x10-12 cm2 s-1) represent HPPC voltage dynamics in Fig. 3.3 

quite well, although we note they are dependent upon our choice of particle radius.  Were we 

to chose particle radii of 5 µm rather than 1 µm, our diffusion coefficient would be 25x 

higher to maintain characteristic time t = Rs
2/Ds and match the voltage dynamics of the HPPC 

test. 

Figure 3.4 quantifies voltage polarization resulting from diffusive transport by 

individually raising each diffusion coefficient by 5 or more orders of magnitude such that it 

no longer affects cell voltage response.  Despite comparable values of Ds- and Ds+, the 

positive electrode polarizes transient voltage response more significantly due to its stronger 

open-circuit potential coupling. 

Figure 3.5 compares model voltage prediction to data taken on the FreedomCAR 

battery whereby an ABC-150 battery tester was used to mimic a power profile recorded from 

a Toyota Prius HEV on a federal urban (FUDS) driving cycle.  Only the first 150 seconds are 

shown, though results are representative of the entire test. 

3.2 Electrode Dynamics 

Despite aforementioned uncertainties in cell design and choice of model parameters, 

the model is still useful in elucidating pulse discharge and charge dynamics resulting from 

solid state transport limitations.  As a basis for the subsequent discussion we use simulation 

results from the first 30 seconds of the 58.3% SOC HPPC case (whose voltage response is 

denoted with circles in Fig. 3.3). 

Approximately one second into the test, a 30 A discharge current is applied resulting 



in the step change in local reaction current, jLi, shown in Fig. 3.6.  At the onset of the step 

change, solid phase surface concentrations are uniform and the initial distribution of reaction 

across each electrode is governed by relative magnitudes of exchange current density, 

electrolyte phase conductivity, and solid phase conductivity.  The solid phase is a much 

better conductor than the electrolyte phase and the reaction is distributed such that Li+ ions 

favor a path of least resistance, traveling the shortest distance possible in the electrolyte 

phase.  Negative electrode reaction is less evenly distributed than positive electrode reaction 

predominantly due to the greater solid phase conductivity of the negative electrode (σ- = 1.0 

S/cm vs. σ+ = 0.1 S/cm). 

As a consequence of the initial peak in reaction current at the separator interface, Li 

surface concentration changes most rapidly at that location in each electrode, as shown in 

Fig. 3.7.  The effect is more pronounced in the negative electrode where the larger initial 

peak in current density quickly causes a gradient in active material surface concentration, 

xc es ∂∂ , , to build across that electrode.  Local equilibrium potential, U-, falls most rapidly at 

the negative electrode/separator interface, penalizing further reaction at that location and 

driving the redistribution of reaction shown in Fig. 3.6.  As discharge continues, 

progressively less reaction occurs at the separator interface and more reaction occurs at the 

current collector interface. 

Positive electrode reaction current exhibits similar redistribution, though less 

significant than in the negative electrode.  The positive electrode open-circuit potential 

function is almost 7 times more sensitive to changes in concentration than the negative 

electrode function at 58.3% SOC.  Small changes in positive electrode active material surface 

concentration significantly penalize reaction, and for this reason, redistribution of reaction 

due to solid diffusion limitations occurs much quicker in that electrode. 

Redistribution of Li also occurs upon cell relaxation at the end of the 18 second-long 

30 A discharge.  Figure 3.6 shows a second step change in transfer current density around 19 

seconds, appearing qualitatively as the mirror image of the step change at 1 second when the 

galvanostatic load was first applied.  At locations near the separator, a recharging process 

begins while at locations near the current collector, discharge continues even after the load is 
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removed.  The process is driven by the gradient in local equilibrium potential, xU ∂∂  

(directly related to the solid phase surface concentration gradient, xc es ∂∂ , ) and continues 

until surface concentrations, cs,e, are once again evenly distributed.  During this redistribution 

process the net balance of reaction across each electrode is zero.   

Relaxation reaction redistribution is less significant in the positive electrode, where 

only a minimal solid phase surface concentration gradient, xc es ∂∂ +, , arose during the 30 A 

discharge.  The process lasts on the order of 10 seconds, compared to several minutes for the 

negative electrode.  In both electrodes, solid phase bulk concentrations rise and fall at 

roughly the same rate as surface concentrations throughout the redistribution process, 

indicating that the time scale of reaction redistribution is much faster than solid phase 

diffusion.  Localized concentration gradients within individual solid particles (from bulk to 

surface), rcs ∂∂ , relax so slowly that the 63 second long pulse power test amounts to little 

more than a transient discharge and charge on the surface of the active material particles with 

inner bulk regions unaffected. 

3.3 Rate Capability 

Figure 3.8 presents model-predicted constant current discharge capability from 50% 

SOC.  Shown in the bottom window of Fig. 3.8, a 40C rate current (240 A) can be sustained 

for just over 6 seconds before voltage decays to the 2.7 V minimum.  The top window of Fig. 

3.8 shows active material surface concentration in the negative (left axis) and positive (right 

axis) electrodes at the end of discharge across the range of discharge rates.  Electrode-

averaged rather than local values of surface concentration are presented to simplify the 

discussion.  The electrodes are fairly well balanced, indicated by end of discharge surface 

concentrations near depletion and saturation in the negative and positive electrodes, 

respectively.  End of discharge voltage is predominantly negative electrode-limited as 

stoichiometries of x = cs,e / cs,max- < 0.05 causes a rapid rise in U-.  Surface active material 

utilization decreases slightly with increasing C-rate due to increased ohmic voltage drop. 

In the present model, electrolyte Li+ transport is sufficiently fast that electrolyte depletion 

does not play a limiting role at any discharge rate from 50% SOC.  In the worst case of 30C, 
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the minimum value of local electrolyte concentration, occurring at the positive 

electrode/current collector interface, is around 50% of average concentration, ce,0.  For rates 

less than 30C, the reduced current level results in lesser electrolyte concentration gradients, 

while for rates greater than 30C, the shorter duration of discharge time results in a smaller 

concentration gradient at end of discharge.  If we induce sluggish diffusion by reducing De (a 

similar effect may be induced in cell design by reducing porosity), electrolyte concentration 

in the positive electrode comes closer to depletion with the worst case minimum value of ce 

occuring at lesser current rates.  Lowering De by one order of magnitude for example, results 

in a battery limited in the 10C to 20C range by electrolyte phase transport, with higher and 

lower current rates still controlled by solid state transport. 

3.4 Solid State Diffusion-Limited Current 

Under solid phase transport limitations, simple relationships may be derived to 

predict maximum current available for a given pulse time.  Substituting dimensionless 

variables 
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into Eq (2.1) yields the dimensionless governing equation 
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The solution given by Carslaw and Jaeger [51] is 
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where the eigenvalues are roots of λn = tan(λn).  Figure 3.9 shows distribution of Li 

concentration along the radius of an active material particle during galvanostatic discharge or 

charge for dimensionless times ranging from τ = 10-6 to 10-1 which, for reference, correspond 
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to current pulses lasting 0.05 to 500 seconds using negative electrode parameters from Table 

3.1. 

 Surface concentration and depth of penetration into the active material, both of 

practical interest for HEV pulse-type operation, can be obtained from Eq. (3.7).  Surface 

concentration, shown for the present model to cause end of discharge as the negative 

electrode nears depletion, is calculated by evaluating Eq. (3.7) at 1=r .  Penetration depth, ℓ, 

providing a measure of active material accessible for short duration pulse events, is 

calculated by finding the point along the radius where the concentration profile is more or 

less equal to the initial condition.  A 99% penetration depth, rRs −=l , is defined using the 

location r resulting in a root of the formula  

 a
c

rc

s

s −=1
),1(
),(

τ
τ  (3.8) 

with a = 0.99.  Expressed as a fraction of total radius, dimensionless penetration depth, 

sRll = , is a function of dimensionless time only. 

 Empirical expressions for dimensionless surface concentration, esc , , and 

dimensionless penetration depth, l , are fit to the results of Eq. (3.7) and presented in Table 

3.2.  Functions of the form ττ Cf =)(  provide good resolution at short times of τ < 10-3, 

corresponding in our model to pulses lasting fewer than ~5 seconds.  Resolution may be 

extended one to two orders of magnitude in τ using functions of the form τττ DCf +=)( . 

Equation (3.19) in Table 3.2 may be used in lieu of the present electrochemical model 

to predict negative electrode surface concentrations for pulses shorter than 400 seconds, or, 

conversely, to predict limiting currents at rates greater than ~9C caused by depleted active 

material surface concentration at end of discharge.  By combining Eqs. (3.4) and (3.19) under 

the assumption of uniform current density, , we obtain an empirical relationship 

for surface concentration as a function of current and time 
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valid for t < 0.08Ds / Rs
2.  Alternatively, given initial stoichiometry, x0, and surface 
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stoichiometry at end of discharge, xs,e final, the maximum current available for a pulse 

discharge lasting t seconds will be 
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While the theoretical maximum current will be obtained under the condition xs,e final = 0, i.e. 

complete surface depletion, Fig. 3.8 showed the present model to exhibit an end of discharge 

surface stoichiometry around 0.03, with some rate dependency.  Under uniform initial 

conditions, the initial stoichiometry, x0, is simply a function of SOC.  For a recently charged 

or discharged battery with nonuniform initial concentration, a better prediction of maximum 

pulse current may be obtained by replacing x0 in Eq. (3.10) with a stoichiometry averaged 

across the penetration depth or “pulse-accessible” region [52]. 

3.5 Solid State Diffusion Approximations for Electrochemical Modeling 

 Discussed in Chapter 2 and detailed in Appendix A, the present CFD model utilizes a 

5th order finite element approximation for solid state diffusion, Eq. (2.1), and incorporates 

that submodel into the 1-D electrochemical model as a finite difference equation, that is, 

local values of cs,e are calculated using values of cs,e and jLi from the previous 5 time steps 
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Here we compare the finite element submodel to the analytical solution employed by Doyle 

et. al. [2] and the polynomial profile model of Wang et. al. [53].  Comparisons are made in 

the frequency domain in order to remove the influence of a particular type of input (pulse 

current, current step, constant current, etc.) by taking the Laplace transform of each time 

domain model, expressing the input/output relationship as a transfer function in the Laplace 

variable s, and substituting s = jω to calculate the complex impedance at frequency ω.  A 

capitalized variable denotes that variable’s Laplace transform, that is, Cs,e(s) = L{cs,e(t)}, and 

an overbar denotes a dimensionless variable.  Define 
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In the Laplace domain, a compact analytical solution to Eq. (2.1) is readily available.  The 

exact transfer function expressing dimensionless surface concentration vs. dimensionless 

reaction current given by Jacobsen and West [54] is 
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where ss DsR=ψ . 

 Doyle et. al. [2] provide two analytical series solutions in the time domain, one for 

short times and one for long times.  In Appendix B, we manipulate Doyle’s formulae to 

arrive at the short time transfer function 
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and the long time transfer function 
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The frequency response (magnitude and phase angle) of truncated versions of the short and 

long time transfer functions are compared to the exact transfer function (3.13) in Fig 3.10, 

showing the short time solution to provide good agreement at high frequencies and the long 

time solution at low frequencies.  Note that the short time transfer function does not change 

much beyond the first term of the series.  A good strategy to piece together Doyle’s two 

solutions is to use one term of the short time solution for τ = Ds t / Rs
2 ≤ 0.1 (corresponding 

toω ≥ 6x101 in Fig. 3.10) and around 100 terms of the long time solution for τ > 0.1. 

 Reaction current appears in Eq. (2.1) as a time dependent boundary condition  

which Doyle accommodates using a Duhamel superposition integral.  Numerical solution of 

this convolution-type integral requires that a time history of all previous step changes in 

surface concentration be held in memory and called upon at each time step to reevaluate the 

integral.  So while the analytical solution is inarguably the most accurate approach, it can be 

expensive in terms of memory and computational requirements, particularly in situations 

requiring a small time step but long simulation time (driving cycle simulations, for instance) 

or in situations requiring a large grid mesh (2-D or 3-D simulations incorporating realistic 
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cell geometry, for instance). 

 Approximate solutions to Eq. (2.1) are appropriate so long as they capture solid state 

diffusion dynamics sufficiently fast for a particular investigation.  Wang et. al. [53] assume 

the concentration profile within the spherical particle is described by a parabolic profile 

, and thus formulate a solid state diffusion submodel which correctly 

captures bulk dynamics and steady state concentration gradient, but otherwise neglects 

diffusion dynamics.  Derived in Appendix C, the transfer function of the parabolic profile, or 

steady state diffusion, model is 
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Shown in Fig. 3.11 versus the exact transfer function (3.13), the parabolic profile model is 

valid for low frequencies, 10<ω , or long times, τ = Ds t / Rs
2 > 0.6.  Substituting values 

from the present model’s negative electrode (Ds- = 2.0x10-12 cm2 s-1, Rs- = 1.0x10-4 cm), the 

parabolic profile model would correctly predict surface concentration only at times longer 

than 3000 seconds.  For electrochemical cells with sluggish solid state diffusion, the 

parabolic profile model will correctly capture low rate end of discharge behavior, but is 

generally inappropriate in the modeling of high rate (>2C) or pulse type applications [55]. 

 We find spatial discretization of Eq. (2.1) yields low order solid state diffusion 

models with more accurate short time prediction compared to polynomial profile models 

[56].  Recasting the 5th order finite element model from Appendix A in nondimensional form, 
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Fig. 3.11 shows the present model to provide good approximation of the exact transfer 

function for ω < 105, and thus be valid for dimensionless times τ > 6x10-5 (or t > 0.3 s for the 

present model’s negative electrode).  Regardless of what solution technique is employed for 

solid state diffusion in an electrochemical cell model, if the objective is to match high rate 

(~40C) pulse behavior and predict transport limitations on a short (~5 second) time scale, that 

technique must be valid at very short times. 
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3.6 Conclusions 

A 5th order finite element model for transient solid state diffusion is incorporated into 

a previously developed 1-D electrochemical model and used to describe low rate constant 

current, hybrid pulse power characterization, and transient driving cycle data sets from a 6 

Ah Li-ion HEV battery.  HEV battery models in particular must accurately resolve active 

material surface concentration at very short dimensionless times.  Requirements for the 

present model are τ = Ds t / Rs
2 ≈ 10-3 to predict 40C rate capability and τ ≈ 2x10-5 to match 

current/voltage dynamics at 10 Hz. 

 Dependent on cell design and operating condition, end of pulse discharge may be 

caused by negative electrode solid phase Li depletion, positive electrode solid phase Li 

saturation, or electrolyte phase Li depletion.  Simple expressions developed here for solid 

state diffusion-limited current, applicable in either electrode, may aid in the interpretation of 

high rate experimental data.  While the present work helps to extend existing literature into 

the dynamic operating regime of HEV batteries, future work remains to fully characterize an 

HEV battery in the laboratory and develop a fundamental model capable of matching 

current/voltage data at very high rates. 



 

Parameter 
Negative 
Electrode Separator 

Positive 
Electrode 

Design Specifications (Geometry & Volume Fractions) 
    Thickness, δ [cm] 50x10-4 25.4x10-4 36.4x10-4

    Particle radius, Rs [cm] 1x10-4  1x10-4

    Active material volume fraction, εs 0.580  0.500 
    Polymer phase volume. fraction, εp 0.048 0.5 0.110 
    Conductive filler volume. fraction, εf 0.040  0.06 
    Porosity (electrolyte phase volume fraction), εe 0.332 0.5 0.330 
Solid & Electrolyte Phase Li Concentrations 
    Maximum solid phase concentration cs,max [mol cm-3] 16.1x10-3  23.9x10-3

    Stoichiometry at 0% SOC, x0%, y0% 0.126  0.936 
    Stoichiometry at 100% SOC, x100%, y100% 0.676  0.442 
    Average electrolyte concentration, ce [mol cm-3]    1.2x10-3    1.2x10-3 1.2x10-3

Kinetic & Transport Properties 
    Exchange current density, io [A cm-2] 3.6x10-3  2.6x10-3

    Charge-transfer coefficients, αa, αc 0.5, 0.5  0.5, 0.5 
    SEI layer film resistance, RSEI [Ω cm2] 0  0 
    Solid phase Li diffusion coefficient, Ds [cm2 s-1] 2.0x10-12  3.7x10-12

    Solid phase conductivity, σ [S cm-1] 1.0  0.1 
    Electrolyte phase Li+ diffusion coefficient, De [cm2 s-1]    2.6x10-6    2.6x10-6 2.6x10-6

    Bruggeman porosity exponent, p 1.5 1.5 1.5 
    Electrolyte phase ionic conductivity, κ [S cm-1] ))1000(85.0exp(8.15 4.1

ee cc=κ  

    Electrolyte activity coefficient,  ±f 1.0 1.0 1.0 
    Li+ transference number, ot+ 0.363     0.363 0.363 
Parameter Value 

    Negative electrode equilibrium  
    potential, U- [V] 

( ) 142/1 106322.8578.120647.500229.8 −−
− ×−−+= xxxxU  

         ( )[ ]xx −−×+ − 06.00.15exp46016.0101765.2 2/35  
         ( )[ ]92.04326.2exp55364.0 −−− x  

    Positive electrode equilibrium  
    potential, U+ [V] 

( ) 3456 65.55589.61370.357681.85 yyyyyU −+−=+
 

( ) 1983.13657.5exp30987.0648.7606.281 0.1152 +−−+ yyy  
    Electrode plate area, A [cm2] 10452 
    Current collector contact 
    resistance, Rf [Ω cm2] 20 
 
Table 3.1.  Electrochemical model parameters for 6 Ah Li-Ion HEV cell. 
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Dimensionless surface concentration 1% error bounds 

  τ139.1, −=Li
es jc  (3.18) 0 < τ < 1x10-4

  ττ 25.1122.1, −−=Li
es jc  (3.19) 0 < τ < 8x10-2

Dimensionless 99% penetration depth 1% error bounds 

  τ24.3=l  (3.20) 0 < τ < 1x10-3

  ττ 89.123.3 +=l  (3.21) 0 < τ < 2x10-2

 
Table 3.2.  Empirical formulae fit to solid state diffusion PDE exact solution, Eq. (3.7). 
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Figure 3.1.  Empirical open-circuit, or equilibrium potential relationships for negative and 

positive electrodes. 
 

 
Figure 3.2.  CFD model validation versus constant current charge/discharge data at 1C (6 

Amp) rate. 
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Figure 3.3.  CFD model validation versus HPPC test data.  SOC labeled on 6Ah-basis per 

FreedomCAR test procedures.  SOC initial conditions used in 7.2 Ah-basis CFD model 
are 41.7%, 50.0%, 58.3%, 66.6%, and 75.0%. 
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Figure 3.4.  Nominal CFD model compared to models where limitations of electrolyte phase, 

negative electrode solid phase, and positive electrode solid phase diffusion have been 
individually (not sequentially) removed. 

  
  

33



 

 
Figure 3.5.  CFD model validation versus transient FUDS cycle HEV data.  Power profile of 

data mimics that recorded from a Toyota Prius (passenger car) HEV run on a chassis 
dynamometer. 
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Figure 3.6.  Distribution of reaction current across cell for first 30 seconds of HPPC test at 

58.3% SOC. 
 

 
Figure 3.7.  Distribution of active material surface concentration across cell for first 30 

seconds of HPPC test at 58.3% SOC. 
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Figure 3.8.  Solid phase surface concentration (top), minimum electrolyte concentration 

(middle), and time (bottom) at end of constant current discharge from 50% SOC for rates 
from 10C to 40C.  Each discharge case ended at 2.7 V minimum limit. 

 
 

 
Figure 3.9.  Dimensionless concentration distribution within an active material particle at 

various times during constant reaction current (dis)charge. 
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Figure 3.10.  Frequency response of short and long time analytical solutions used in Ref. [2] 

for solid state diffusion in spherical particles, compared to exact frequency response. 
 

 
Figure 3.11.  Frequency response of parabolic profile solid state diffusion submodel from 

Ref. [53] and fifth order finite element solid state diffusion submodel (used in this work), 
compared to exact frequency response. 
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Chapter 4 – POWER AND THERMAL CHARACTERIZATION*

 
The CFD model described in Chapter 2 and validated in Chapter 3 is used to predict 

performance of the 6 Ah Li-ion HEV battery relative to DOE Partnership for Next 

Generation Vehicles (PNGV) energy storage program goals.  The 3.9 V maximum limit, 

meant to protect the negative electrode from the lithium plating side reaction, is found to be 

overly conservative for high rate (> 15C) pulses initiated from states of charge (SOCs) less 

than 100%.  The CFD battery model is integrated into a DOE hybrid vehicle simulator to 

predict worst-case heat generation rates expected under in-vehicle operation. 

4.1 Pulse Current Limits 

HEV batteries transiently source and sink power in short pulses within a narrow SOC 

operating range, never using their entire available stored energy.  PNGV test procedures [48] 

rate pulse power in terms of maximum current available for a given pulse length from a given 

SOC initial condition.  The pulse length is chosen to be characteristic of typical vehicle 

acceleration (discharge) and deceleration (charge) events, in this case 18 seconds and 2 

seconds respectively.  To avoid complication of voltage-current interaction and ensure test 

repeatability, PNGV test procedures measure pulse power using constant current rather than 

constant power tests.  End of discharge/charge is declared when the cell terminal voltage 

reaches predefined limits, in this case 2.7 V on discharge and 3.9 V on charge. 

The bottom portion of Fig. 4.1 presents the simulated voltage response of 18 second 

maximum current discharge events initiated from various SOC initial conditions.  For each 

event, successive simulations were run iteratively to find the discharge current rate whereby 

cell voltage hits the manufacturer’s 2.7 V minimum limit at exactly 18 seconds.  All 

simulations are begun from the rest state.  A constant discharge current is applied at 

simulation time t = 0 and, due to ohmic limitations, the cell voltage response immediately 

departs from open circuit potential.  Similarly, the top portion of Fig. 4.1 displays the voltage 

 
* This chapter adapted from: K.A. Smith, C.-Y. Wang,  “Power and Thermal Characterization of a lithium-ion 
battery pack for hybrid-electric vehicles,” J. Power Sources, 160 (2006) 662-673. 
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response of 2 second maximum charge current events with a 3.9 V cutoff criteria initiated 

from various SOC initial conditions. 

The cell is only mildly limited by electrolyte phase diffusive transport.  Figure 4.1 

shows each constant current simulation run again with the electrolyte diffusion coefficient, 

De, raised 5 orders of magnitude to artificially remove electrolyte phase diffusion limitations. 

Electrolyte diffusion effects are apparent in cell voltage response only at very high levels of 

current (> 150 A, or 25C rate) sustained for longer than ~5 seconds.  These sustained high 

rate current events give rise to large electrolyte concentration gradients that polarize voltage 

response. 

Figure 4.2 shows distribution of reaction current at various times during the 160 A 

discharge from 50% SOC, both with and without electrolyte diffusion limitations in the 

model.  The two cases are almost identical, indicating that the coupling between 

electrochemical reaction and electrolyte concentration (2nd term in Eq. 2.9) is negligible for 

operating conditions sufficiently far from electrolyte depletion.  This observation enables an 

analytical solution for reaction distribution, employed later in Chapter 6. 

Figure 4.3 shows active material (solid phase) bulk and surface concentrations at 

various times during the 160 A discharge from 50% SOC.  End of discharge is caused by 

depleted/saturated negative/positive electrode surface concentrations.  Bulk concentrations 

change much less than surface concentrations during the discharge.  Given time for 

concentration gradients to relax following the discharge event, further discharge will be 

possible.  In general, the manufacturer’s 2.7 V cutoff is a good indicator of depleted/saturated 

surface concentrations for pulses longer than 10 s.  For very short duration, high-rate current 

pulses, however the minimum voltage limit can be overly conservative given the large ohmic 

voltage perturbation. 

During cell charging, current rate capability is limited due to the proximity of the 

cell’s open circuit voltage (3.6 V at 50% SOC) to the manufacturer’s maximum voltage limit 

(3.9 V).  At 100% SOC, the negative and positive electrode stoichiometries (x100% = 0.676 

and y100% = 0.442) are far from respective saturation and depletion and further charge is 

physically possible beyond the 100% SOC reference point. 



Raising the upper voltage limit would increase both charge power rate capability and 

overall capacity [57], though it may introduce side reactions detrimental to the pack’s future 

rate capability.  Lithium plating on the surface of negative electrode LixC6 active material 

particles is the most common side reaction attributed to capacity and power fade [7,58,59].  

Arora et. al. [58] showed that designing a cell with sufficient excess negative electrode and 

limiting the maximum allowable voltage during charge are successful strategies for avoiding 

the plating reaction.  The plating reaction becomes thermodynamically favorable when the 

difference between solid and electrolyte phase potentials becomes zero or 

 0=− es φφ . (4.1) 

We check this condition at the end of 2 second charge pulses initiated from various SOC 

initial conditions and, though the phase potential difference does become progressively 

smaller approaching 100% SOC, it never reaches zero.  The smallest value observed is 80.2 

mV, occurring at the negative electrode/separator interface at the end of the 2 second charge 

from 100% SOC.  By comparison, the smallest value observed at the end of the 2 second 

charge from 50% SOC is 90.4 mV.  Both of these charge cases terminate at the 3.9 V cutoff, 

though clearly the 50% SOC case leaves more margin with respect to the lithium plating 

condition.  A substantial portion of the voltage rise from 50% SOC is ohmic due to the large 

–101 A charging rate and the cell terminal voltage reaches the 3.9 V limit well before risk of 

lithium plating. 

 Figure 4.4 shows the evolution of es φφ −  distribution across the negative electrode 

for the 2 second charge cases from 50% and 100% SOC, both ending at the manufacturer 

specified 3.9 V upper voltage limit.  In these and all other charge cases, the minimum value 

of es φφ −  occurs at the separator interface, also noted in [58].  Increasing the charging rate 

from the 50% SOC initial condition, we find that the cell can sustain a –155 A charge for 2 

seconds and still maintain the same degree of conservatism with respect to lithium plating as 

the 100% SOC case ( mV2.80≥− es φφ ). 

4.2 PNGV Power Capability 

PNGV test procedures estimate power capability using constant current rather than 
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constant power tests.  Maximum discharge/charge power is calculated by multiplying 

maximum current by final voltage at the end of the pulse event (i.e. the minimum/maximum 

voltage limit).  Compared to a constant power test method, the constant current method will 

slightly underpredict maximum discharge power and overpredict maximum charge power. 

The PNGV HPPC experimental test procedure applies a step change in current (~5C) 

from a known SOC rest condition and uses the measured voltage perturbation to calculate 

polarization resistances representative of 18 second discharge and 2 second charge.  The test 

is repeated at roughly 10% intervals in SOC.  Maximum discharge and charge currents are 

then estimated using the formulae 

 
echech

edischedisch

ROCVVI
RVOCVI

argmaxarg

argminarg

)(
)(

−=

−=
 (4.2) 

where Rdischarge, Rcharge, and OCV (open circuit voltage) are experimentally-determined 

functions of SOC while Vmin and Vmax are constant values specified by the manufacturer.   

The present approach differs only in that we use the 1-D electrochemical model to predict 

maximum current versus SOC rather than linearly extrapolate low rate experimental data.  

Note that the PNGV linear extrapolation procedure will only be accurate within linear 

regions of operation where equilibrium potentials and kinetics exhibit linear behavior, 

properties remain constant, etc.  High rate, 30-40C simulation results presented earlier, 

however, exhibited strong non-linearities as active material surface concentrations 

approached depletion/saturation at end of discharge.  We therefore expect the nonlinear 1-D 

electrochemical model to produce more accurate results. 

4.2.1 Room Temperature 

Figure 4.5 presents the maximum 18 second discharge and 2 second charge power 

rate capability of the 72 cell battery pack at 25 ˚C predicted by the electrochemical model.  

Much of the same information can be found in Fig. 4.1, though Fig. 4.5 now displays power 

rate capability (rather than current rate capability) found by multiplying maximum 18 second 

discharge current by Vmin = 194.4 V and maximum 2 second charge current by Vmax = 280.8 

V.  The maximum power rates are displayed with respect to the 25 kW discharge (left axis) 
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and 30 kW charge (right axis) PNGV power assist goals.  Above 77% SOC, the 18 second 

discharge power is limited by a 217 A maximum current limit established by PNGV 

requirements.  Left and right axes of Fig. 4.5 are plotted on different scales such that the 

PNGV power assist goals for discharge and charge align horizontally.  The battery pack can 

only meet the two goals simultaneously at SOCs ranging from 36.2% to 46.2% SOC.  Within 

this narrow operating range, the battery pack can source and sink ~190 Wh of energy at a 1C 

rate, short of the PNGV available energy goal of 300 Wh. 

Shown in Fig. 4.5, the SOC operating range may be significantly expanded if, rather 

than imposing a constant 280.8 V maximum voltage limit, higher rates of charge current are 

allowed up to a lithium plating side reaction limit of mV2.80≥− es φφ .  Only for the 100% 

SOC case does the constant current lithium plating-limited charge terminate at a pack voltage 

of 280.8 V (3.9 V/cell).  Charge cases initiated from lower SOCs terminate at modestly 

elevated voltages, up to a maximum of 296.7 V (4.12 V/cell) for the 2 second charge case 

from 27% SOC.  Below 27% SOC, charge performance is limited by the -217 A PNGV 

maximum current requirement.  To permit equal judgement of the nominal (3.9 V/cell 

limited) and expanded ( mV2.80≥− es φφ  limited) charge current capability, lithium plating-

limited charge powers are calculated using the same end of charge voltage, 280.8 V. 

With lithium plating-limited 2 second charge, PNGV power assist goals are now met 

within a 36.2% to 67.5% SOC range.  Available energy at the 1C rate increases from ~190 

Wh to ~595 Wh, a 212% improvement.  Taking the intersection of the discharge and charge 

curves on Fig. 4.5 as the maximum discharge and charge power simultaneously realizable 

from a given SOC, use of the lithium plating limit would increase power rate capability of 

the battery pack by 22% over the nominal case.  The potential for increased performance 

motivates the model-based estimation and constraint management approach presented in 

Chapter 7. 

4.2.2 Temperature Dependence 

We next define operating maps of 18 second discharge and 2 second charge power 

capability as a function of SOC initial condition and cell temperature.  Electrochemical 
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model properties are made temperature dependent through Arrhenius expressions, Eq. (2.16).  

Activation energies, defined in Table 4.1, are estimated from the data used by Botte et al. 

[19].  Each case is run under isothermal operating conditions. 

 Figure 4.6 shows the 18 second discharge power capability of the PNGV battery pack 

throughout a range of temperatures (–15 to 65˚C) and SOCs (0 to 100%).  The contour plot is 

generated by running the model at 11 different SOCs for each of 5 different temperatures.  

Figure 4.6 data presented at 25˚C is identical to that from Fig. 4.5.  A map of 2 second charge 

power (280.8 V limited) throughout the temperature/SOC operating range is shown in Fig. 

4.7.  As operating temperature is reduced, slow kinetics require increased overpotential, η, to 

drive reaction, sluggish diffusion properties result in increased solid and electrolyte phase 

concentration gradients, rcs ∂∂  and xce ∂∂ , and decreased ionic conductivity of the 

electrolyte leads to larger electrolyte phase potential gradients, xe ∂∂φ .  All effects result in 

a greater voltage polarization from the equilibrium open-circuit voltage for a given current 

pulse.  As we reduce operating temperature below the nominal 25˚C the range of SOC 

meeting the PNGV discharge and charge goals narrows until, for temperatures of 16˚C and 

below, the dual goals can no longer be simultaneously met. 

4.3 In-Vehicle Heat Generation 

We adapt the CFD model to be called as an energy storage subsystem model from the 

PSAT vehicle simulator (developed by DOE/Argonne National Labs) running in the 

Matlab/Simulink environment.  At each 100th of a second time step, the FORTRAN battery 

model subroutine calculates pack voltage, SOC, temperature, heat generated, etc. as a 

function of current applied by the vehicle’s electric drivetrain.  Figure 4.8 shows vehicle 

speed profiles for the FUDS, HWFET, and US06 driving cycles used as inputs to the vehicle 

simulator. 

To establish cooling requirements for the PNGV Li-ion battery pack we use the 

integrated battery model/vehicle simulation tool to predict battery pack heat generation rate 

under constant temperature operation in a small 5 seat passenger car similar to a Toyota 

Prius.  The PNGV Li-ion battery pack shares similar power and energy ratings with the Ni-
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MH pack used by the Prius, but weighs less and occupies less volume.  Vehicle and 

drivetrain-specific parameters of the power-split HEV are summarized in Table 4.2. 

Figure 4.9 presents time-averaged heat generation rate and turnaround efficiency of 

the PNGV Li ion battery pack under isothermal operation at 6 different cell temperatures 

(ranging from -15˚C to 85˚C) for each of the three different driving cycles.  Across the range 

of simulated temperatures, the HWFET cycle (with relatively few acceleration events and 

moderate highway speeds) generates the least heat while the FUDS cycle (with numerous 

short acceleration events at low speeds) generates roughly twice that amount.  The US06 

cycle (with long acceleration events to high speeds and continued acceleration/deceleration 

events while at speed) generates four to six times that of the FUDS cycle.  The 320W average 

heat generation rate for the US06 cycle at 25˚C is larger than, but similar in magnitude to the 

250W worst-case heat generation rate predicted by Nelson et. al. [21] on their modified 

HWFET cycle. 

Across the -15˚C to 85˚C simulated temperature range, the profile of power cycled to 

and from the battery pack is virtually identical for a given driving cycle.  Heat generation 

rates in Fig. 4.9 depend on operating temperature, however, due to the increased voltage 

perturbation caused by sluggish kinetics and transport properties at low temperatures.  With 

the exception of reversible heating (not considered in this work as discussed in Chapter 2), all 

modes of heat generation dissipate and waste potentially useful energy.  Battery round-trip 

energy efficiencies follow the opposite trend of heat generation rates, with the lowest 

efficiency (87%) seen on the coldest (-15˚C) US06 cycle.  Round-trip efficiency generally 

surpasses the PNGV goal of 90%. 

To explain the driving cycle dependency of heat generation rates, Figs. 4.10 and 4.11 

present detailed plots of the FUDS and US06 cycles, respectively, under isothermal operation 

at 25˚C.  Each figure shows power cycled to and from the battery pack, battery pack SOC, 

and cumulative amount of heat generated by the battery pack (i.e. the time integral of the 

instantaneous heat generation rate). 

 The US06 case (Fig. 4.11) cycles the battery pack about a wider range of SOC than 

the FUDS case (Fig. 4.10).  In total, 1827 kJ of energy is discharged over the course of the 
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1372 second FUDS cycle, and 1822 kJ of energy is charged.  By comparison, during the 600 

second US06 cycle, 2235 kJ of energy is discharged, and 2263 kJ of energy is charged.  

Expressing the total amount of charge and discharge energy on a per-second basis to correct 

for the different durations of the two cycles, the US06 cycle sources and sinks roughly 2.8 

times the energy of the FUDS cycle.  But from Fig. 4.9, we see that at 25˚C the US06 cycle 

generates heat at a rate 5.9 times that of the FUDS cycle.  Heat generation is much more 

strongly current (or power) rate-dependent than energy-dependent due to the ohmic heating 

mechanisms of Eqs. (2.19) and (2.20). 

 The bottom portions of Figs. 4.10 and 4.11 show individual components of heat 

generation in the PNGV pack.  In both cases, contact resistance contributes the most to heat 

generation (Eq. (2.20), followed by electrolyte-phase conductivity (2nd and 3rd terms of Eq. 

(2.19)), heating due to electrochemical reaction (Eqn. (2.18)), and lastly solid-phase 

conductivity (1st term of Eqn. (2.19)), negligible in all cases.  Given the dominance of ohmic 

heat generation mechanisms, a lumped electrochemical model [21] or perhaps an equivalent 

circuit model should be sufficient to predict heat generation rates across a range of driving 

cycles.  Such a model would need to be validated under several different temperatures and 

state-of-charge operating conditions, however. 

We briefly consider the problem of cooling such a power-dense energy storage 

system onboard a HEV.  PNGV energy storage system performance goals define a 

temperature range for equipment operation of –30 to +52˚C.  At 52˚C, Fig. 4.9 predicts a 

302W heat generation rate on the US06 cycle.  With only the outer radial surface of each 

cylindrical cell exposed to the cooling medium, the total surface area, As, of the 72 cell pack 

is approximately 1.35 m2.  The cooling medium is most likely to be air drawn from the 

passenger cabin at perhaps 30˚C.  Substituting each of these values into Eqn. (2.17) we find a 

convective heat transfer coefficient, h, of 10.1 W/m2 K is required to maintain the battery 

pack at a constant 52˚C and prevent further temperature rise.  A simple forced-convection 

cooling scheme with air as the cooling fluid could adequately meet [60] what we consider to 

be the worst-case requirement for steady-state operation.  A more difficult problem, not 

explored here, would be to rapidly cool the battery pack from the maximum PNGV 



equipment survival goal of 66˚C back down to 52˚C at start-up. 

4.4 Conclusions 

The 1-D electrochemical, lumped thermal CFD model is used to explore limiting 

regions of pulse power operation for a 6 Ah, 72 cell, 276 V nominal Li ion battery pack 

designed for the PNGV program.  Electrolyte phase Li+ transport (diffusion and migration) is 

sufficiently fast to have little impact on high-rate power capability and transient voltage 

response.  In contrast, solid phase Li transport (diffusion) significantly limits high rate 

performance and end of discharge at the 2.7 V/cell minimum limit is caused by 

depleted/saturated active material surface concentrations in the negative/positive electrodes 

for pulses lasting longer than around 10 seconds.  During high rate discharge pulses, bulk 

solid concentrations (related to SOC) change very little and the inner regions of active 

material particles go unutilized. 

The 3.9 V/cell maximum limit, meant to protect the negative electrode from side 

reactions such as lithium plating, is overly conservative for pulse charging initiated from 

SOCs less than 100%.  By limiting charge via a es φφ −  potential margin, rather than a 3.9 V 

cell terminal voltage limit, charging rates are increased by approximately 50% and overall 

power density (defined using PNGV 18 second discharge and 2 second charge metrics) is 

increased by 22%. 

Installed in a midsize passenger car, the battery pack is predicted to generate heat at a 

rate of 320 W on a US06 cycle at 25ºC, with more heat generated at lower temperatures.  

Heat generation rates on the less aggressive FUDS and HWFET cycles are substantially less.  

For pulse power operation typical of HEV applications, ohmic heating dominates other 

heating mechanisms and equivalent circuit models validated over a range of temperatures and 

SOCs should sufficiently predict heating rates for various driving cycles and control 

strategies.  Maintaining cell temperature at or below the 52ºC PNGV operating limit on the 

worst-case US06 cycle requires a convective heat transfer coefficient of h = 10.1 W/m2 K, 

realizable with forced air convection. 
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Activation Energy Value [J/mol] 
Exchange current densities: ,  −0i

actE +0i
actE 3 x 104,  3 x 104

Solid phase diffusion coeff.: ,  −sD
actE +sD

actE 4 x 103,  2 x 104

Electrolyte phase diffusion coeff.:  eD
actE 1 x 104

Electrolyte phase conductivity:  κ
actE 2 x 104

 
Table 4.1.  Activation energies used in Arrhenius equation (2.16) coupling physiochemical 

cell parameters to lumped thermal model 
 
 
 
 
 

Parameter/Component Value 
Vehicle mass, mveh 3040 kg 
Frontal area, Af 1.746 m2

Coefficient of drag, CD 0.29 
1.5L gasoline engine 52.2 kW, 111 Nm peak 
Electric motor 1 20 kW, 75 Nm peak 
Electric motor 2 33 kW, 350 Nm peak 

Battery pack 276 V nominal, 72 cell,  
6 Ah Li-Ion 

 
Table 4.2.  Vehicle-specific parameters used for driving cycle simulations of Figs. 4.9-4.11 
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Figure 4.1.  Voltage response for maximum 18 second pulse current discharge and 2 second 

pulse current charge events initiated from various SOC initial conditions.  End of 18 
second discharge and 2 second charge cases are defined at limits of 2.7 and 3.9 V/cell, 
respectively. 

 

 
Figure 4.2.  Distribution of reaction current at various times during the 160 A discharge from 

50% SOC shown in Fig. 4.1. 
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Figure 4.3.  Active material (solid phase) bulk and surface Li concentrations at various times 

during the 160 A discharge from 50% SOC shown in Fig. 4.1. 
 
 

 
Figure 4.4.  Difference between solid and electrolyte phase potentials in the negative 

electrode at various times during 2 second constant current charge cases initiated from 
various SOC initial conditions.  The es φφ − limited case provides the same margin with 
respect to damaging side reactions as the 3.9 V limit at 100% SOC. 
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Figure 4.5.  Power rate capability of the 72 cell pack at 25ºC compared to PNGV 18 second 
discharge and 2 second charge goals.  Operating region could in theory be expanded by 
enforcing a Li plating limit rather than a constant 3.9 V/cell limit on charge. 
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Figure 4.6.  Contours of 18 second discharge power [kW] capability throughout SOC/ 

temperature operating range. 
 

 
Figure 4.7.  Contours of 2 second charge power [kW] capability throughout SOC/ 

temperature operating range. 
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Figure 4.8.  Vehicle speed profiles for FUDS, HWFET, and US06 driving cycles. 
 

 
Figure 4.9.  Average heat generation rate (solid lines, left axis) and efficiency (dashed lines, 

right axis) of PNGV battery pack integrated into a small HEV passenger car.  Simulations 
were run at 6 different temperatures for each of 3 different driving cycles. 
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Figure 4.10.  FUDS driving cycle results for the 25ºC isothermal battery pack.  Individual 

components of the total heat generated are shown in the bottom-most plot. 
 
 

 
Figure 4.11.  US06 driving cycle results for the 25ºC isothermal battery pack.  Individual 

components of the total heat generated are shown in the bottom-most plot. 
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Chapter 5 – MODEL ORDER REDUCTION OF 1-D DIFFUSION SYSTEMS 
 

As a preliminary step towards development of a low order real-time battery model, 

this chapter develops a model order reduction methodology for 1-D diffusion systems.  

Spatially distributed residues are found either analytically (from a transcendental transfer 

function) or numerically (from a finite element or finite difference model) and residues with 

similar eigenvalues are grouped together to reduce the model order.  Two examples are 

presented from a simplified lithium ion battery model.  Reduced order grouped models are 

compared to full order models and models of the same order in which optimal eigenvalues 

and residues are found numerically. The grouped models give near-optimal performance with 

roughly 1/20th the computation time of the full order models and require 1000-5000x less 

CPU time for numerical identification compared to the optimization procedure. 

5.1 Reduction Framework 

We restrict the present chapter to linear systems with single input and 1-D distributed 

output and seek to generate a reduced order model (ROM) whose output response, y*(x,t), 

accurately approximates the full order model (FOM) output response, y(x,t), for any arbitrary 

input, u(t).  Analytical solutions to diffusion problems are commonly found by taking the 

Laplace transform of the governing PDE, solving it with respect to boundary conditions and 

inverting the Laplace or s-domain solution to generate a solution in the time domain.  

Denoting functions in the Laplace domain with capital letters, we have input U(s), FOM 

output Y(x,s), and ROM output Y*(x,s).  We further restrict the work to systems with a steady 

state, that is )(),(lim
0

sUsxY
s→

is finite.  The two examples given later in this chapter are each 

modified prior to reduction to meet this steady state requirement, ensuring that the ROM 

satisfies conservation of species across the 1-D domain. 

Model order reduction is performed in the Laplace domain (which we loosely refer to 

as the frequency domain) and model error is quantified in the time domain.  Design criteria in 

the frequency domain are  

• correct steady-state, and 
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• || Y* (x,jω) - Y (x,jω) || < α,  ∀  ω ∈ [0, 2πfc]. 

While the latter condition could be extended to bound the model error across the entire 

frequency range ω ∈ [0, ∞), the frequency response rolls off at high frequency and the ROM 

need only agree for f < fc, where the bandwidth fc is chosen to be sufficiently fast to resolve 

the dynamic response.  To quantify error, , associated with a given ROM design, 

we simulate the response to a unit step in u at t = 0.  For some applications, it may be 

appropriate to judge the error at one specific location, x = x

yyy −= *ˆ

i (e.g. at a sensor location), for 

which we define local L2 and L∞ norms as 
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For the more general case where the ROM must accurately describe system response across 

spatial domain Ω = {x :  x ∈ [0, 1]}, we define distributed  and  norms as 2
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5.2 Transcendental Transfer Function Approach 

For many linear 1-D diffusion systems it is possible to analytically obtain a 

transcendental transfer function with an infinite number of poles, 
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where h(x,s) and g(s) are the numerator and denominator, respectively.  We desire a rational 

transfer function of order n, 
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5.2.1 Pole/Residue Series 

We decompose Eq. (5.3) into a modal series finding the poles, pk, with g(pk) = 0, the 

  
  

55



unit step input steady state impedance 
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and unit step residues as 
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Eq. (5.6) is valid for non-repeated pk.  If h(x,pk) ≠ 0 (see pp. 234-235 of Ref. [61]), then 
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Using the poles, residues, and steady state impedance, the transcendental transfer 

function can be represented as an infinite series 

 ∑
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Substituting step input U(s) = u / s into Eq. (5.8) and performing the inverse Laplace 

transform yields the time domain step response 
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5.2.2 Pole/Residue Truncation 

An obvious method to represent a transcendental transfer function as a rational 

transfer function is to truncate Eq. (5.8) at n terms, yielding an nth order transfer function 
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which may be expressed in the polynomial form of Eq. (5.4).  For step input U(s) = u / s, the 

nth order time domain model is 
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Order n may be chosen using either of the following criteria: 

1. pn ≈ -2πfc  (p1 > p2 > … > p∞), or 

2. ||Resn(x)|| < α  (||Res1|| > ||Res2|| > … > ||Res∞||). 
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Condition 1 is useful when the simulation step size or a particular frequency range of interest 

is given.  Condition 2 may be used in cases where the magnitude of the system input and 

required system output resolution (e.g. sensor accuracy) are given. 

5.2.3 Pole/Residue Truncation + Grouping 

Transcendental transfer functions are commonly characterized by numerous closely-

spaced poles with similar residues.  Accurate low order models can be obtained by dividing 

the frequency range of interest into d frequency “bins” and lumping poles within each bin.  

We define grouping indices kf  ⊆ {0,1,2,…n}, arranged such that 0 = k0 < k1 < … < kd = n.  

The grouped residue corresponding to bin f ∈ {1,2,…d} is 
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Possible methods for choosing grouped pole location, fp , include: 

1. Slowest pole 
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2. Largest residue 
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3. Residue-weighted pole 
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Only the first two methods maintain poles from the original system.  We find the third 

method, however, works best for the examples presented in Sec. 5.4.  Equation (5.15) tends 

to place the grouped pole close to the mode with dominant response.  Unlike Eq. (5.14), 

however, closely spaced modes with opposite sign residues cancel one another.  Residues 

appearing in Eq. (5.15) are evaluated at a particular location xi in the 1-D domain.  The 

grouping procedure yields a dth order transfer function 

  
  

57



 ∑
= −

+=
d

f f

f

ps
sxxZ

sU
sxY

1

* )(Res)(
)(

),( . (5.16) 

5.2.4 Pole/Residue Optimization 

To assess the efficiency of the grouping method, we compare the grouped ROMs to 

ROMs of the same order in which poles and residues (denoted with double overbars) are 

found numerically to minimize a cost functional.  The optimal ROM transfer function is 
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Unlike Eq. (5.16), the residues in Eq. (5.17) hold no connection to the analytical solution and 

must be found at discrete locations xi across the spatial domain.  We numerically solve for 

fi,Res  and fp  that minimize the frequency response cost functional 
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as shown in Appendix D [62,63].  Equation (5.18) includes real and imaginary error-squared 

terms to retain proper magnitude and phase angle in the discretized transfer function. 

5.3 State Space Approach 

If it is not convenient to obtain an analytical transfer function of a 1-D linear 

diffusion system, then a linear SIMO state space model with m states and m outputs can be 

obtained as follows 
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using finite element or finite difference methods.  We desire a reduced order model with n 

states (n < m) and m outputs 
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The transfer matrix of the SIMO state space model (5.19) is  
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s . (5.21) 
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5.3.1 Eigenvalue/Residue Series 

 Similar to expressions presented in Sec. 5.1, the transfer matrix (5.21) can be 

represented in the eigenvector/residue series 
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The m x 1 steady state vector, found by setting 0=x&  in Eq. (5.19), is 
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To find the unit step input residue, rk, we substitute Eq. (5.22) with U(s) = 1 / s into Eq. (5.6) 

yielding 
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The second term in the brackets goes to zero in the limit.  We can solve for the first term in 

the brackets using the m x 1 right eigenvector, qk, with 

 kkk qAq λ=  (5.25) 

and the 1 x m left eigenvector, pk, with 

 kkk pAp λ= . (5.26) 

If all eigenvalues of A are distinct and pkqk = 1 (Ref. [23], pg 84), then 
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Substitution of Eq. (5.27) into Eq. (5.24) yields 
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In the limit, all terms except qkpk go to zero leaving the m x 1 residue vector  
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Using the residues in Eq. (5.29), we can rewrite Eq. (5.19) in modal form (see Appendix E) 
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5.3.2 Eigenvalue/Residue Truncation 

 As in Sec. 5.1, we may reduce the mth order model by truncating Eq. (5.22) at n terms, 

yielding an nth order transfer matrix 
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and an nth order state space model, Eq. (5.20), in modal form with 
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Order n may be chosen using the bandwidth or magnitude criteria 

1. λn ≈ -2πfc (λ1 > λ2 > … > λm), or 

2. ||rn|| < α     (||r1|| > ||r2|| > … > ||rm||). 

5.3.3 Eigenvalue/Residue Truncation + Grouping 

Using the approach in Sec. 5.1.3, we parcel the frequency range of interest into d bins 

and group together modes within each bin.  The m x 1 grouped residue vector corresponding 

to bin f is 
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with corresponding grouped eigenvalue, fλ , placed using the residue-weighted eigenvalue 

rule 
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where rk = [r1,k, … rm,k]T with ri,k corresponding to spatial location xi.  The grouping 

procedure yields a dth order transfer matrix 
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and a dth order state space model 
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5.3.4 Eigenvalue/Residue Optimization 

We introduce the dth order transfer matrix  
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and numerically solve for optimal eigenvalues, fλ , and residue vectors, fr , which minimize 

the error cost functional 
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where Yi
* and Yi are the ith outputs (corresponding to response at location x = xi) of the 

reduced and original state space models, respectively. 

5.4 Examples 

We illustrate the model order reduction technique using two examples arising from 

species conservation within the 6 Ah HEV battery.  In the first example, solid state diffusion, 

we apply the model order reduction methods from Sec. 5.2 to an analytical solution.  For the 

second example, electrolyte phase diffusion, composite geometry makes analytical treatment 
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cumbersome.  We use the finite element method to derive a state space model and then 

reduce its order using the methods from Sec. 5.3. 

5.4.1 Solid State Diffusion 

A schematic of the solid state diffusion problem is shown in Fig. 5.1.  Repeated from 

Chapter 2 for convenience, the distribution of Li concentration, cs(r,t), within a single particle 

is described by 
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with a boundary condition that enforces symmetry at the particle center 
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and a time-dependent boundary condition at the particle surface, 
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where Ds is the diffusion coefficient, jLi(t) is the volumetric reaction current, as is the specific 

interfacial surface area, and F is Faradays constant.  For the simple case of uniform current 

density across the electrode, jLi equals the total current, I, divided by electrode volume.  We 

seek a reduced order model with input jLi(t) and surface concentration output cs,e(t) = cs(Rs,t). 

Taking the Laplace transform of Eq. (5.40) and finding a solution that satisfies the 

boundary conditions, Eqs. (5.41) and (5.42), Jacobsen and West [54] obtain the 

transcendental transfer function, 
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with ss DsR /=β .  While the Laplace domain solution (5.43) is compact and closed form, no 

similarly compact time domain solution is available.  Though not immediately obvious, Eq. 

(5.43) contains a free integrator term which rises and falls with the particle’s bulk 

concentration, yielding an infinite steady state solution.  Bulk concentration of a sphere with 

time-dependent surface flux jLi (t) / (asF) is described by the ODE 
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where the factor 3/Rs results from the area to volume ratio of the sphere.  The Laplace 

transform of Eq. (5.44) yields a transfer function for the bulk response 
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Subtracting Eq. (5.45) from Eq. (5.43) and defining ∆Cs,e(s) = Cs,e(s) – Cs,avg(s) yields 
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which, unlike Eq. (5.43), has a finite steady state.  Following model order reduction, the bulk 

response is reintroduced, giving a low order approximation to Eq. (5.43) that satisfies Li 

conservation. 

 Equation (5.46) is decomposed into a modal series following the procedure in Sec. 

5.2.1.  The poles of Eq. (5.46) are  
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where ξk are roots of tan(ξk) = ξk not including ξ0 = 0.  The residues of Eq. (5.46) are 
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and the steady state solution is 
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Substituting Eqs. (5.47)-(5.49) into Eq. (5.8) yields an infinite series transfer function 

algebraically equivalent to Eq. (5.46). 

Using 6Ah battery model parameters defined in Table 3.1, the characteristic time t ≈ 

Rs
2 / Ds = 5000 seconds indicates that it can take over an hour for solid phase concentration 

gradients to completely stabilize.  Discussed in Chapter 3, a high rate current pulse may 

become solid state transport-limited in as little time as 5 seconds.  These disparate time scales 

complicate the derivation of an accurate low order model.  In the present example, we seek to 
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approximate solid state diffusion dynamics from steady state to fc = 10 Hz, a bandwidth 

sufficient to capture major pulse events for an HEV battery. 

Figure 5.2 plots poles, Eq. (5.47), versus residues, Eq. (5.48), with the slowest pole 

(and largest residue) of the analytical solution located at –4.04 x 10-3 rad/s.  Faster poles are 

spaced progressively closer together.  In the lower left corner of Fig. 5.2, discrete 

pole/residue pairs appear as almost a continuum of points.  Using the truncation method, we 

retain all poles pk > -2π fc.  In the limit, roots of the characteristic equation, tan(ξk) = ξk 

approach ξk = (k + ½)π.  Substituted into Eq. (5.47), the truncation method thus requires 
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terms.  For the present model parameters and fc = 10 Hz, n = 178 demonstrating that the 

truncation approach of Sec. 5.2.2 can result in a high order model. 

 The grouping approach introduced in Sec. 5.2.3 is motivated by the observation that 

analytical poles in Fig. 5.2 are tightly spaced with similar residues.  A simple grouping 

approach is to use brackets to partition the real axis into d bins of equal width.  Shown in Fig. 

5.2 for a fifth order grouped model, we place the slowest bracket at p1 / 2 and the fastest 

bracket at -4π fc.  The four intermediate brackets are evenly spaced on a logarithmic scale.  

The grouped residue of each bin is the sum of all residues in that bin, as defined by Eq. 

(5.12).  The corresponding pole is located using the residue-weighted pole rule, Eq. (5.15).  

Fifth order grouped pole/residue pairs are plotted with circles in Fig. 5.2. 

 Figure 5.3 compares the frequency response of a truncated model, Eq. (5.10), and two 

grouped models, Eq. (5.16), with the exact frequency response, Eq. (5.46).  The 180 term 

truncated series approximation matches the exact magnitude and phase until near 10 Hz 

where the phase angle diverges from the exact solution.  Third and 5th order grouped models 

have similar characteristics, with the 5th order model producing a better match.  The 3rd order 

grouped model clearly overpredicts the exact magnitude.  Phase angle for the grouped 

models has the qualitative appearance of a curve fit. 

 Using the method introduced in Sec. 5.2.4, Fig. 5.4 shows 3rd and 5th order optimal 

models, Eq. (5.17), that minimize the cost functional, Eq (5.18).  Each optimization case is 
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run multiple times with different initial parameter guesses to ensure convergence to a global 

optimum.  The optimal models are only slightly more accurate at matching the exact 

frequency response than their grouped counterparts of the same order.  Magnitude is 

alternately underpredicted and overpredicted across the frequency range.  Fifth order optimal 

pole/residue pairs, plotted with “x” symbols in Fig. 5.2, lie very close to the 5th order grouped 

pole/residue pairs. 

 Figure 5.5 compares the unit step response of a 5th order grouped model and a 5th 

order optimal model to a high order truncated “truth” model.  Initially the optimal model has 

a larger percentage error than the grouped model.  The optimal error, however, more quickly 

decays to zero.  The L2 and L∞ norms of surface concentration are presented in Table 5.1 for 

3rd, 4th, and 5th order grouped and optimal models.  The norms decrease with increasing 

model order for both types of reduced order models.  Optimal models give slightly improved 

performance compared to grouped models.  In cases where analytical poles, residues, and 

steady state solutions are easy to find, however, the grouped pole/residue method generates 

accurate reduced models of arbitrary order with inexpensive computation. 

5.4.2 Electrolyte Phase Diffusion 

A schematic of the second example, electrolyte diffusion, is shown in Fig. 5.6.  

Repeated from Chapter 2 for convenience, distribution of electrolyte concentration, ce(x,t), 

across the 1-D cell domain is described by 
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with zero flux conditions at the cell boundaries 
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In this chapter we consider the simple case of uniform current density across each electrode, 

where current density, jLi, equals total current, I, divided by electrode volume.  A Bruggeman 

relationship, , corrects the reference diffusion coefficient for the tortuous path 

Li

5.1
e

ref
ee DD ε=

+ ions follow through the porous media.  Properties εe and De, and source term jLi, have 
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different constant values in the negative electrode, separator, and positive electrode regions 

as follows 
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Analytical treatment requires three individual solutions – one for each region – connected by 

concentration and flux matching conditions at the negative electrode/separator and 

separator/positive electrode interfaces.  The finite element method allows a more convenient 

single domain approach because the assembly process automatically satisfies internal 

matching conditions. 

Spatially discretizing the 1-D domain with m linear basis functions, the finite element 

model represents ce(x,t) as an  m x 1 vector ce(t) containing values of concentration at discrete 

node points, x = xi, where i ∈ {1,2,…m}.  The finite element representation of Eq. (5.51) is 

 Iee FcKcM +−=&  (5.53) 

where M, K, and F are the mass, stiffness, and forcing matrices respectively [64].  

Multiplying through by M-1 yields  

  (5.54) Iee FMcKMc 11 −− +−=&

and the model is now expressed in linear state variable form, Eq. (5.19).  Equation (5.54) is 

not a minimal realization due to a pole/zero cancellation at the origin.  To strictly enforce 

species conservation, we define a new field variable ∆ce(x,t) = ce(x,t) - ce(0,t), and Eq. (5.54) 

becomes 

  (5.55) Iee ∆
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∆
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where the (m-1) x (m-1) matrix (M-1K)∆ is generated by subtracting the first row of m x m 

matrix (M-1K) from each row of (M-1K) and dropping the first row and first column.  

Similarly, the (m-1) x 1 vector (M-1F)∆ is generated by subtracting the first row of M-1F from 

each row of M-1F and dropping the first row.  With states x = ∆ce, the state variable model, 

Eq. (5.19), is defined by A = -(M-1K)∆, B = (M-1F)∆, C = I, and D = 0. 



For the present example, we discretize the 1-D domain using 45 linear basis elements.  

CFD modelers commonly perform a grid independence test to check whether spatial 

discretization has been performed with a fine enough mesh.  Results from a coarse mesh 

model are compared to those from a fine mesh model to validate the lower order model.  

Here, the grouping method efficiently produces low order models from the high order models 

associated with fine meshes. 

Figure 5.7 plots eigenvalues of the A matrix versus residues, calculated with Eq. 

(5.29), at the location x = L.  To distinguish the sign of each residue on the log-log plot, Fig. 

5.7 uses different symbols for residues with positive magnitude versus those with negative 

magnitude.  In the present example, the source term in the negative electrode is offset by a 

sink term in the positive electrode.  Adjacent residues in Fig. 5.7 generally have alternating 

sign, causing near pole/zero cancellations and further motivating the grouping method 

introduced in Sec. 5.3.3.  Applying the same grouping procedure as the previous example, 

Fig. 5.7 shows brackets and eigenvalue/residue pairs corresponding to a 3rd order grouped 

model. 

Figure 5.8 compares the frequency response of a model truncated at 10 Hz and a 3rd 

order grouped model with the full order model frequency response.  Results shown are at x = 

L, but the 3rd order grouped model provides similar accuracy across the entire spatial domain.  

Unlike the previous example, the low order model tightly matches the high order model 

phase angle. 

Using the method introduced in Sec. 5.3.4, Fig. 5.9 presents 2nd and 3rd order optimal 

models in which empirical eigenvalues and residues are numerically fit to the 45th order finite 

element model frequency response.  Both the 2nd and 3rd order optimal models are accurate at 

the location x = L.  The  and  norms, evaluated from unit step response simulation 

results, are displayed in Table 5.2, providing a quantitative metric of performance across the 

entire 1-D domain.  Judged on this basis, the 3

2
ΩL ∞

ΩL

rd order optimal model has 4-6 times better 

performance than the 2nd order optimal model.  A similar trend is evident for the 2nd and 3rd 

order grouped models. 

Figure 5.10 compares the unit step response of a 3rd order grouped model and a 3rd 
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order optimal model with the full finite element model across the entire spatial domain.  

Small differences between the grouped and optimal models occur near the separator region. 

In general, the grouped residue models are near optimal and grouped model performance 

improves as model order is increased.  An exception is noted in Table 5.2, where the 4th order 

grouped model shows worse performance than the 3rd order grouped model and is far from 

optimal.  Here, our simple approach of partitioning the eigenspectrum with logarithmic 

evenly-spaced brackets has not yielded the best possible 4th order grouped model.  By 

manually adjusting the bracket placement, it is possible to obtain other 4th order grouped 

models with performance close to the 4th order optimal model. 

5.5 Conclusions 

Residue grouping is a convenient method for combining closely spaced modes of a 

distributed parameter system with negative real eigenvalues.  In traditional finite element or 

finite difference model grid generation, discretization presents a tradeoff between model size 

and spatial resolution, with the former impacting execution speed and numerical stability.  

Using the approach in this chapter to reduce the order of a model generated with very fine 

mesh grid, a low order model can be obtained with good spatial resolution. 

Reduced order grouped models are shown to provide near-optimal performance, 

matching full order simulation results to within 6.3% for the 5th order solid state diffusion 

model and 1.2% for the 3rd order electrolyte diffusion model.  Compared to the 180th order 

truncated solid state diffusion model and the 45th order finite element electrolyte diffusion 

model, these grouped models execute 36x and 15x faster, respectively.  The grouping 

procedure identifies these models using just 0.01 and 0.07 seconds CPU time on a 1200 MHz 

Pentium III processor, compared to 8.1 and 390 seconds, respectively, for the optimization 

procedure. 

Model order reduction is performed in the frequency domain, and for control 

applications where only a rough approximate model is required, one may quickly obtain low 

order models with reasonable accuracy across a wide frequency range.  As with the 

Karhuenen-Loève Galerkin procedure [34], eigenvalue decomposition is a necessary step for 

generating a reduced order model, however in the present investigation, the model itself is 
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decomposed rather than field variable time response, eliminating the need for time 

simulation.  Although this restricts the method to linear systems, it saves computation time 

and maintains a tighter connection between the parameters of the full and reduced models. 



 

Surface Concentration [mol/cm3 x 10-4]

Model Order Reduction Method L2 L∞

Grouped 5.28 9.84 
3 

Optimal 2.50 4.07 

Grouped 3.19 5.31 
4 

Optimal 1.261 2.24 

Grouped 1.742 2.61 
5 

Optimal 1.178 2.18 

 
Table 5.1.  Solid state diffusion reduced order model error norms. 
 
 

 
Electrolyte Concentration [mol/cm3 x 10-7]

Model Order Reduction Method
2
ΩL  ∞

ΩL  

Grouped 0.821 4.90 
2 

Optimal 0.820 4.89 

Grouped 0.1601 1.161 
3 

Optimal 0.1435 1.098 

Grouped 0.1618 1.167 
4 

Optimal 0.0163 0.082 

 
Table 5.2.  Electrolyte phase diffusion reduced order model error norms. 
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Figure 5.1.  Solid state diffusion problem. 
 
 
 
 

 
Figure 5.2.  Solid state diffusion poles and residues:  Analytical (·), 5th order grouped (○), and 

5th order optimal (x).  5th order grouping brackets shown with vertical dotted lines. 
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Figure 5.3.  Truncated and grouped solid state diffusion ROMs vs. exact frequency response:  

Exact (○), 180th order truncated (·), 3rd order grouped (−·), and 5th order grouped (−).  (a) 
Magnitude, |∆Cs,e(s) / JLi(s)|.  (b) Phase angle, ∠ (∆Cs,e(s) / JLi(s)). 

 
 
 

 
Figure 5.4.  Optimal solid state diffusion ROMs versus exact frequency response:  Exact (○), 

3rd order optimal (−·), and 5th order optimal (−).  (a) Magnitude, |∆Cs,e(s) / JLi(s)|.  (b) 
Phase angle, ∠ (∆Cs,e(s) / JLi(s)). 
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Figure 5.5.  Grouped and optimal solid state diffusion ROMs versus higher order model unit 

step response:  1000th order truncated (○), 5th order grouped (−), and 5th order optimal 
(−·). 

 
 
 

 
Figure 5.6.  Electrolyte phase diffusion problem for Li-ion cell with uniform reaction current 

distribution. 
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Figure 5.7.  Electrolyte phase diffusion eigenvalues and residues at x = L:  45th order finite 

element  (○) and 0, >kmr 0, <kmr  (·), and 3rd order grouped 0, >kmr  (□) and 0, <kmr  (x).  
3rd order grouping brackets shown with vertical dotted lines. 

 
 

 
Figure 5.8.  Truncated and grouped electrolyte phase diffusion ROMs versus higher order 

model frequency response at x = L:  45th order finite element (○), 28th order truncated (·), 
and 3rd order grouped (−).  (a) Magnitude, |∆Ce(L,s) / I(s)|.  (b) Phase angle, (∆C∠ e(L,s) / 
I(s)). 
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Figure 5.9.  Optimal electrolyte phase diffusion ROMs versus higher order model frequency 

response at x = L:  45th order finite element (○), 2nd order optimal (·), and 3rd order 
optimal (−).  (a) Magnitude, |∆Ce(L,s) / I(s)|.  (b) Phase angle, ∠ (∆Ce(L,s) / I(s)). 

 
 
 

 
Figure 5.10.  Grouped and optimal electrolyte phase diffusion ROMs versus higher order 

model unit step response:  45th order finite element (○), 3rd order grouped (−), and 3rd 
order optimal (·).
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Chapter 6 – CONTROL-ORIENTED 1-D ELECTROCHEMICAL MODEL 
 

This chapter derives transfer functions/matrices from the electrochemical kinetic, 

species and charge partial differential equations introduced in Chapter 2, reduces their order 

using the cost function minimization method introduced in Chapter 5, and numerically 

generates a state variable model of the 6Ah Li-ion battery.  Validated against the CFD model, 

a 12th order state variable model predicts terminal voltage to within 25 mV (<1%) for pulse 

and constant current profiles at rates up to 50C.  Open circuit potential, electrode surface 

concentration/reaction distribution coupling, and electrolyte concentration/ionic conductivity 

nonlinearities are explicitly approximated in the model output equation on a local, electrode-

averaged, and distributed basis, respectively.  Controllability and observability properties of 

the model are discussed. 

6.1 Impedance Model Derivation 

 We manipulate the governing equations (Chapter 2) to derive analytical transfer 

functions in Sec. 6.1.1 and numerical transfer matrices in Sec. 6.1.2 describing the output 

response of the impedance model field variables ),(, sxc es , ),( sxce , ),( sxsφ , and ),( sxeφ  to 

an input current, )(sI , where the overbar denotes a Laplace-transformed variable.  Individual 

submodels are combined to form the voltage response, )(sV , in Sec. 6.1.3.  In preparation 

for model order reduction, transfer functions/matrices are modified as necessary so that they 

have finite steady state solution.  Impedance model assumptions are: 

(i) Linear behavior (i.e. constant properties), and  

(ii) Reaction current, ),( sxj Li , decoupled from electrolyte concentration, ),( sxce . 

For other fundamental impedance models, see [13,50,65] and the references therein. 

6.1.1 Electrode Submodel     

Repeated here for convenience, the solid state diffusion impedance of a spherical 

active material particle is [54] 
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where 
ss DsR /=β .  Linearization of the Butler-Volmer kinetic relationship (2.12) yields 

 Li

s

ct j
a
R

=η  (6.2) 

with charge transfer resistance, Rct = RT / [i0F(αa+αc)]. 

Define dimensionless spatial variable z = x / δ, where δ is the electrode thickness, z = 

0 represents the current collector interface, and z = 1 represents the separator interface.  The 

solid phase charge conservation equation (2.6), linearized and expressed as a function of z, is 
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Consistent with assumption (ii), we neglect the 2nd term on the left hand side of electrolyte 

charge conservation equation (2.9) and assume constant κeff, yielding 

 02

2

2 =+
∂
∂ Lie

eff

j
z
φ

δ
κ  (6.6) 

with boundary conditions 
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We subtract Eqs. (6.6)-(6.8) from Eqs. (6.3)-(6.5) to arrive at a single static ODE for 

phase potential difference, eses φφφ −=− , 
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with boundary conditions 
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Phase potential difference may be expressed as a function of overpotential, and thus reaction 

rate, as 
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a
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Express the equilibrium potential impedance using the diffusional impedance transfer 

function (6.1) to yield 
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valid for small perturbations in cs,e where ∂U/∂cs is approximately constant.  Combining 

(6.12) with (6.9) we eliminate Lij  to obtain an ODE in es−φ  
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with boundary conditions 
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Equations (6.13) and (6.14) may now be solved analytically to provide distributed 

transfer functions for physiochemical variables.  Define dimensionless variable ν as 
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and we have transcendental transfer functions 
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where, in Eq. (6.19), the bulk electrode solid phase concentration response is 

 
sFAsI
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εδ
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Equations (6.16)-(6.19) have finite steady state and negative real eigenvalues.  By 

defining solid surface concentrations as the difference ∆cs,e(z,t) = cs,e(z,t) – cs,avg(t), we have 

removed an eigenvalue at the origin from )(/),(, sIszc es .  Equations (6.16)-(6.19) are written 

for the negative electrode.  To obtain transfer functions for the positive electrode, multiply by 

–1.  Ong and Newmann [12] present a similar solution to (6.16) including high frequency 

double layer capacitance dynamics, but neglecting low frequency diffusional impedance.   

The double layer capacitive effect, relevant on the millisecond time scale, may be included in 

(6.16)-(6.19) with minor modification of (6.15), necessary only if the desired battery model 

bandwidth is greater than ~100Hz. 

6.1.2 Electrolyte Submodel 

The previous section derived analytical transfer functions in a single electrode region.  

In electrolyte phase conservation equations (2.4) and (2.9), parameters εe, κeff, and De
eff take 

on different values in the negative electrode, separator and positive electrode regions making 

analytical treatment cumbersome.  We use the finite element method to obtain spatially 

discretized transfer matrices with solutions at node points xi across the 1D domain.  

The source term jLi(x,t) in Eqs. (2.4) and (2.9) is approximated as the ncell x 1 vector 

jLi(t).  The Laplace transform of jLi(t) is constructed by applying Eq. (6.17) at discrete 

  
  

79



locations in the negative and positive (with proper sign) electrodes, and setting separator 

node points to zero  
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Finite element discretization of the electrolyte phase diffusion equation (2.4) yields 
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where , , and  are the mass, stiffness, and forcing matrices, respectively [64].  

Laplace transform of (6.22) yields transfer matrix 
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Equation (6.23) contains an eigenvalue/zero cancellation at the origin which we eliminate by 

defining ∆ce(x,t) = ce(x,t) – ce(0,t).  The transfer matrix 
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contains no eigenvalue/zero at the origin.  Following reduction, ce(x,t) is recovered by 

enforcing charge conservation across the cell to find ce(0,t),  

 dxtxcctc
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The electrolyte phase charge conservation equation (2.9) is linearized to 
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and spatially discretized to 
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Electrolyte phase potential, having no absolute reference, is given one by defining 
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6.1.3 Current/Voltage Model 

 Substituting Eq. (2.13) into (2.15), the voltage equation is expanded as 
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After Laplace transform, the voltage response of the linear impedance model is 
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with individual terms arising due to bulk concentration, or open-circuit voltage dynamics, 
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negative electrode solid state diffusion dynamics, 
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positive electrode solid state diffusion dynamics, 
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and electrolyte phase diffusion dynamics, 
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In defining Eqs. (6.33)-(6.35), we have used superposition to break up Eq. (6.29) into 

individual components 
Lij

e
−∆φ , 

Lij
e

+∆φ , and ec
e
∆∆φ , recognizing that each is a static gain on 
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top of )(/),( sIsxj Li
− , )(/),( sIsxj Li

+ , and )(/),( sIsxce∆  dynamics, respectively. 

6.2 Reduced Order State Variable Realization 

Given full order transfer matrix )(/)( susy  the reduced order transfer matrix is 

defined as 

 ∑
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with steady state vector z obtained from the full order model as )(/)(lim
0
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=  and  

eigenvalues λk and residue vectors rk numerically generated by minimizing the cost function 
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across the frequency range ω ∈ [0, 2πfc] where fc is the model cutoff frequency.  Error 

attributable to model order reduction, yyy −= *ˆ , is quantified using error norms 
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The reduced order SIMO state variable model 
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is constructed with 
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and static constant y0 giving output y* the proper value at the linearization point.  In the 

following, we drop the * symbol and refer to the reduced order state variable model output as 

y. 

6.3 Linear Models 

6.3.1 Submodel Identification 
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Figure 6.1 compares )(/),(, sIsxc es −  frequency response of the exact, infinite 

dimensional transcendental transfer function (6.19) to a 5th order rational polynomial transfer 

function approximation (6.36).  The approximate transfer function minimizes the cost 

functional (6.37) in the frequency range f = ω/2π ∈ [0, 10 Hz].  Note that phase angle of the 

5th order model departs from the exact value for f > 10 Hz.  Lower order models yield visibly 

poorer results, alternately underpredicting and overpredicting magnitude and phase angle.  

Following the same procedure, we fit low order models to Eqs. (6.17) and (6.19) (once for 

each electrode) and Eq. (6.23) at the 50% SOC operating point.  Equations (6.18) and (6.29) 

are calculated as static gains of low order models fit to Eqs. (6.17) and (6.23). 

The A, B, C, and D matrices of SIMO time domain models are assembled from 

numerically identified parameters z, λk , and rk using Eq. (6.40).  Figure 6.2 shows 

distributions of jLi, cs,e, and ce across the cell at various times during a 5C (30 A) discharge 

from the 50% SOC initial condition.  Initial spikes in reaction current, jLi, near the separator 

decay as Li is de-inserted/inserted from the negative/positive electrode surface. Equilibrium 

potentials rise/fall most rapidly near the separator penalizing further reaction and over time 

jLi becomes more uniform.  Surface concentrations, cs,e, fall/rise in a distributed manner 

consistent with the time history of reaction, jLi.  While discharge continues, cs,e continues to 

rise/fall, and, unlike ∆cs,e, never reaches steady state due to the electrode bulk concentration 

free integrator term (6.20).  Shown at the bottom of Fig. 6.2, electrolyte concentration, ce, 

does approach a steady state distribution due to offsetting source/sink terms, jLi, in the 

negative/positive electrode regions of Eq. (2.4). 

6.3.2 Model Order Selection 

Choice of model order is application-dependent.  Accurate prediction of 

electrochemical field variable distributions sometimes requires higher order models than 

what is necessary to predict current/voltage behavior at the cell boundaries (6.30).  Our 

primary focus in this chapter is to predict voltage response with < 25 mV error. 

Transfer functions with similar eigenvalues may be fit simultaneously and forced to 

share eigenvalues, reducing the number of model states.  As a general approach, we create 3 

  
  

83



separate reduced order submodels per Eqs. (6.33-35), and force each to share a common set 

of eigenvalues.  We refer to them as the negative electrode submodel, positive electrode 

submodel, and electrolyte submodel.  The open circuit voltage submodel, Eq. (6.32), 

containing a single eigenvalue at the origin, plays no role in model order reduction. 

Table 6.1 displays error metrics of the three submodels for different choices of model 

order.  Tabulated error values are normalized by each transfer function’s steady state 

impedance at the current collector, x = 0 or L, listed in parenthesis in the left most column.  

L2 and L∞ norms (6.38) provide information on the quality of fit for 1D field variable 

distributions, while values listed at x = 0 or L quantify submodel error contributions to cell 

voltage response.  At 50% SOC, positive electrode surface concentration represents the 

dominant impedance due to the strong equilibrium potential coupling, ∂U+ / ∂cs+.  

Overpotential impedance is almost negligible. 

For the present model to achieve < 25 mV cell voltage error at the 50C current rate 

requires total impedance error < 8.3 x 10-5 Ω.  Current collector errors listed in Table 6.1 are 

not strictly additive, however, as individual transfer function errors occur at different 

frequencies and sometimes cancel one another.  For small perturbations about the 50% SOC 

linearization point, 3rd order electrode models are often sufficient.  Sustained high rate 

currents are more difficult to accurately model and, in particular, to capture electrode surface 

saturation/depletion nonlinearities at the end of 50C discharge we must use 5th order models 

for each electrode.  Much of the  impedance is static and we find a 1ec
e
∆φ st order model of 

electrolyte dynamics sufficient for the present cell.  Except where noted, the 5Ds-/5Ds+/1De 

model is used for all simulations.  The eigenvalues are: 

 
rad/s098.0

rad/s]69.63,8226.5,05691.0,0608.0,0085.0[
rad/s]43.62,3763.6,06576.0,0605.0,0050.0[

−=
−=
−=

−

−

eλ
λ
λ

 

Including open circuit potential submodel (6.32) with λOC = 0, the complete cell model is 12th 

order. 

Before proceeding, we note that lower order SVMs may be obtained by forcing 

submodels to share eigenvalues.  By simultaneously fitting negative and positive electrode 
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transfer functions we may replace eigenvalues λ- and λ+ with a single set of eigenvalues, λ±.  

This order reduction is achieved at the expense of increased impedance error quantified in 

Table 6.2. 

6.3.3 Current/Voltage Model 

The current/voltage model is a state variable realization of Eq. (6.31), with reduced 

order submodels identified as described in Sec. 6.3.1 and Sec. 6.3.2.  Unlike the transfer 

function (6.31), the SVM may take on non-zero initial conditions for cs,avg- and cs,avg+.  

Following typical convention, we define SOC as the fraction of capacity, Q, stored in the 

cell.  Given an initial SOC at t = 0 and assuming 100% coulombic efficiency, SOC may be 

calculated in time as 

 .)(1)(
0
∫−=
t

dttI
Q

tSOC  (6.41) 

We express cs,avg- = f(SOC) and cs,avg+ = f(SOC) by defining a reference stoichiometry, θ = 

cs,avg / cs,max, for each electrode at the 100% SOC condition, θ100%, listed in Table 3.1.  The 

0% SOC reference stoichiometry, θ0%, is calculated by subtracting Q = 7.19 Ah from θ100% 

with appropriate units conversion, 

   ( )
max,

111
%100%0 ss cAFQ δεθθ −= . (6.42) 

With reference stoichiometries, we may express each electrode’s bulk concentration as a 

linear function of SOC, 

 ( )[ ] max,%0%0%100avg, )()( ss ctSOCtc θθθ +−= , (6.43) 

valid at any point in time. 

 Linearized about 50% SOC, the linear current/voltage SVM is 
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where 
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 Figure 6.3 compares voltage response of the 5Ds-/5Ds+/1De linear SVM to the 

nonlinear CFD model for a stepped current profile at the 50% SOC initial condition.  The 

current profile, serving as input to both models, consists of 10C, 20C, 30C, and 40C 

discharge/charge/rest cycles.  Each discharge/charge cycle returns the cell to 50% SOC.  

Voltage prediction for the linear SVM is reasonably good, although we see from Fig. 6.3d 

that individual submodel errors cancel one another throughout much of the profile.  

Submodel errors worsen with increasing current rate as electrode surface concentrations are 

perturbed far from the 50% SOC linearization point. 

6.3.4 Observability and Controllability Properties 

Using standard techniques [23], we assemble observability  

  (6.48) TTnTTT
o ])(...)()([ 12 −= CACACACϑ

and controllability 

  (6.49) ]...[ 12 BABAABA −= n
cϑ
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matrices.  Both have full rank, indicating that the model is fully observable and controllable. 

 Some model states may be less observable/controllable than others, however, which 

we quantify using the observability/controllability gramian of a balanced realization model.  

We define observability gramian, Wo, as the solution to 

 0  (6.50) =++ CCAWWA T
oo

T

and controllability gramian, Wc, as the solution to 

 . (6.51) 0=++ TT
cc BBAWAW

Applying transformation xTx = , an alternative realization of the SVM is 
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u
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 (6.52) 

with observability and controllability gramians, 1−−= TWTW o
T

o  and T
cc TTWW = , 

respectively.  The balanced realization of (6.52) results when transform matrix T is such that 

)(gWW diagco == . 

 Table 6.3 presents the observability/controllability gramian of the balanced 

realization 5Ds-/5Ds+/1De linear SVM.  Fast electrode states are most observable/ 

controllable.  This is intuitive, as the rapid perturbations in electrode surface concentration 

(of which voltage response is a strong function) are predominantly influenced by recent 

current history.  In contrast, electrode bulk concentrations (i.e. SOC) rise and fall slowly and 

are weakly coupled to voltage response.  For estimation/control schemes in fast dynamic 

applications, it may be possible to reduce order by dropping slow electrode states with weak 

observability/ controllabity.  The electrolyte submodel state is also weakly observable/ 

controllable, indicating that it will probably be difficult to ascertain electrolyte concentration 

gradients using a linear observer.  Nonetheless, the results are encouraging.  To date, the 

battery estimation literature has predominantly focused on SOC estimation.  In high power, 

pulse-type applications however, it is attractive to estimate electrode surface concentrations, 

as their saturation/depletion are responsible for sudden loss of power and side reactions.  

Table 6.3 indicates that electrode surface concentrations are more controllable/ observable 

than SOC. 
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6.4 Nonlinear Models 

 Concentration dependent properties represent the dominant nonlinearities in Eqs. 

(2.1-15).  Those appearing explicitly in the output equation of (6.44) are readily included in 

the SVM.  Other nonlinearities exhibit complex spatial dependency which, for the electrode 

submodels, we approximate on a lumped, electrode-averaged basis. 

6.4.1 Open Circuit Potential 

The open circuit potential (OCP) nonlinearity is incorporated by introducing 

equilibrium potential relationships, U+(cs,e(L,t)) and U-(cs,e(0,t)) listed in Table 3.1, into the 

model output equation.  The SVM (6.44) is modified with 

 ( )),0(),,( ,, tctLc esesSOC
V

SOC
V OCOC

∂
∂

∂
∂ =  (6.53) 

and 

 ( )),0(),,( ,,staticstatic tctLcVV eses=  (6.54) 

now expressed as nonlinear functions, rather than constants (6.46-47).  The nonlinear SVM 

takes the form 

 
),( IhV

I
x

BxAx
=

+=&
 (6.55) 

Unlike the linear SVM, the nonlinear OCP SVM correctly predicts battery rest voltage, or 

open circuit voltage (OCV) at all values of SOC.  Dynamic response is still lacking, however. 

 Figure 6.4 shows voltage response for constant current (1C to 50C) discharge 

simulations initiated from 0% depth of discharge (DOD), i.e. 100% SOC, as predicted by the 

CFD model, linear SVM (6.44) and nonlinear OCP SVM.  At low current rates, the linear 

SVM gives reasonable approximation only in the middle of the discharge as surface 

concentrations cs,e(0,t) and cs,e(L,t) pass through their 50% SOC linearization point.  The 

nonlinear OCP SVM greatly improves voltage prediction over the linear model at beginning 

of discharge, near 100% SOC.  End of discharge voltage prediction is poor, however, for all 

but the lowest rate, 1C case. 

6.4.2 Electrode Surface Concentration 
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End of discharge voltage may be substantially improved by interpolating between 

local linear models identified at various electrode surface concentration set points.  Voltage 

response predicted by the nonlinear OCP/cs,e SVM, shown in Fig. 6.4 with the “·” symbol, 

lays almost directly on top of CFD model results.  The nonlinear OCP/cs,e SVM also utilizes 

Eqs. (6.53)-(6.54) but, unlike Sec. 4.2.1, cs,e(0,t) and cs,e(L,t) are approximated by nonlinear, 

rather than linear models. 

Shown in Fig 6.5, local electrode submodels are identified at roughly 20% increments 

in surface stoichiometry, with finer discretization in less linear regions of U+(cs,e) and U-

(cs,e).  There is negligible advantage in allowing each localized electrode submodel its own 

independent eigenvalues.  We obtain good impedance fits at all set points utilizing the 

eigenvalues identified at 50% SOC.  A and B matrices of (6.44) thus remain constant.  The C 

and D matrices vary by interpolating between locally-identified electrode submodels as a 

function of solid phase surface concentration averaged across each electrode, 
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++++++
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eses

eses

cc

cc

DDCC

DDCC
 (6.56) 

The nonlinear OCP/cs,e SVM keeps the form of Eq. (6.55). 

 Figure 6.6 elucidates the substantial improvement in end of discharge voltage 

prediction at the 50C rate (Fig. 6.4) achieved by approximating cs,e nonlinearities.  

Comparing surface concentrations predicted by the CFD model, linear model and nonlinear 

cs,e model, there is little difference between the three in the positive electrode.  In the 

negative electrode however, the relatively flat U- relationship at moderate-to-high surface 

stoichiometries causes reaction to be heavily favored near the separator at short times.  At t = 

6 sec, the CFD model shows surface concentrations drastically different from the linear 

model.  Around this time, local values of cs,e- fall below ~0.2cs, max causing U- to sharply rise 

(Fig. 6.5).  At t = 13 sec, surface concentrations are near uniformly depleted across the 

negative electrode, a condition accurately captured by the nonlinear cs,e model.  The linear 

model, predicting local concentrations less than zero, is physically unrealistic. 

 Figure 6.7 displays cell voltage error and submodel voltage error for the nonlinear 

OCP/cs,e SVM during the same 50C discharge from 100% SOC.  Equilibrium potentials at 
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the current collectors, U+(cs,e(L,t)) and U-(cs,e(0,t)), are predicted to within 25 mV.  

Electrolyte phase potential error continually grows throughout the discharge, however, as a 

large electrolyte concentration gradient builds across the cell.  Non-uniform ce(x,t) increases 

the significance of the electrolyte conductivity concentration dependence, κeff(ce). 

 Figure 6.8 displays voltage errors for the nonlinear OCP/cs,e SVM in simulating the 

50% SOC pulse current profile from Fig. 6.3.  Here, the cell is alternately discharged and 

charged by short pulses, no substantial electrolyte concentration gradient is established and 

electrolyte phase potential error is negligible.  Rapid reversals in current cause brief spikes in 

cell voltage error > 25 mV at 40, 65, and 80 seconds which quickly dissipate.  Individual 

submodel errors are now all < 25 mV, a large improvement over the linear SVM results 

shown in Fig. 6.3. 

6.4.3 Electrolyte Concentration 

The impedance model assumption of jLi(x,t) decoupled from ce(x,t) loses validity as ce 

 0, a condition which we explore here.  With jLi(x,t) and ce(x,t) provided by our linear 

model it is possible to explicitly solve for ),( tLeφ  by twice integrating Eq. (2.9),  

 ∫ ∫−⎟⎟
⎠

⎞
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e
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1
),(
),0(

ln),(
κ

φ , (6.57) 

valid for constant  and .  (See [49] for discussion of non-constant  and .)  For 

brevity, we refer to term 1 on the right hand side of (6.57) as the ln(c

ot+ ±f
ot+ ±f

e) nonlinearity and term 

2 as the κeff(ce) nonlinearity.  Each is a modification of the output equation of (6.44) with 

nonlinear SVM realization (6.55). 

 The present cell model with parameters listed in Table 3.1 does not experience 

electrolyte depletion at any current rate, however other cells with less porous electrodes 

and/or separator may experience this limitation.  To examine voltage response with end of 

discharge induced by electrolyte depletion, we reduce the electrolyte diffusion coefficient by 

one order of magnitude to De = 2.6 x 10-7 cm2/s. 

 Figure 6.9 presents the voltage response of this electrolyte transport-limited cell for 

10-50C constant current discharge cases initiated from 100% SOC.  Rate capability is 
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substantially reduced compared to the nominal De model (Fig. 6.4).  Figure 6.9 shows the 

nonlinear OCP/cs,e SVM (Sec. 6.4.2) overpredicts voltage and fails to capture end of 

discharge caused by electrolyte depletion.  Introduction of the κeff(ce) nonlinearity slightly 

improves voltage prediction at intermediate times, however end of discharge prediction 

remains poor.  Voltage prediction degrades when the ln(ce) nonlinearity is included as it is 

very sensitive to small errors in absolute (not relative) values of ce(0,t) and ce(L,t) 

 To elucidate these errors, Fig. 6.10 shows electrolyte concentration distributions at 

various times during the 30C discharge case.  During discharge of a cell with sluggish 

electrolyte transport, electrolyte depletion occurs first at x = L and then spreads back across 

the positive electrode.  Early in the discharge, the linear model predicts ce(x,t) to good 

accuracy, however around t = 15 seconds (corresponding to ~10% DOD in Fig. 6.9), the 

linear model begins to substantially underpredict ce(L,t).  By t = 18.7 seconds, the linear 

model predicts negative values of ce which are physically impossible.  Extending the SVM to 

capture electrolyte depletion may require online PDE solution, as nonlinearities governing jLi 

distribution are highly spatially dependent and do not appear conducive to a lumping.  But 

provided local values of ce remain above 0.15ce,0, the present impedance model assumptions 

are valid and the nonlinear OCP/cs,e/κeff(ce) SVM predicts voltage response to within 25 mV 

regardless of sluggish or facile De. 

6.5. Conclusions 

 This chapter numerically derives a fully observable/ controllable state variable model 

from an impedance representation of electrochemical kinetic, species and charge 

conservation equations governing discharge/charge behavior of a Li-ion cell.  Validated 

against a 313th order nonlinear CFD model of a 6 Ah HEV cell, a 12th order state variable 

model, with 0 to 10 Hz bandwidth, predicts terminal voltage to within 1% for pulse and 

constant current profiles at rates up to 50C.  Model properties indicate that electrode surface 

concentrations (with fast dynamics related to sudden loss of power and side reactions) are 

more observable/controllable than electrode bulk concentrations (SOC). 

The state equation has modal form with negative real eigenvalues distributed in 

frequency between the slowest system eigenvalue (negative electrode solid state diffusion) 
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and 10 Hz.  A single eigenvalue at the origin represents SOC dynamics.  The model order 

reduction procedure is somewhat insensitive to numerical eigenvalue location (given the 

thousands of actual system eigenvalues) and we can approximate the range of admissible 

electrode surface concentrations using local linear models sharing a single set of eigenvalues.  

Open circuit potential, electrode surface concentration/reaction distribution coupling, and 

electrolyte concentration/ionic conductivity nonlinearities are explicitly approximated in the 

model output equation on a local, electrode-averaged, and distributed basis, respectively.   

This chapter (particularly the sluggish electrolyte diffusion case explored in Sec. 

6.4.3) highlights challenges associated with control-oriented modeling of infinite 

dimensional nonlinear distributed parameters systems.  We quantify error attributable to 

rational approximation of infinite dimensional processes in the frequency domain using 

impedance error norms.  Errors attributable to model assumptions and lumped approximation 

of spatially varying nonlinearities are quantified in the time domain using the CFD model.  

By inducing sluggish electrolyte transport, we show the present model loses validity near 

electrolyte depletion (ce < 0.15ce,0) where the system exhibits strong spatially varying 

nonlinearities. 



 
Negative Electrode Submodel Order Transfer Function 

(steady state impedance) 
Error 

3 4 5 
x = 0 0.1215 0.0689 0.0387 
L∞ 0.1440 0.0711 0.0453 

( ) )(),(, ωω jIjxc esc
U

s −∂
∂ ∆

−

−  

(3.65 x 10-4 Ω @ x=0, ω=0) L2 0.0672 0.0319 0.0175 
x = 0 0.0674 0.0283 0.0159 
L∞ 0.2636 0.1030 0.0391 

)(),( ωωη jIjx−  
(7.85 x 10-6 Ω @ x=0, ω=0) 

L2 0.0558 0.0227 0.0103 
x = L 0.0473 0.0236 0.0111 
L∞ 0.0566 0.0281 0.0132 

)(),( ωωφ jIjx
Lij

e
−∆  

(2.44 x 10-4 Ω @ x=L, ω=0) L2 0.0304 0.0129 0.0063 
Positive Electrode Submodel Order   

3 4 5 
x = L 0.1203 0.0353 0.0089 
L∞ 0.1213 0.0354 0.0095 

( ) )(),(, ωω jIjxc esc
U

s +∂
∂ ∆

+

+  

(2.50 x 10-3 Ω @ x=0, ω=0) L2 0.0526 0.0165 0.0053 
x = L 0.0668 0.0424 0.0219 
L∞ 0.2597 0.1165 0.0724 

)(),( ωωη jIjx+  
(1.45 x 10-5 Ω @ x=0, ω=0) 

L2 0.0378 0.0217 0.0108 
x = L 0.0227 0.0141 0.0077 
L∞ 0.0227 0.0141 0.0077 

)(),( ωωφ jIjx
Lij

e
+∆  

(2.42 x 10-4 Ω @ x=L, ω=0) L2 0.0049 0.0029 0.0014 
Electrolyte Submodel Order   

1 2 3 
x = L 0.0555 0.0447 0.0365 
L∞ 0.1123 0.0944 0.0407 

)(),( ωωφ jIjxec
e
∆∆  

(2.13 x 10-4 Ω @ x=L, ω=0) 
L2 0.0318 0.0255 0.0155 

 
Table 6.1.  Impedance error magnitude for negative electrode, positive electrode, and 

electrolyte submodels of various orders across frequency range 0 ≤ f ≤ 10 Hz.  Local 
error quantified at the current collector appropriate for the given submodel, either x = 0 or 
x = L.  Distributed error quantified with L∞ and L2 error norms.  All errors normalized by 
steady state impedance at the current collector. 
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Negative/Positive Electrode Submodel Order Transfer Function 

(steady state impedance) 
Error 

3 4 5 
x = 0 0.2330 0.1410 0.1089 
L∞ 0.2425 0.1529 0.1199 

( ) )(),(, ωω jIjxc esc
U

s −∂
∂ ∆

−

−  

(3.65 x 10-4 Ω @ x=0, ω=0) L2 0.1005 0.0581 0.0453 
x = 0 0.0559 0.0273 0.0161 
L∞ 0.2485 0.1043 0.0421 

)(),( ωωη jIjx−  
(7.85 x 10-6 Ω @ x=0, ω=0) L2 0.0495 0.0227 0.0111 

x = L 0.0389 0.0229 0.0112 
L∞ 0.0478 0.0276 0.0132 

)(),( ωωφ jIjx
Lij

e
−∆  

(2.44 x 10-4 Ω @ x=L, ω=0) L2 0.0261 0.0128 0.0067 
x = L 0.1086 0.0787 0.0534 
L∞ 0.1086 0.0803 0.0534 

( ) )(),(, ωω jIjxc esc
U

s +∂
∂ ∆

+

+  

(2.50 x 10-3 Ω @ x=0, ω=0) L2 0.0481 0.0327 0.0219 
x = L 0.0744 0.0417 0.0198 
L∞ 0.2078 0.1139 0.0675 

)(),( ωωη jIjx+  
(1.45 x 10-5 Ω @ x=0, ω=0) 

L2 0.0411 0.0212 0.0099 
x = L 0.0252 0.0137 0.0070 
L∞ 0.0252 0.0137 0.0070 

)(),( ωωφ jIjx
Lij

e
+∆  

(2.42 x 10-4 Ω @ x=L, ω=0) L2 0.0054 0.0028 0.0013 
 
Table 6.2.  Impedance error magnitude for combined negative electrode/ positive electrode 

submodels (with common eigenvalues) of various orders across frequency range 0 ≤ f ≤ 
10 Hz.  Local error quantified at the current collector appropriate for the given submodel, 
either x = 0 or x = L.  Distributed error quantified with L∞ and L2 error norms.  All errors 
normalized by steady state impedance at the current collector. 
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 Eigenvalue, λk [rad/s] Gramian, gk  [(Ω s)½] 

-5.56 x 10-3 4.33 x 10-8

-6.05 x 10-2 4.39 x 10-12

-6.58 x 10-1 6.31 x 10-6

-6.38 4.34 x 10-5

Negative Electrode 
Submodel 

(5th Order) 

-62.4 1.146 x 10-4

-8.53 x 10-3 2.07 x 10-6

-6.08 x 10-2 2.16 x 10-10

-5.69 x 10-1 2.98 x 10-6

-5.82 1.400 x 10-5

Positive Electrode 
Submodel 

(5th Order) 

-63.7 7.42 x 10-4

Electrolyte Submodel 
(1st Order) 

-9.49 x 10-1 7.54 x 10-9

 
Table 6.3.  Observability/controllability gramian of balanced realization 5Ds-/5Ds+/1De SVM 

linearized at 50% SOC. 
 



 
 
Figure 6.1.  Negative electrode surface concentration frequency response:  Exact transfer 

function (○) and 5th order polynomial transfer function (−).  (a) Magnitude, 
)(/),(, sIsxc es −∆ .  (b) Phase angle, ))(/),(( , sIsxc es −∆∠ . 
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Figure 6.2.  Reaction and concentration distributions during 5C discharge from 50% SOC 

initial condition:  CFD model (○) and 5th order negative electrode/ 5th order positive 
electrode/ 3rd order electrolyte linear submodels (−).  (a) Reaction current density.  (b) 
Electrode surface concentration.  (c) Electrolyte concentration. 
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Figure 6.3.  Linear SVM voltage response and error for pulse current profile at 50% SOC.  

(a) Current profile.  (b) Voltage response of CFD model (○) and linear SVM (-).  (c) 
Voltage response error of linear SVM (-) with 25 mV error threshold (···).  (d) Individual 
submodel contributions to voltage error: ),0(ˆ t−η  (-), ),(ˆ tL+η  (--),  (□),  
(∇ ),  (•), with 25 mV error threshold (···). 

),0(ˆ tU − ),(ˆ tLU +

),(ˆ tLeφ∆
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Figure 6.4.  Voltage response of various SVMs versus CFD model during constant current 

discharge from 100% SOC initial condition:  CFD model (○), linear SVM (···), nonlinear 
OCP SVM (-), and nonlinear OCP/cs,e SVM (•). 

 

 
Figure 6.5.  Equilibrium (or open-circuit) potential versus electrode surface concentration:  

Empirical relationships, U, from Table 1 (-), linearization setpoints used for nonlinear cs,e 
SVM submodel identification (•), 100% SOC reference (□) and 0% SOC reference (x). 
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Figure 6.6.  Distribution of electrode surface concentration at various times during 50C 

discharge from 100% SOC initial condition (voltage response shown in Fig. 5):  CFD 
model (○), linear SVM (--),  and nonlinear cs,e SVM (-). 

 
 

 
Figure 6.7.  Nonlinear OCP/ cs,e SVM error during 50C discharge from 100% SOC initial 

condition (voltage response shown in Fig. 5):  (a) Voltage response error (-) with 25 mV 
error threshold (···).  (b) Individual submodel contributions to voltage error:  ),0(ˆ t−η  (-), 

),(ˆ tL+η  (--),  (□),  (),0(ˆ tU − ),(ˆ tLU + ∇ ),  (•), with 25 mV error threshold (···). ),(ˆ tLeφ∆
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Figure 6.8.  Nonlinear OCP/ cs,e SVM error during pulse current profile at 50% SOC (current 

profile and CFD model voltage response shown in Figs. 4a and 4b):  (a) Voltage response 
error (-) with 25 mV error threshold (···).  (b) Individual submodel contributions to 
voltage error:  ),0(ˆ t−η  (-), ),(ˆ tL+η  (--),  (□),  (),0(ˆ tU − ),(ˆ tLU + ∇ ),  (•), with 25 
mV error threshold (···). 

),(ˆ tLeφ∆

 
Figure 6.9.  Voltage response of various SVMs versus CFD model during constant current 

discharge from 100% SOC initial condition with sluggish electrolyte diffusion, De = 2.6 x 
10-7 cm2/s:  CFD model (○), nonlinear OCP/cs,e SVM (•), nonlinear OCP/cs,e/κeff(ce) SVM 
(-), and nonlinear OCP/cs,e/κeff(ce)/ln(ce) SVM (--). 
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Figure 6.10.  Distribution of electrolyte surface concentration at various times during 30C 

discharge from 100% SOC initial condition with sluggish electrolyte diffusion, De = 2.6 x 
10-7 cm2/s (voltage response shown in Fig. 10):  CFD model (○) and linear SVM (-). 

  
  

102



Chapter 7 – ELECTROCHEMICAL ESTIMATION AND CONSTRAINT  

MANAGEMENT 
 

High power batteries are often rated with multiple current and voltage limits 

depending on the duration of the pulse event.  These variable control limits, however, are 

difficult to realize in practice.  In this chapter, a linear Kalman filter based on the reduced 

order electrochemical model (Chapter 6) is designed to estimate internal battery potentials, 

concentration gradients, and state of charge (SOC) from external current and voltage 

measurements.  A reference current governor predicts operating margin with respect to 

electrode surface depletion/saturation conditions and side reactions responsible for damage 

and sudden loss of power.  The estimates are compared with the nonlinear CFD model of the 

6 Ah HEV battery (Chapter 3). 

7.1 Linear Kalman Filter 

 Chapter 6 introduced a linear current/voltage state variable model 

 
0yuy

u
++=

+=
DxC
BxAx&

 (7.1) 

with u = I(t) and y = V(t).  The standard Kalman filter formulation [23] assumes the plant 

contains process noise w and measurement noise v in the form 

 
.0 vyuy

wu
+++=

++=
DCx

GBAxx&
 (7.2) 

State estimates  are calculated from sensor measurements u(t) and y(t) as x̂

 . (7.3) )ˆ(ˆˆ 0 uyyu DxCLBxAx +−−++=&

The optimal filter gain L is precalculated offline as a function of process noise covariance 

Qw, measurement noise covariance Qv, and process noise input matrix G to minimize the 

steady state error covariance 

 ( )T

t
E ]ˆ[]ˆ[lim xxxxP −−=

∞→
. (7.4) 
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7.2 Reference Current Governor 

To avoid sudden loss of power, Li concentrations must be maintained within 

constraints 

 1
),(

0
max,

, <<
s

es

c
txc

   and   . 0),( >txce

To avoid damaging side reactions, the solid/electrolyte phase potential difference, 

eses φφφ −=− , must be maintained within constraints 

 
insertion

rxnsidees
insertionde

rxnside UtxU ,, ),( << −
−

φ  

where Uside rxn is the equilibrium potential of a side reaction occurring when Li ions are either 

inserted into or de-inserted from active material particles. 

Using the state estimate  from Eq. (7.4) we predict a limiting current such that, at 

future time t+T, internal battery parameter y (i.e. a concentration or potential) will reach 

limiting value y

)(ˆ tx

lim (saturation/depletion, side reaction, etc.).  For constant u, the linear state 

equation may be integrated forward in time with an explicit solution.  The limiting current 

available for T seconds is thus 

 { }xCDBAC A ˆ)(][ 0lim
1

max,min/
T

T eyyI −−+= −∗ . (7.5) 

For the present system with λ1 = 0,  

 ( ))1()1( 11 2

2
−−=∗ TT n

n
eeTdiag λ

λ
λ

λ LA . (7.6) 

Note that for this single-output system the square-bracketed term in Eq. (7.6) is scalar and no 

matrix inversion is required. 

7.3 Results and Discussion 

 In Chapter 6, a linear current/voltage state variable model (7.1) was constructed by 

separately fitting transfer functions related to negative electrode solid state diffusion, positive 

electrode solid state diffusion and electrolyte diffusion dynamics with states 

x = [SOC x-
 T x+

 T xe
 T]T.  Eigenvalues for the negative and positive electrode states were 

closely matched, however, and in the present application we find the positive and negative 

electrode may share the same set of eigenvalues with little loss in accuracy.  With states x = 
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[SOC x±
 T xe

 T]T, the present voltage/current model takes the form 

  ( )ediag λλA ±= 0 , [ ]T
Q 111 L−=B , [ ]eSOC

UU CCC ±∂
−∂ −+= )( , [ ]A

R
e

f−+= ± DDD  (7.7) 

where Q is battery capacity.  As a nominal model we use 5 states to describe positive and 

negative electrode solid state concentration gradient dynamics, 1 state to describe electrolyte 

concentration gradient dynamics and an additional state for SOC.  This 5Ds±/1De state 

variable model, with 0 to 10Hz bandwidth, has eigenvalues 

 λSOC  = 0,  λ±  = -[0.00704, 0.0606, 0.613, 6.10, 63.1],  λe  = -0.0992 rad/s. 

 Sizing filter gain L requires choice of Qw, Qv, and G.  To simplify choice, we 

interpret w as current sensor noise and adjust its influence on individual states with G.  With 

this interpretation, Qw is current sensor noise covariance and Qv is voltage sensor noise 

covariance, here, Qw = (2A)2 and Qv = (0.025V)2.  In theory, the relative influence of process 

noise on individual states may be adjusted with individual elements of G.  In the present 

application, however, we find that filter eigenvalues (eigenvalues of A-LC) deviate very little 

from model eigenvalues (eigenvalues of A) irrespective of Qw, Qv, and G with the exception 

of λSOC.  The SOC eigenvalue, located at the origin in the open-loop model, takes on negative 

real values in the closed-loop filter.  Attempts to move other filter eigenvalues to slightly 

faster locations (as little 1.01x λ±) through pole placement causes state estimates to become 

overly sensitive to sensor noise. 

 Figure 7.1 compares filter results to data generated by the nonlinear CFD model 

simulating a Federal Urban Driving Schedule (FUDS cycle) for a hybrid electric mid-sized 

passenger car (Fig. 3.5) at 50% SOC.  The cycle consists of short duration, low to medium 

rate current pulses for which battery response is largely linear.  Filter states are initialized at 

= [0.2  0 … 0])0(x̂ T, i.e. 20% SOC with zero solid and electrolyte phase concentration 

gradients.  The filter gain is sized with G = [0.005 … 0.005], giving 20-30 second 

convergence to proper SOC (Fig. 7.1c).  Faster converging filters yield noisy estimates when 

sensor noise is included in the simulation.  To simplify discussion, Figs. 7.1d and 7.1e 

present solid phase surface concentration distributions, cs,e(x,t), as electrode-averaged surface 

stoichiometries 
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Surface stoichiometries rise and fall much faster than SOC as they are more closely-coupled 

to recent charge/discharge history.  Overshoot in SOC and surface stoichiometry can occur 

when filter states , and/or  are initialized to non-zero values but convergence is still 

obtained in 20-30 seconds. 

±x̂ ex̂

 In many situations, and particularly for input currents with negligible DC component 

such as the FUDS cycle current profile shown in Fig. 7.1a, lower order filters provide good 

performance.  Electrolyte diffusion dynamics, impacting voltage response of the present 

battery only for sustained medium-to-high rate currents, may be dropped from the filter and 

electrode transcendental transfer functions may be fit with 3rd and 4th order rational transfer 

functions rather than 5th order.  Figure 7.2 compares SOC and electrode surface 

stoichiometry errors for filters constructed from 5Ds±/0De, 4Ds±/0De, and 3Ds±/0De models.  

The 4D±/0De model has eigenvalues 

 λSOC  = 0,  λ±  = -[0.00828, 0.0127, 2.31, 41.5] rad/s, 

and the 3Ds±/0De model has eigenvalues 

 λSOC  = 0,  λ±  = -[0.0116, 0.581, 27.3] rad/s. 

Small difference is evident between the three filters’ performance on the FUDS cycle. 

 In Fig. 7.3, the battery is discharged from 100% SOC via 60 A pulses of 10 s duration 

with 10 s of rest between each pulse.  The discharge may be interpreted as a 30A constant 

current discharge superposed with ±30A perturbations.  The DC component of the current 

profile causes an electrolyte concentration gradient to be established after approximately 20 

seconds.  Comparison of the 5Ds±/1De and the 5Ds±/0De filters shows that an additional 1-2% 

in SOC error and 1% in θs,e error is introduced by dropping electrolyte phase dynamics from 

the filter.  Reducing the electrode model from 5 to 3 states introduces an additional 1% error 

in θs,e- but affects θs,e+ and SOC estimates very little. 

 The discharge presented in Fig. 7.3 exhibits significant nonlinearities at beginning (t 

< 75 s) and end of discharge (t > 450 s) where the linear filter performs poorly.  Equilibrium 

potentials U+ and U-, functions of surface stoichiometry, represent the dominant nonlinearity 
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of the battery and the linear filter performs well so long as θs,e- and θs,e+ remain within 

approximately ±0.15 of their 50% SOC linearization points.  Note that surface stoichiometry, 

and thus equilibrium potential, will be a function of SOC only at rest, in the absence of solid 

state concentration gradients.  At rest, the linear filter is accurate in the interval 27% < SOC 

< 72%.  Under discharge or charge, however, surface dynamics can significantly lead bulk 

dynamics (i.e. SOC) and for the particular pulse discharge case shown in Fig. 7.3, the filter 

performs well from 92% SOC (t = 75 s) to 49% SOC (t = 450 s). 

  We explore two different filter applications of practical value for HEV control: (i) 

Calculation of an instantaneous “do not exceed” current which, in coordination with motor 

inverter power electronics, will prevent battery damage, and (ii) Prediction of maximum 

current available for T seconds which, in coordination with supervisory controllers, will 

enable efficient and reliable control of the HEV powertrain.  State estimates are provided by 

the 5Ds±/1De (7 state) linear filter.  Limiting currents are calculated using Eq. (7.5), with T = 

0 for the case of the instantaneous current limit and T = 10 s for the case of available current 

prediction.  Due to the closed-loop interaction between model and filter, the plant is 

simulated using a 5Ds-/5Ds+/1De (12 state) nonlinear state variable model rather than the CFD 

model.  This nonlinear state variable model was validated in Chapter 6 to within ±25mV of 

the CFD model at current rates up to 300 A. 

 Simulations of the 6 Ah battery show that negative electrode surface depletion limits 

the discharge performance before the occurrence of either positive electrode saturation or 

electrolyte depletion.  The manufacturer’s 2.7 V minimum voltage limit signals the end of 

discharge when θs,e- falls in the range [0.03, 0.3], depending on discharge current rate, SOC, 

and recent charge/discharge history.  As a goal, we wish to limit battery discharge to θs,e- ≥ 

0.03 using a maximum reference current. 

 Figure 6.4 presents simulation results in which a nominal current profile, Inom, 

consisting of five-second long 300 A current pulses, is limited to , i.e. the battery is 

discharged at the rate I(t) = min(I

−esI ,
max
θ

nom(t), ).  Simulations are presented for two different 

negative electrode surface stoichiometry limits, 0.03 and 0.25.  The linear filter provides an 

imprecise, albeit conservative reference current at the 0.03 limit due to plant nonlinearity at 

)(,
max tI es −θ
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this low stoichiometry.  If we limit current within the stoichiometry range θ50%- ± 0.15 where 

the linear filter provides good performance, the reference current is more precise.  Figure 

6.4c shows that discharge may be tightly controlled to a θs,e- ≥ 0.25 limit. 

 Charge performance of the present cell is limited by the manufacturer’s 3.9 V 

maximum voltage limit, though other Li-ion cells are sometimes charged as high as 4.2 V.  

The 3.9 V limit is far from electrode saturation/depletion, and is more likely intended to 

prolong battery life by slowing or avoiding side reactions that occur during charging at high 

voltages.  As discussed in Chapter 3, one such side reaction is lithium plating on the 

electrode surface, predicted to occur in the negative electrode when eses φφφ −=−  < ULi,s, 

with equilibrium potential ULi,s = 0 [2,59].  Rather than insert into the electrode active 

material particles, Li+ ions from the electrolyte solution will form a solid Li film on the 

particle surface.  If the manufacturer’s 3.9 V maximum limit is to be respected, the CFD 

model predicts a worst-case phase potential difference es−φ = 82 mV occurring at the negative 

electrode/separator interface (x = δ-) during slow charging near 100% SOC. 

 In Figure 7.5, the nominal five-second 180 A pulse charging profile is limited by the 

afore-mentioned phase potential difference, that is the battery is charged at the rate I(t) = 

max(Inom(t), ).  In the two cases presented, ≥ 82 mV and ≥ 70 mV, the 

system charges 10-15 mV beyond the specified limit due to plant nonlinearities, but still 

stays well above the theoretical limit, U

)(min tI
x

es
−=

−
δφ −=

−
δφ x
es

−=
−
δφ x
es

Li,s = 0.  Despite the error associated with the linear 

filter, the opportunity clearly exists to pulse charge the battery at voltages beyond 3.9 V and 

still maintain conservatism with respect to the lithium plating side reaction. 

 Lastly, we consider prediction of maximum discharge current available for some time 

into the future, intended as a feed-forward input to powertrain supervisory control.  The 

method is also applicable in the charge direction.  Using θs,e- = 0.03 as end of discharge limit 

and T = 10 s in Eq. (7.5), Fig. 7.6 shows Imax,10s discharge events simulated once every 20 s 

during a more severe FUDS cycle with four times the input current of the nominal FUDS 

cycle (Fig. 7.1a).  The filter, initialized with a +10% SOC error, converges in 20 to 30 

seconds.  The first Imax,10s discharge event overshoots the θs,e- = 0.03 end of discharge 

condition due to the initial error, however, after 20 s, the maximum discharge current is 
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accurately predicted.  Following several strong discharge pulses from 160 to 200 seconds, 

some SOC estimation error is evident, caused by low θs,e- and accompanying nonlinear 

voltage response.  Filter estimates recover as concentration gradients relax.  Maximum 

current, underpredicted during this excursion, also recovers to good accuracy for the 

remainder of the cycle. 

 Table 7.1 quantifies the ability of lower order filters to forecast Imax,10s with end of 

discharge condition θs,e- = 0.03 on the 4xFUDS cycle following the initial convergence 

transient.  Only slight performance is lost by dropping the electrolyte diffusion state from the 

filter and/or by reducing the number of electrode states from 5 to 4 but further reduction to 3 

electrode states greatly increases the variability in θs,e- reached at the end of each discharge 

event simulation.  The 3Ds±/0De filter sometimes predicts discharge rates that are not 

sustainable, with surface stoichiometry depleted in less than 10 s.  The 4th order 3Ds±/0De 

filter is still a feasible candidate, though only if used with a more conservative end of 

discharge stoichiometry limit, perhaps θs,e- = 0.06. 

 Available current prediction is attractive due to the explicit manner in which the 

linear problem may be solved online, however an available power prediction would be more 

meaningful in the vehicle environment.  A precise power estimate would require an iterative 

nonlinear solver (such as the bisection search) performing constant power forward time 

simulation as discussed in [66].  Alternatively, a conservative discharge power estimate may 

be explicitly calculated as 

 )()( minmax,max, VIP TT =  (7.9) 

where Vmin represents the lowest voltage occurring during the maximum current event, i.e. at 

the end.  A conservative charge power estimate may be explicitly calculated as  

 )()( min,min,min, TTT IDUUIP +−= −+  (7.10) 

where U+ and U- are equilibrium potentials (functions of electrode surface stoichiometry at 

the current collectors, not functions of SOC) and D is the static gain component of the 

voltage/current state variable model.  The voltage )( min,TIDUU +− −+  will be the lowest 

voltage over the course of an Imin,T event, occurring at the very beginning.  Figure 7.7 

presents the 4xFUDS simulation with Pmax,10s events simulated every 20 s.  With the 
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exception of the first event influenced by filter initial conditions, power capability predicted 

from Eq. (7.9) is, on average, 12% lower than actual available power.  Less conservative 

power prediction may be obtained using a nonlinear reference governor at the expense of 

added computational overhead. 

7.4 Conclusions 

This chapter shows how filters with low order (4 to 7 states) may be designed from a 

fundamental Li-ion battery model to control battery charge/discharge up to physical 

saturation/depletion and side reaction limits rather than more conservative fixed voltage 

limits at the battery terminals.  The linear filter, based on a 50% SOC linearized model, 

performs well so long as electrode surface stoichiometries stay within rest values 

corresponding to 30% to 70% SOC.  During discharge or charge however, electrode surface 

dynamics can significantly lead bulk (SOC) dynamics and a severe discharge/charge event 

may cause nonlinear voltage response even with SOC near the 50% linearization point.  

Following such an event, the linear filter recovers as electrode solid state concentration 

gradients relax. 

 Unlike previous control-oriented electrochemical models formulated using spatial 

discretization techniques [44,45], the present reduced order model enjoys computational 

efficiency comparable to equivalent circuit models.  Expressed as a maximum current 

available for a finite time horizon, the reference governor predicts margin with respect to 

saturation/depletion and side reaction conditions in a manner practical for integration with 

HEV powertrain supervisory control.  Instantaneous operating limits generally occur in 

nonlinear regions of battery operation for which a nonlinear filter would be better suited than 

the linear filter.  Despite the error associated with the linear filter, the present method enables 

pulse charging beyond the manufacturer’s maximum voltage limit while still maintaining 

conservatism with respect to the lithium plating side reaction. 
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Model # States σ(θs,e(T) - 0.03) min(θs,e(T)) 
3Ds±/0De 4 0.01953 0.000568 
3Ds±/1De 5 0.0245 < 0 
4Ds±/0De 5 0.00908 0.0379 
4Ds±/1De 6 0.01254 0.0377 
5Ds±/0De 6 0.00818 0.0392 
5Ds±/1De 7 0.01276 0.0316 

 
Table 7.1.  Standard deviation (relative to θs,e- = 0.03 limit) and minimum value of θs,e- at end 

of Imax,10s discharge events during 4xFUDS simulations similar to that presented in Fig. 
7.6.  Imax,10s predicted by filters of varying order. 



 
Figure 7.1.  FUDS driving cycle simulation:  Nonlinear CFD model with 50% SOC initial 

condition (•) and linear filter with 20% SOC initial condition (-).  (a) Current profile, (b) 
Voltage response, (c) SOC, (d) Negative electrode average surface stoichiometry, (e) 
Positive electrode average surface stoichiometry. 
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Figure 7.2.  Filter error for FUDS driving cycle simulation using filters of various order:  

5Ds± /0De (6 state) filter (•), 4Ds±/0De (5 state) filter (-), 3Ds±/0De (4 state) filter (--).  
SOC initial conditions: 50% and 20%, respectively, for nonlinear CFD model and linear 
filters.
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Figure 7.3.  Ten-second, 60 A pulse discharge profile initiated from 100% SOC:  (a) Current 

profile; (b) Voltage response of nonlinear CFD model; (c-e) Filter errors:  5Ds± /1De (7 
state) filter (•), 5Ds± /0De (6 state) filter (-), 3Ds± /0De (4 state) filter (--).  Horizontal 
dotted lines denote ±5% SOC error threshold in (c) and ±3% surface stoichiometry error 
thresholds in (d) and (e).
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Figure 7.4.  Five-second, 300 A nominal pulse discharge profile (…) limited by θs,e- ≥ 0.25 

maximum reference current (-) and θs,e- ≥ 0.03 maximum reference current (--).  50% 
SOC initial condition.
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Figure 7.5.  Five-second, 180 A nominal pulse charge profile (…) limited by negative 

electrode es−φ  ≥ 0.082 V minimum reference current (-) and es−φ  ≥ 0.07 V minimum 
reference current (--).  50% SOC initial condition.
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Figure 7.6.  4xFUDS driving cycle with ten-second maximum current discharge events 

simulated once per 20 seconds:  Model with 50% SOC initial condition (-), Filter with 
60% SOC initial condition (--), Imax,10s discharge events (•).  Imax,10s calculated with θs,e- = 
0.03 end of discharge condition, shown in (c) with horizontal dotted line.
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Figure 7.7.  4xFUDS driving cycle with ten-second maximum power discharge events 

simulated once per 20 seconds:  Model with 50% SOC initial condition (-), Filter with 
60% SOC initial condition (--), Pmax,10s discharge events (•).  Pmax,10s calculated with 
2.65V and θs,e- = 0.03 end of discharge conditions, the latter shown in (c) with horizontal 
dotted line. 
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Chapter 8 – CONCLUSIONS AND FUTURE WORK 

8.1 Conclusions 

 This dissertation introduces a general, electrochemical model-based approach for the 

efficient and reliable integration of Li-ion batteries into transient, pulse power-type systems.  

For the 6 Ah hybrid electric vehicle (HEV) battery throughout the present work, we: 

1. Experimentally validate a fundamental electrochemical model using constant current 

data and, more importantly, transient pulse current data representative of the dynamic 

HEV environment; 

2. Reduce the order of the electrochemical model to obtain a nonlinear state variable 

model with 0 to 10 Hz resolution and fast, explicit execution required for real-time 

application; 

3. Design a linear Kalman filter to estimate potentials and concentration gradients inside 

the battery from external current and voltage sensor measurements; 

4. Employ a reference current governor to control the battery based on internal physical 

constraints less conservative than the conventional minimum/maximum voltage 

limits. 

The model order reduction technique (Chapter 5) and reduced order battery model 

(Chapter 6) enable low order filters (Chapter 7) with computational efficiency comparable to 

equivalent circuit estimation techniques presently used in industry [1,4].  Unlike the 

empirical methods, the present method controls battery operation to physical saturation/ 

depletion and side reaction limits.  Using pulse charge/discharge metrics suggested by DOE 

test procedures [48], Chapter 4 shows that, at moderate states of charge (SOCs), the 6 Ah 

battery’s charge rate can be increased 50% beyond the 3.9 V-limited rate and still maintain 

the same level of conservatism with respect to damaging side reactions as provided by the 3.9 

V limit at 100% SOC.  Shown in Fig. 4.5, useable power and energy density of the battery 

are increased by 22% and 300%, respectively.  This dissertation provides a practical method 

to realize this increased performance in the uncertain dynamic vehicle environment, 

effectively increasing the power and energy density of a battery. 
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A computational fluid dynamics (CFD)-type model validates the low order battery 

models and estimation algorithms.  This is useful, as it is not physically possible to measure 

concentration/potential distributions inside a battery and thus directly validate the estimates.  

Figure 8.1 summarizes the procedure followed in Chapter 6 to identify the nonlinear state 

variable battery model.  Though useful, the CFD model (or a similar high order time-domain 

electrochemical model) is not prerequisite for estimator design as, in the future, it should be 

possible to directly identify the frequency domain battery model from alternating current 

impedance data.  In this manner, the frequency domain order reduction method employed 

here is preferable to the Karhuenen-Loève Galerkin method [38] as that procedure would 

require CFD model simulation results to generate a low order model. 

In present industry practice, the system integration process for HEV battery packs is 

largely empirical.  Each new battery pack is experimentally characterized, operating maps are 

defined, and vehicle supervisory-level control strategies are validated.  The approach can be 

inflexible and time consuming, particularly when seeking to demonstrate long-term 

reliability throughout battery cycle life.  Though the present estimation and management 

approach has yet to be experimentally verified, it offers potential to significantly streamline 

the systems integration process.  Once the state variable model is parameterized for a 

candidate battery and its baseline performance is established within a candidate vehicle 

design, the algorithms may be quickly adapted to a family of battery and vehicle designs with 

a minimum of additional experimental validation. 

8.2 Future Work 

8.2.1 Battery Estimation and Control Algorithms 

 Several practical considerations must be addressed for the present battery 

management algorithms to be viable in commercial HEVs: 

• Temperature dependency must be taken into account.  This can either be in an open-

loop manner (i.e. by switching between local linear models as a function of 

temperature measured on the battery casing) or a closed-loop manner (i.e. by using 

current, voltage, and temperature measurements to predict heat generation rate and 
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provide an estimate of internal battery temperature).  Given the concerns associated 

with Li-ion thermal runaway, an internal battery temperature estimate would be 

useful. 

• The filter and reference governor algorithms must be experimentally validated and 

shown to be robust throughout the battery life.  Modeling studies taking parameter 

uncertainty into account, a robust filter formulation [67], and/or model adaptation to 

life-dependent parameters might be useful approaches. 

The algorithms might also be extended to cover more difficult estimation problems: 

• A nonlinear estimator, such as the extended Kalman filter [68] would allow 

estimation throughout the 6Ah battery’s entire operating range.  (The linear filter in 

Chapter 7 gave good performance only in the 30-70% SOC range.)  Nonlinear 

estimation is likely requisite for battery chemistries having flat equilibrium 

potential/SOC relationship. 

• Equilibrium potential hysteresis must be considered for the nickel metal-hydride 

battery chemistry [69,70].  A hybrid estimation scheme combining a sliding mode 

[71] observer with an extended Kalman filter might accomplish this task. 

8.2.2 Model Order Reduction of Thermal Fluid Systems 

 Chapter 5 introduces a residue grouping procedure to reduce the order of linear 

diffusion systems with closely-spaced negative real eigenvalues.  The method rapidly 

generates low order models, useful in applications such as parameter identification and 

design space searches.  It is unclear whether the grouping method could be extended to linear 

convection systems whose eigenvalues have imaginary part stacking up in a vertical or near-

vertical asymptote in the complex plane [25].  It would be useful to rigorously quantify error 

associated with the low order grouped residue models, perhaps in an H∞ sense by finding the 

maximum singular value of the grouped model error.  This approach might lead to robust 

observers and controllers with much lower order than those obtained through spatial 

discretization (i.e. finite element, difference or volume) methods [25]. 

 Summarized in Fig. 8.1, Chapter 6 approximates dominant nonlinearities in the 

battery governing equations by interpolating between local linear reduced order models 
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identified at various electrode surface concentrations, i.e. by lumping the dominant spatially-

varying nonlinearity.  (By capturing surface concentration dynamics on an average basis 

(Fig. 6.6), the nonlinear OCP/cs,e state variable model provided good approximation of the 

battery voltage response during severe high-rate discharge (Fig. 6.4).)  Other distributed 

parameter systems with weak nonlinear spatial-dependence might also be approximated in 

this manner.  It would be useful to formally quantify the error associated with such an 

approach, perhaps by generating two high order spatially-discretized nonlinear models (both 

with sufficiently fine mesh), one with lumped nonlinearities and one with spatially-varying 

nonlinearities.  The difference between the two models would be measured in frequency 

space for a range of admissible nonlinear-dependent field variable distributions.  Similar to 

the present work, the final goal would be to reduce the order of a nonlinear state space to 

within some error bounds appropriate for the particular control application. 



1) Nonlinear Governing Equations 
• Partial differential equations 
• Constitutive relations 
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Figure 8.1.  Procedure followed in Chapter 6 to obtain a low order nonlinear state variable 

model of the Li-ion battery. 

2) Linear Impedance Model 
• Infinite dimensional transfer functions 
• High order transfer matrices 

3) Linear Reduced Order Impedance Model 
• Rational, low order transfer matrices 

4) Linear State Variable Model 
• Valid for small perturbations 

Linearize, Laplace Transform, 
analytical/numerical solution 

Model order reduction 

Inverse Laplace transform 

Approximate nonlinearities  
   on a lumped basis  

5) Nonlinear State Variable Model 
• Valid throughout operating range 
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APPENDIX A 

Solid State Diffusion Finite Element Model 

 
Described in Chapter 2, transient solid state Li diffusion is incorporated into the 

previously developed CFD model of Gu and Wang [9].  The macroscopic model requires 

only the concentration at the surface, cs,e(t), as a function of the time history of local reaction 

current density, jLi(t).  Transform Eqs. (2.1-3) from spherical to planar coordinates using the 

substitution v(r) = r cs(r) [54] and discretize the new PDE in the r-direction with n linear 

elements.  (The present model uses five elements with node points placed at 

{0.7,0.91,0.97,0.99,1.0} x Rs.)  Transformed back to spherical coordinates, the discretized 

system is represented as ODEs in state space form, 
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where the n states of the system are the radially-distributed values of concentration cs,1, 

…cs,n, at finite element node points 1,…n.  For the linear PDE with constant diffusion 

coefficient, Ds, the matrix A is constant and tri-diagonal. 

The linear state space system (A.1) can also be expressed as a transfer function, 
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with constant coefficients ai and bi [24].  While either (A.1) or (A.2) could be numerically 

implemented using an iterative solution method, for the linear problem we express the system 

as a finite difference equation with explicit solution.  To discretize (A.2) with respect to time, 

perform a z-transform using Tustin’s method 
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resulting in an nth order discrete transfer function 
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with constant coefficients hi and gi.  Computation is thus reduced to an explicit algebraic 

formula with minimal memory requirements.  Solution for cs,e requires that local values of 

cs,e and jLi be held from only the previous n-1 time steps. 
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APPENDIX B 

Transfer Functions of Short and Long Time Solid State Diffusion Analytical Solutions 

 
Doyle et. al. [2] employ an analytical solution to Eqs. (2.1-3) and embed it inside a 

Duhamel superposition integral to accommodate the time dependent boundary condition.  

They provide two integral expressions for the response of reaction current, jLi(τ), to a step in 

surface concentration, ∆cs,e, at τ = 0, each in the form 
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The short time expression (Eq. (B.6) of [2]) is 
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while the long time expression (Eq. (B.5) of [2]) is 
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Little detail is given in the derivation of these expressions.  Differentiating Eqs. (B.1) to 

(B.3) with respect to τ and solving for jLi(τ), we recover short time solution 
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and long time solution 
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no longer in integral form.  Taking the Laplace transform of Eqs. (B.4) and (B.5) and 

recognizing that the transform of the step input is Cs,e(s) = ∆cs,e / s, we find the short time 

transfer function 
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and the long time transfer function 
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Taking the reciprocal of Eqs. (B.6) and (B.7) and substituting dimensionless variables LiJ , 

esC , , and ψ yields expressions used in Chapter 3. 
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APPENDIX C 

Transfer Function of Parabolic Profile Solid State Diffusion Approximate Model 

 
Wang et. al. [46] assume concentration distribution within a spherical active material 

particle to be described by a parabolic profile.  Integrating the two parameter polynomial 

with respect to Eq. (2.1), they reduce the problem of determining surface concentration, 

cs,e(t), as a function of reaction current, jLi(t), down to the solution of one ODE 

 Li

ss

avgs j
FRat

c 3, =
∂

∂
 (C.1) 

and one interfacial balance 
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Taking the Laplace Transform of Eqs. (C.1) and (C.2) yields 
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which, when combined to eliminate Cs,avg, provides the transfer function 
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Substituting dimensionless variables LiJ , esC , , and ψ into Eq. (C.5) yields the expression 

used in Chapter 3. 
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APPENDIX D 

Nonlinear Least Squares Algorithm 

 
Chapter 5 introduces optimal reduced order diffusion models with eigenvalue and 

residue parameters found by minimizing cost functions Eq. (5.18) and (5.39).  Taking the 

latter as an example and dropping the double overbar notation, the unknown parameters of 

the model in Eq. (5.38) are p = ( λk , rk
T )T.  For observation j at frequency ωj, define the error 

between the model and the data as 
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where the 1k is a column vector of ones with the same dimensions as rk.  Combining all 

observations across the frequency range of interest yields f = [ f1
T  f2

T … fj
T …]T and J = [ J1

T  

J2
T …  Jj

T  …]T.  Given initial parameter guess p[0], the set of parameters which minimize the 

cost function in Eq. (5.39) is found by iteratively solving 

  (D.3) fJpJJ TT −=∆)(

and updating the parameters at each iteration 

  (D.4) ppp ∆+=+ ][]1[ ii

as discussed in Chapra and Canale [62].  The Levenberg-Marquardt algorithm [63] is used to 

substantially improve numerical stability and convergence. 
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APPENDIX E 

State Space Realization of Series Transfer Matrix 

 
From Chapter 5, Eq. (5.30), a series representation of the transfer matrix (5.21) is 
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Using the principle of superposition, we express the linear system time domain solution as 
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The inverse Laplace transform of the static part of Eq. (E.1) is yz(t) = [Z]u(t).  To solve an 

individual term of the dynamic part, we define the state 
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which, by performing the inverse Laplace transform provides the state equation 
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The output is related to the state by )()( sXss kkk rY =  yielding output equation 
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Combining individual solutions yields the state space model 
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used in Chapter 5. 
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