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Abstract

Many engineering structures have distributed parameter models governed by par-

tial differential equations. Without damping, distributed flexible structures are not sta-

ble due to the infinite number of resonances at natural frequencies. Bounded sinusoidal

inputs at these frequencies can cause unbounded response. This thesis shows that Pas-

sive Control, Iterative Learning Control (ILC), and Repetitive Learning Control (RLC)

can be designed to reduce tracking or regulation errors in response to bounded, periodic

inputs. Distributed flexible strings, beams, membranes, plates, axially moving materials,

electrostatic microbridges, and flexible whisker contact imagers are studied.

Passive control using distributed or boundary damping is proven to stabilize the

response of strings, beams, membranes, and plates. Damping ensures bounded response

to bounded distributed and boundary inputs. Distributed viscous or Kelvin-Voigt mate-

rial damping can guarantee pointwise or strong boundedness for strings and beams and

weak boundedness for membranes and plates. Translational damping on one boundary

stabilizes strings and beams. Damping on part of the boundary can also weakly stabi-

lize the forced response of membranes and plates, provided the damped and undamped

boundary normals satisfy certain conditions. For example, damping on half and one side

of the boundary is sufficient for circular and rectangular domains, respectively.

Iterative Learning Control provides precise tension and speed control of axially

moving material systems to enable high speed processing of paper, plastics, fibers, and
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films. PD tension/speed control is proven to ensure strong and weak boundedness of dis-

tributed displacement and tension, respectively, in a single span axially moving material

system. ILC provides the same theoretical result with half the speed error and 30% of

the tension error of PD control using the same control effort.

Repetitive Learning Control is applied to an electrostatic microbridge and a repet-

itive contact imager. Electrostatic microactuators are used extensively in MEMS sensors,

RF switches, and microfluidic pumps. Due to high bandwidth operation, however, reduc-

tion of residual vibration using feedback control is difficult to implement. Feedforward

RLC is designed, proven stable, and simulated for an electrostatic microbridge under a

periodic desired spatial/time trajectory. High residual stresses in the microbridge mean

that bending stiffness can be neglected and a pinned string model with uniform loading

is appropriate. Squeeze film damping ensures boundedness of the distributed transverse

displacement. Offline RLC processing of the average displacement as measured by ca-

pacitive sensing updates a waveform generator’s parameters. Simulations show a 36%

reduction in midspan overshoot under repetitive control.

Repetitive contact imaging uses a flexible whisker attached to a two axis robot

through a load cell. Assuming small deformations and rotations, the pitch axis decouples

from yaw. The yaw axis, under PD control, sweeps periodically back and forth across

the object while the pitch axis, under RLC, maintains a uniform contact force. Once the

RLC converges, the 3D contact points can be determined using an elastica algorithm.

RLC is proven stable based on a distributed parameter beam model and experimentally

shown to outperform PD control with 75% reduction in the moment error.
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Chapter 1

Introduction

Vibration reduces the perceived quality, productivity, and efficiency of many me-

chanical systems, causing defects, fatigue failure, limiting production speeds during man-

ufacturing, and producing a potential dangerous and uncomfortable operating environ-

ment. Passive and active control have been extensively used to reduce vibration in a

variety of applications, including smart structures, web handling, manufacturing, and

robotics.

1.1 Methods of Vibration Control

Passive control involves modification of the mass, damping, and stiffness of the

system to make the system less responsive to its vibratory environment. The idea is based

on changing or adding to the basic structure passive elements, such as masses, dampers,

and springs. These elements simply react passively in opposition to the accelerations,

velocities, or deflections imposed upon them by vibration [48].

Unlike passive control, active control systems require external power and elec-

tromechanical, electrohydraulic, or electropneumatic actuators. Sensors detect the vi-

bration and the control algorithm, often implemented using a microprocessor, produces

control signals that are power amplified before being sent to the actuators.
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Semi-active control is independent of any external power supply. The energy

required by semi-active devices is low power and can often be stored in a battery. In

addition, semi-active control devices are essentially passive devices where stiffness and

damping can be adjusted in real time.

While passive vibration control is usually adequate, active vibration control holds

potential for high performance. Innovations in piezoelectric film technology and modeling

as well as the rapid advancements in computers have made active vibration control

systems more cost efficient and effective than previously possible.

1.2 Vibration Control of Distributed Parameter Systems

At the scale of most mechanical applications, the material composing the system

components acts as a continuum. Components that do not deform appreciably under the

applied loading may be approximated as rigid bodies. The remaining components are

modeled by partial differential equations (PDEs) and a set of boundary conditions due to

dependence on both spatial and time variables. These are called distributed parameter

systems (DPSs).

One control design method for DPSs is to apply distributed actuation throughout

the continuum, requiring an infinite number of actuators and sensors [12]. F dell’Isola et

al. [22] design devices for passive electric damping of structural vibrations by distributed

piezoelectric transducers and electric networks. The use of few actuators and sensors

located on the boundary of the system provides a more practical alternative. This

approach, known as boundary control, results in control strategies that are often simple,

physically motivated, and easy to implement and tune. There are many examples of
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boundary controllers for strings [25, 56], cantilevered beams [10, 15], cables [4], rotors

[42], and flexible link robots [21].

One common approach to determine the stability of flexible distributed parameter

systems is to discretize the PDE using Galerkin [1], FEM [62], or finite difference ap-

proximations [49]. The system reduces to a finite set second order differential equations

(ODEs) with mass, damping, and stiffness matrices. Many control design tools exist

for discretized ODE models such as H∞ control [26]. The system is exponentially and

hence bounded input and bounded output (b.i.b.o.) [17] stable if the stiffness matrix

is positive definite (no rigid body modes) and the damping matrix satisfies complete or

pervasive damping conditions [31].

A substantial difficulty in the design of discretized model-based controllers is

the choice of the discretization order. Reduction of the infinite dimensional continuum

model to a finite dimensional (Nth order) discrete model neglects the effect of modes

above a cut-off frequency. With sufficient system damping, these higher-order modes

can be neglected if the controller rolls off (i.e. the controller gain drops sharply) at high

frequency. However, if N is too small, it will result in the spillover instability [43].

There are two types of spillover: observation spillover and control spillover. The former

entails the contamination of sensor output through the residual mode dynamics, while

in the latter, the residual modes are excited by feedback control which is designed for a

low-order model, senses and actuates higher-order modes, rendering them unstable [5].

Spillover can be avoided by reducing the control gain. However, this often results in

poor performance. On the other hand, if N is too large, it will result in a high-order
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controller that can be difficult and costly to implement. If the design of controllers is

based on the actual DPS, it will not have eliminate spillover instabilities.

Transform techniques can be used to analyze the stability of DPSs. Yang and

Mote [65] apply the root locus method to predict the controller stability of an axially

moving string system. Yang et al. [63, 64] also present a frequency domain stability

criteria for the closed-loop system stability of DPSs.

Discretization may be the only option for DPSs with complex geometry or built-

up assemblies. Many manufacturing, aerospace, HVAC (Heating, Ventilation, and Air

Conditioning), acoustic, robotic, transportation, and power transmission applications,

however, have the geometric simplicity that make PDE models the most accurate and

concise representation of the system dynamics.

Unlike discretization, distributed parameter methods require extensive hand deriva-

tions that become prohibitively difficult with the increasing number and complexity of

the underlying PDEs. Thus, the most relevant applications for this approach consist of

a few simple components (e.g. rigid bodies, second order components (strings, cables,

rods, and membranes), and fourth order components (beams and plates)) that are simply

connected.

Control design based on DPSs eliminates control spillover instabilities. The phys-

ical displacement, slope, and curvature of the continuum constitute the state variables

rather than numerically generated node displacements or modes. Thus, the system model

closely links to the underlying mechanics. Unfortunately, the relatively few boundary

control techniques (e.g. Lyapunov theorem [36], functional analysis [28], and semi-group

theory [25]) have not yet been developed for DPSs. Most boundary controllers proposed
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are standard, linear, damper-like controllers designed for simple linear PDE models. The

stability of these controllers is analyzed by combining Lyapunov theorem, functional

analysis, and semi-group theory.

The Lyapunov approach used in this dissertation generally allows the designer to

choose actuators but not sensors. The control law resulting from Lyapunov analysis of a

distributed system may require measurement of position, slope, curvature, and/or shear

and their time derivatives, for example. Position and slope can be measured using laser

or eddy current displacement probes. Strain gages or load cells measure curvature and

shear. Distributed sensing using spatially varying piezoelectric film [14] or high-speed

video can provide full state feedback including distributed position, slope, curvature, and

shear measurements. In many cases, filtered backwards differenced signals can substitute

for velocity measurements.

1.3 Stability

For damped DPSs, there are no simple conditions for exponential or b.i.b.o. sta-

bility. First, the type of damping (e.g. viscous or Kelvin-Voigt [8]) and whether it is

on the boundary or globally or locally distributed must be defined. Second, one must

define boundedness based on either an L2 spatial norm (weak) or pointwise (strong)

displacement measure. Finally, the input distribution (point, distributed, or boundary)

must be specified.

The design and stability proof for the controllers discussed in the dissertation

is based on the energy multiplier method [38, 46, 56] wherein the time derivative of

a positive Lyapunov functional is shown to be bounded by negative functional [36].
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Equalities and inequalities are extensively used in the proofs, leading to sufficient and

therefore conservative results.

1.4 Objective of This Research

The main purpose of this research is to develop passive, iterative, repetitive con-

troller that provide b.i.b.o. stability for flexible DPSs. First, the energy multiplier

method establishes the boundedness of damped continua in response to distributed and

boundary inputs. Distributed viscous and material damping and boundary damping are

analyzed. Second, for periodic inputs/disturbance, iterative learning control (ILC) and

repetitive learning control (RL) are developed for several applications.

The first application is ILC tension and speed control of an axially moving ma-

terial. During the manufacture of continuous materials (paper, foil, plastic, fabric, wire,

and yarn) the vibration, tension, and speed of the moving material is regulated to en-

sure product quality and maximize productivity. In web handling, the web can vibrate

out-of-plane (transverse direction) due to aerodynamic and roller eccentricity excitation.

Steering the web to maintain centerline tracking involves control of lateral web vibration.

Longitudinal tension/speed/vibration control allows aggressive speed trajectories (e.g.

stop/start motion) without breaking the web.

The second application is RLC of an MEMS electrostatic microbridge. Electro-

static microactuators are used extensively in MEMS sensors, RF switches, and microflu-

idic pumps. Due to high bandwidth operation, however, reduction of residual vibration

using feedback control is difficult to implement. Feedforward techniques such as RLC

can be implemented using high speed ADC and programmable waveform generators.
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Finally, RLC for a contact imager is developed and experimentally tested. Repet-

itive contact imaging uses a flexible whisker attached to a two axis robot through a load

cell. Assuming small deformations and rotations, the pitch axis decouples from yaw. The

yaw axis, under PD control, sweeps periodically back and forth across the object while

the pitch axis, under RLC, maintains a uniform contact force. Once the RL controller

converges, the 3D contact points can be determined using an elastica algorithm.

1.4.1 BIBO Stability of Distributed Flexible Systems

Many engineering applications have DPS models governed by PDEs. One di-

mensional continua such as strings and beams and two dimensional continua such as

membranes and plates accurately model systems with sufficiently simple geometry. Of-

ten forcing of unknown but bounded magnitude disturbs the system and the boundedness

of the response comes into question. Without damping, flexible structures are not stable

due to the many resonances corresponding to natural frequencies in the system. Bounded

sinusoidal inputs at these frequencies can cause unbounded response.

Recently, researchers have made progress in the stability analysis of DPSs. Cav-

alcanti and Oquendo [16] show exponential and polynomial decay for a partially vis-

coelastic nonlinear wave equation subject to nonlinear and localized frictional damping.

Cheng [18] proves the continuity of the input/output map for boundary control systems

through the system transfer function. Komornik [38] and Lagnese [40] use the multi-

plier method to prove the boundary stabilization of membranes and plates. Guesmia

[27] provides decay estimates when integral inequalities can not be applied due to the

lack of dissipativity.
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The energy multiplier method [66, 67] based on Lyapunov theorem is applied in

this dissertation to prove bounded response to distributed inputs for damped strings,

beams, membranes, and plates.

Viscoelastic material behavior, frictional interaction between contacting surfaces,

or movement through a dissipative fluid cause damping in flexible structures. Distributed

(viscous and material) and boundary (viscous) damping are analyzed here [8]. Viscous

damping forces are produced when the structure moves through fluid and are propor-

tional to transverse velocity ẇ where w(x, t) is the material transverse displacement.

Kelvin-Voigt damping is due to material viscoelasticity and proportional to material

strain rate: ẇxx for strings, ẇxxxx for beams, ∇ẇ for membranes, and ∆ẇ for plates.

1.4.2 Iterative Learning Velocity and Tension Control for Axially Moving

Materials

Precise velocity and tension control prevents registration and tension nonunifor-

mities that may lead to product failure or defects in axially moving material systems (e.g.

high speed processing of paper, plastics, films, and fibers). Ebler et al. [24] summarize

the use of load cell and dancer arm sensors for web handling. Boulter [13] provides a

self-tuning control scheme for tension regulation in the frequency domain. Koc et al.

[37] combine LPV control and H∞ control to reject disturbances introduced by velocity

variations and improve robustness to roll radius and inertia variations. Lu et al. [45]

develop robust control algorithms for tape transport using a H∞ mixed sensitivity ap-

proach within a disturbance observer architecture. Pagilla et al. [51] propose a feedback

controller with an observer for average web tension. Baumgart et al. [9] present an
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observer-based robust nonlinear feedback controller for tape transport systems that does

not require tension measurements.

These controllers are based on a finite dimensional approximation of the full

order distributed parameter model of axially moving materials. They neglect higher

order modes that can be sensed and excited by the controller, resulting in spillover

instabilities [5]. Controllers based on distributed parameter models can be designed to

overcome the spillover instability problem and ensure stability of all modes [56]. Using

this approach, Nagarkatti et al. [50] apply control torques to rollers at the boundaries of

a distributed axially moving material domain to regulate speed and tension and prove

strong exponential stability using the energy multiplier method [66].

Axially moving material systems are often subject to periodic disturbances. Stop/

start motion trajectories associated with intermittent material usage and roller eccen-

tricity produce periodic prescribed material displacements that can excite longitudinal

dynamics, causing large tension and web breaks.

Iterative learning control (ILC) has the potential to reduce tension variations due

to periodic disturbances. While ILC has been applied to many discrete control problems

[2], it has only recently been applied to distributed parameter models [55].

1.4.3 Repetitive Control of an Electrostatic Microbridge Actuator

Microelectromechanical systems (MEMS) are used in a wide variety of commer-

cial, military, and industrial products. Electrostatic, thermal, electromagnetic, and
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piezoelectric mechanisms, due to scalability and fabrication simplicity, are used exten-

sively for actuation in many applications. MEMS accelerometers use electrostatic actua-

tion for self-test. MEMS gyros use piezoelectric actuation to provide a sinusoidal driving

force for angular rate measurement. Piezoelectric and electrostatic actuators are used

for RF switches. In all of these cases, the actuator is used to impart a prescribed motion

to the system. The prescribed motion is either repeated many times (e.g. switch) or is

a purely periodic trajectory (e.g. gyro). Due to squeeze film and Couette damping, the

vibration response of MEMS devices decays passively in response to inputs [56, 66]. With

sufficient damping, residual vibration is suppressed but the response may be too slow.

Thus, active control has the potential to greatly improve the performance of MEMS actu-

ators. Iterative learning and repetitive control, in particular are feedforward techniques

that have great potential for MEMS applications [23, 30, 55, 68]. These approaches can

reduce vibration response resulting from periodic inputs using only feedforward control

so high bandwidth real-time control is not required.

Researchers have modeled MEMS using lumped parameter, finite element, and

partial differential equation models. Hung and Senturia [32] derive efficient low order

models of MEMS based on fully meshed numerical analysis methods. Pamidighantam

et al. [52] use a lumped parameter model to derive expressions for pull-in voltage of

electrostatically actuated clamped and cantilevered beams. Lam and Darling [41] use an

Euler-Bernoulli finite element model to calculate the stiction force of cantilever beams.

Collenz et al. [20] investigate the large deflections of beams under electrostatic loads

using a FEM model based on a sequential field-coupling approach. Liu et al. [44] derive

mechanical and optical models of a surface micromachined variable optical attenuator



11

and verify the static and dynamic models using a FEM approach. A unified modeling

approach can be found in Lyshevski [47] and Pelesko and Bernstein [53]. Krylov and

Maimon [39] study the transient nonlinear dynamics of an electrostatically actuated

microbeam that includes distributed nonlinear input and nonlinear squeeze film damping.

The simple geometries (e.g. beams and plates) of MEMS actuators motivate the

use of distributed parameters, partial differential equation models (see e.g. [39]). These

models capture the full distributed response of the system without FEM truncation of

higher order modes. Controllers based on PDE models also produce physically mo-

tivated controllers that do not have spillover instabilities [5]. Unfortunately, stability

proofs are significantly complicated and few tools exist for analysis of PDE systems. A

number of researches, however, have developed Lyapunov-based Energy Multiplier meth-

ods for PDE systems under static and dynamic feedback. The challenge in this approach

is to determine implementable (i.e. finite number of physically realizable sensors and

actuators) controllers with proven stability based on the distributed model.

The control theoretical treatments of MEMS systems are very limited. The control

of microelectrical machines is considered in [32]. Bamieh et al. [7] propose a distributed

control scheme for spatially invariant systems. Balogh et al. [6] design a Lyapunov-based

boundary controller for 2D channel flows. Senouci-Bereksi [11] designs and implements

a nonlinear controller for magnetostrictive beam vibration.

1.4.4 Repetitive Contact Imaging

There are many robotic applications requiring obstacle avoidance and/or object

identification in unstructured environments. Underwater crawlers used for mine counter
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measures, for example, need sensors to identify mines. In the harsh and murky surfzone

environment where these crawlers operate, delicate or optical sensors cannot be used.

Limited communication bandwidth requires information-dense shape sensing.

Many researchers use flexible whiskers to measure contacted object shape. Kaneko

et al. [35] extract contact position from the rotational compliance of an active flexible

whisker. Russell [57] uses tip contact of an array of curved passive whiskers to measure

the surface contours of concave and convex objects. Ueno et al. [61] determine contact

distance (range) by measuring natural frequency changes in a vibrating whisker with a

torque sensor. Scholz and Rahn [58] use an active whisker to measure two dimensional

profiles of contacted objects based on an elastica whisker model. Clements and Rahn

[19] use a two axis robot and flexible whisker to measure three dimensional profiles of

contacted objects.

A significant challenge in contact sensing using flexible whiskers is to collect suf-

ficient data to accurately resolve the contacted object shape. This can be achieved by

using repeated contact with the object with a specified spacing [19] or by sliding the

whisker across the object [58]. The approach used in [19] produces accurate contact

points but can be prohibitively time consuming for high resolution sensing. The sweep

method used in [58] produces only 2D slices of the contacted object profile. To measure

3D object shapes by sliding the whisker across the object requires accurate regulation

of the contact force during sliding. This is a challenging control problem even for

rigid-linked robots and has yet to be solved for a flexible whisker system.

The feedforward techniques of iterative learning and repetitive control, however,

have recently been extended to flexible systems [23, 55, 68, 69]. For the contact sensing
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application, the whisker can be repeatedly swept across the object and the results from

the previous sweep can be used to update the control input for the next sweep. Thus,

after a few relatively fast sweeps across the object, the whisker follows the object contour

while maintaining a constant contact force. The data from the last, most accurate sweep

can then be processed using the elastica model to determine the 3D contact points

[19, 58].

1.5 Thesis Organization

The dissertation is organized in five main chapters. Chapter 2 discuss as b.i.b.o.

stability for one and two dimensional DPSs. Chapter 3 presents ILC for axially moving

material systems. In Chapter 4, RLC is analyzed for electrostatic microbridge. Chapter

5 shows a repetitive contact imager with experiment results. Conclusions, contributions,

and future work are addressed in Chapter 6.
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Chapter 2

BIBO Stability of Distributed Flexible Systems

2.1 Mathematical Preliminaries

The following definitions, equalities, and inequalities are extensively used in the

dissertation and are presented without proof (see [3, 29, 34] for details). Throughout the

chapter, for a 2D domain, we assume that it is an open, bounded, connected, Lipschitz

domain with boundary Γ.

2.1.1 Definitions

1. Gradient, divergence, Laplacian operator, and biharmonic operator: x1

and x2 are two axes of 2-dimensional Cartesian coordinates, ∇w=
(
i ∂
∂x1

+ j ∂
∂x2

)
w

is the gradient of w, ∇·r = i· ∂r
∂x1

+ j· ∂r
∂x2

is the divergence of r, where w is a scalar

and r is a vector, ∆ = ∇ · ∇ is Laplacian operator, and ∆2 = ∆∆ is biharmonic

operator.

2. Inner product: a · b = ab cos θ, where θ is the angle between the two vectors.

3. Open set and closed set: Let A ⊆ V , a normed linear space. The set A is

open if for every a ∈ A, there is a radius r > 0 such that B (a, r) ⊆ A, where

B (a, r) = {a ∈ V | ‖a‖ < r}. The set A is closed in V if its complement V − A

is open in V .
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4. L2 norm: The inner product induces a natural norm ‖f‖ =
√〈f, f〉, denoted

by ‖f‖L2
. Lp(Ω) is the linear space of measurable functions υ : Ω → R, such

that‖υ‖Lp(Ω) =
{∫

Ω |υ (x)|p dx
}1/p < ∞. L∞ is given by the essential supremum.

More precisely, |f |∞ =ess sup |f |.

5. Lipschitz continuous: A function υ defined on Ω is said to be Lipschitz contin-

uous if for some constant c, |υ (x) − υ (y)| ≤ c ‖x − y‖ ∀x, y ∈ Ω.

6. Disjoint: Two sets A1 and A2 are disjoint if their intersection A1∩A2 ≡ ∅, where

∅ is the empty set.

2.1.2 Equalities

The Divergence Theorem applies to vector fields V = P (x1, x2) i+Q (x1, x2) j as

follows ∫
Ω

(
∂P

∂x1
+

∂Q

∂x2

)
dx =

∫
Γ

(Pdx2 − Qdx1) . (2.1)

The normal derivative of w(x, t) is defined as

∂w

∂n
= ∇w · n on Γ, (2.2)

where n is the unit-normal vector to Γ pointing toward the exterior of Ω.

The following integral equalities apply to w ∈ H1 (Ω) and υ ∈ H2 (Ω)

∫
Ω

∆υ w dx =
∫
Γ

∂υ

∂n
wdΓ −

∫
Ω
∇υ · ∇w dx, (2.3)

∫
Ω

r · ∇w dx =
∫
Γ
(r · n)wdΓ −

∫
Ω

(∇ · r)wdx. (2.4)
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The divergence of products can be calculated as follows:

∇ · (wa) = w∇ · a + (∇w) · a, (2.5)

∇ (a · b) = a × (∇× b) + b × (∇× a) + (∇ · a)b + (∇ · b)a, (2.6)

where r, a, and b are vectors.

2.1.3 Inequalities

The nonlinear damping inequality

(a · b) ≤ δ |a|2 +
1
δ
|b|2 . (2.7)

2.1.3.1 One Dimensional

Pointwise integral inequality

w2 (x, t) ≤ L

∫ L

0
w2

x
(x, t) dx,∀x ∈ (0, L) . (2.8)

Weak integral inequality

∫ L

0
w2 (x, t) dx ≤ L2

∫ L

0
w2

x
(x, t) dx, (2.9)

∀w (x, t) ∈ H =
{

a|a ∈ H1 (0, L) , a (0) = 0
}

.



17

2.1.3.2 Two Dimensional

The Poincaré inequality

∫
Ω

w2dx ≤ m1

∫
Ω
|∇w|2 dx (2.10)

holds ∀w ∈ H2 (Ω) with w = 0 on Γ for some constant m1 > 0.

The Sobolev inequality

Γ0 and Γ1 are two disjoint, nonempty open subsets of the boundary Γ,

∫
Γ1

w2dx ≤ m2

∫
Ω
|∇w|2 dx, ∀w ∈ H1 (Ω) (2.11)

where m2 > 0, Γ = Γ0 ∪ Γ1, and w = 0 on Γ0.

2.2 Damped Strings

For the damped string models, we assume that the string is inextensible and

perfectly flexible, the axial tension P is constant, and distributed forcing f(x, t) is applied

in the domain x ∈ (0, L), where the string length is L. First, a string with prescribed

boundary displacements and distributed viscous and material damping is considered.

Then, we consider a string without damping in the field equation and with a damped

boundary condition at x = L and prescribed displacement at x = 0.
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P
wL(t)w0(t)

f(x,t)

P 

x

Fig. 2.1. Schematic diagram of a distributed damped string with distributed and bound-
ary disturbances.

2.2.1 Distributed Damped Strings

The equation of motion for the model in Fig. 2.1 is

ρẅ + bẇ − Dẇxx − Pwxx = f , x ∈ (0, L), (2.12)

w(0, t) = w0 (t) , w(L, t) = wL (t) ,

where ρ is the mass/area, b and D are the viscous and material damping coefficients,

and w0 (t) and wL (t) are prescribed boundary displacements. We assume that all of

the models presented in this chapter are well-posed and possess a unique solution for all

initial conditions and bounded inputs.

Theorem 2.1: The response of the damped string governed by (2.12) is bounded,

w(x, t) ∈ L∞(0, L), if f , w0, ẇ0, ẅ0, wL, ẇL, ẅL ∈ L∞ and either b or D is nonzero.
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Proof: We transform the model using

w∗(x, t) = w(x, t) − (a0 + a1x) , (2.13)

where

a0 = w0 (t) , a1 =
wL (t) − w0 (t)

L
,

and define f∗ = f − ρ (ä0 + ä1x) − b (ȧ0 + ȧ1x) with f∗(x, t) ∈ L∞, ∀x ∈ (0, L) by the

theorem assumptions. We drop the ∗ for convenience and the transformed equations are

ρẅ + bẇ − Dẇxx − Pwxx = f , x ∈ (0, L), (2.14)

w(0, t) = 0 , w(L, t) = 0.

The energy of the string

E =
1
2

∫ L

0
(ρẇ2 + Pw2

x
)dx ≥ 0 (2.15)

has a time rate of change

Ė =
∫ L

0
ẇfdx − b

∫ L

0
ẇ2dx + D

∫ L

0
ẇẇxxdx + P

∫ L

0
ẇwxxdx + P

∫ L

0
wxẇxdx.
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The power can be upper bounded by

Ė ≤ δ1

∫ L

0
ẇ2dx +

1
δ1

∫ L

0
f2dx − b

∫ L

0
ẇ2dx + Dẇẇx|L0

−D

∫ L

0
ẇ2

x
dx + P

∫ L

0
ẇwxxdx + Pẇwx|L0 − P

∫ L

0
ẇwxxdx

≤ −
(

b +
D

2L2 − δ1

)∫ L

0
ẇ2dx +

1
δ1

∫ L

0
f2dx − D

2

∫ L

0
ẇ2

x
dx. (2.16)

The first inequality results from the use of the nonlinear damping inequality (2.7)

on the first term and integration by parts on the third and fifth terms. Application of

inequality (2.9) and the boundary conditions and simplification produces the final result.

Note that the positive term resulting from the disturbance, δ1
∫ L
0 ẇ2dx, can be made

negative with either of the damping terms −
(
b + D

2L2

) ∫ L
0 ẇ2dx. The energy cannot be

used to establish stability, however, because the strain energy term
∫ L
0 w2

x
dx does not

appear in Ė. We define a new functional by adding the crossing term C(t)

V (t) = E(t) + βC(t), (2.17)

where

C(t) = ρ

∫ L

0
wẇdx. (2.18)

The functional V (t) is positive because

|C(t)| ≤ 1
2
ρ

∫ L

0

(
ẇ2 + w2

)
dx ≤ 1

2
ρ

∫ L

0

(
ẇ2 + L2w2

x

)
dx
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≤
ρ max

(
1, L2

)
min (ρ, P )

1
2

∫ L

0

(
ρẇ2 + Pw2

x

)
dx

= ηE (2.19)

using inequality (2.9), where

η =
ρ max

(
1, L2

)
min (ρ, P )

.

This means that

0 ≤ λ1E(t) ≤ V (t) ≤ λ2E(t), (2.20)

where

λ1 = 1 − βη > 0,

λ2 = 1 + βη > 1,

for sufficiently small β. Differentiation of the crossing term produces

Ċ = ρ

∫ L

0
ẇ2 dx + ρ

∫ L

0
wẅ dx

=
∫ L

0
ρẇ2 dx +

∫ L

0
w (f − bẇ + Dẇxx + Pwxx) dx

= ρ

∫ L

0
ẇ2 dx + Ċ1 + Ċ2 + Ċ3 + Ċ4. (2.21)
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The terms in (2.21) simplify as follows

Ċ1 =
∫ L

0
wfdx ≤ δ2

∫ L

0
w2dx +

1
δ2

∫ L

0
f2dx

≤ δ2L2
∫ L

0
w2

x
dx +

1
δ2

∫ L

0
f2dx, (2.22)

Ċ2 = −
∫ L

0
bwẇdx ≤ bδ3

∫ L

0
w2dx +

b

δ3

∫ L

0
ẇ2dx

≤ bδ3L2
∫ L

0
w2

x
dx +

b

δ3

∫ L

0
ẇ2dx, (2.23)

using inequalities (2.7) and (2.9). The third term

Ċ3 = D

∫ L

0
wẇxxdx = Dwẇx|L0 − D

∫ L

0
wxẇxdx

≤ D

(
δ4

∫ L

0
w2

x
dx +

1
δ4

∫ L

0
ẇxdx

)
, (2.24)

using the boundary conditions and inequality (2.7). The fourth term simplifies as follows

Ċ4 = P

∫ L

0
wwxxdx = Pwwx|L0 − P

∫ L

0
w2

x
dx = −P

∫ L

0
w2

x
dx, (2.25)

using integration by parts and the boundary conditions. Note that this term provides

the needed − ∫ L
0 w2

x
dx term that relates V̇ to V . Substitution (2.22) – (2.25) into (2.21)
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yields

Ċ ≤ −
[
P − (δ2 + bδ3)L2 − Dδ4

] ∫
Ω

w2
x
dx

+
(

ρ +
b

δ3

)∫ L

0
ẇ2 dx +

1
δ2

∫
Ω

f2dx +
D

δ4

∫
Ω

ẇ2
x
dx. (2.26)

Substitution of the crossing term derivative (2.26) into (2.17) produces

V̇ ≤ −β
[
P − (δ2 + bδ3) L2 − Dδ4

] ∫ L

0
w2

x
dx − D

(
1
2
− β

δ4

)∫ L

0
ẇ2

x
dx

−
[
b +

D

2L2 − δ1 − β

(
ρ +

b

δ3

)]∫ L

0
ẇ2dx +

(
1
δ1

+
β

δ2

)∫ L

0
f2dx

≤ −λ3E (t) + ε, (2.27)

where, for sufficiently small β, δ1, δ2, δ3, and δ4,

1
2

≥ β

δ4
, (2.28)

ε1 = β
[
P − (δ2 + bδ3) L2 − Dδ4

]
> 0, (2.29)

ε2 = b +
D

2L2 − δ1 − β

(
ρ +

b

δ3

)
> 0, (2.30)

ε =
(

1
δ1

+
β

δ2

)
max

t∈[0,∞)

∫ L

0
f2dx < ∞, (2.31)

λ3 =
min (ε1, ε2)
max (ρ, P )

, (2.32)

Using (2.20), we obtain

V̇ ≤ λV + ε, (2.33)
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where λ = λ3/λ2, with the solution

V (t) ≤ V (0)e−λt +
ε

λ
∈ L∞. (2.34)

Use of (2.8), (2.15), and (2.20) produces

P

2L
λ1w2 ≤ P

2
λ1

∫ L

0
w2

x
dx ≤ λ1E(t) ≤ V (t) ∈ L∞. (2.35)

So

w (x, t) ∈ L∞ ∀x ∈ (0, L) .

�

2.2.2 Boundary Damped Strings

P

w0(t)

f(x,t)

P 

x

Fig. 2.2. Schematic diagram of a boundary damped string with distributed and bound-
ary disturbances.
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For the boundary damped string in Fig. 2.2, we remove the distributed damping

in (2.12) to obtain the one dimensional wave equation

ρẅ − Pwxx = f, x ∈ (0, L), (2.37)

and boundary conditions

w(0, t) = w0 (t) , wx(L, t) = −cb
P

ẇ (L, t) ,

where cb is the boundary damping coefficient (See Fig. 2.2).

Theorem 2.2: The response of the boundary damped string governed by (2.37)

is bounded, w(x, t) ∈ L∞(0, L), if f , w0, ẅ0 ∈ L∞ and cb > 0.

Proof: First, we transform the boundary conditions using

w∗(x, t) = w(x, t) − (x − L)2

L2 w0 (t) (2.38)

and define f∗ = f + 2w0
L2 − (x−L)2

L2 ẅ0. Dropping the ∗ we same obtain the field equation

(2.37) and boundary conditions except that w(0, t) = 0.

The energy is given in equation (2.15) and time derivative is

Ė ≤ δ1

∫ L

0
ẇ2dx +

1
δ1

∫ L

0
f2dx − cbẇ

2(L, t). (2.39)

The boundary damper does not match the distributed and boundary inputs pro-

viding neither a negative kinetic nor potential energy term. A positive functional is
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defined as in (2.17) with a different crossing term

C(t) = ρ

∫ L

0
xwxẇ dx. (2.40)

We can bound this crossing term with respect to the system energy as in (2.19)

with

η =
ρL

min (ρ, P )
.

The time derivative is calculated to be

V̇ ≤ −β

(
P

2
− Lδ2

)∫ L

0
w2

x
dx −

(
βρ

2
− δ1

)∫ L

0
ẇ2dx

+
(

1
δ1

+
βL

δ2

)∫ L

0
f2dx −

[
cb −

1
2
βL

(
c2
b

P
+ ρ

)]
ẇ2 (L, t) , (2.41)

where for sufficiently small β, δ1, and δ2,

cb ≥ 1
2
βL

(
c2
b

P
+ ρ

)
,

βρ

2
− δ1 > 0,

P

2
− Lδ2 > 0.
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The result in (2.41) can be cast in the form of (2.33) with

ε =
(

1
δ1

+
βL

δ2

)
max

t∈[0,∞)

∫ L

0
f2dx, (2.42)

λ3 =
min

[
βρ
2 − δ1, β

(
P
2 − Lδ2

)]
max (ρ, P )

. (2.43)

Therefore, (2.34) and (2.35) hold and w(x, t) ∈ L∞(0, L).

�

2.3 Distributed Beams

In this section, we investigate the b.i.b.o. stability of distributed and boundary

damped beams with distributed and boundary excitation. We assume the beams are

inextensible and homogeneous with uniform cross-section. The beams have mass/length

ρ and bending stiffness EI.

2.3.1 Distributed Damped Beams

Fig. 2.3 shows a schematic diagram of the distributed damped beam model.

The system has distributed forcing and prescribed boundary translations and rotations.

Distributed viscous and material damping are included. The equation of motion and

boundary conditions are

ρẅ + bẇ + Dẇxxxx + EIwxxxx = f, x ∈ (0, L), (2.44)
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wx0(t)
w0(t)

f(x,t)

wxL(t)
wL(t)

x

Fig. 2.3. Schematic diagram of a distributed damped beam with distributed and bound-
ary disturbances.

w(0, t) = w0 (t) , wx(0, t) = wx0 (t) ,

w(L, t) = wL (t) , wx(L, t) = wxL (t) ,

where b and D are the viscous and material damping coefficients and w0 (t), wx0 (t),

wL (t), and wxL (t) are prescribed boundary translations and rotations.

Theorem 2.3: The response of the damped beam governed by (2.44) is bounded,

w(x, t) ∈ L∞(0, L), if f , w0, ẇ0, ẅ0, wx0, ẇx0, ẅx0, wL, ẇL, ẅL, wxL, ẇxL, ẅxL ∈ L∞

and either b or D is nonzero.

Proof: We transform the model using

w∗(x, t) = w(x, t) −
(
a0 + a1x + a3x2 + a4x3

)
, (2.45)
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where

a0 = w0 (t) , a1 = wx0 (t) ,

a2 =
1

L2 (3wL − wxLL − 2wx0L − 3w0) ,

a3 =
1

L3 (3wx0L + wxL + 2wx − 2wL) ,

Substitution of (2.45) into (2.44) and dropping the ∗ yields

ρẅ + bẇ + Dẇxxxx + EIwxxxx = f, x ∈ (0, L), (2.46)

w(0, t) = 0, wx(0, t) = 0, w(L, t) = 0, wx(L, t) = 0,

where f∗ = f − ρ
(
ä0 + ä1x + ä2x2 + ä3x3

)
− b

(
ȧ0 + ȧ1x + ȧ2x2 + ȧ3x3

)
is bounded

by the theorem assumptions.

The energy of the beam

E =
1
2

∫ L

0
(ρẇ2 + EIw2

xx
)dx ≥ 0. (2.47)

Differentiation of the energy

Ė = −b

∫ L

0
ẇ2dx − D

∫ L

0
ẇẇxxxxdx +

∫ L

0
ẇfdx

−EI

∫ L

0
ẇwxxxxdx + EI

∫ L

0
wxxẇxxdx
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≤ − (b − δ1)
∫ L

0
ẇ2dx + Dẇxẇxx|L0 − D

∫ L

0
ẇ2

xx
dx +

1
δ1

∫ L

0
f2dx

+EIẇxwxx|L0 − EI

∫ L

0
wxxẇxxdx + EI

∫ L

0
wxxẇxxdx

≤ −
(

b +
D

2L4 − δ1

)∫ L

0
ẇ2dx − D

2

∫ L

0
ẇ2

xx
dx +

1
δ1

∫ L

0
f2dx, (2.48)

using integration by parts, inequalities (2.7) and (2.8), and the boundary conditions.

Both viscous and material damping match the disturbance input, producing a negative

kinetic energy term in Ė. The energy cannot be used to prove b.i.b.o. stability because

the time derivative lacks a − ∫ L
0 w2

xx
dx term that is found in E. We therefore add the

crossing term in (2.18) to form the positive functional as in (2.17). The crossing term

can be bounded with respect to the energy as in (2.19) with

η =
ρ max

(
1, L4

)
min (ρ, EI)

.

Differentiation of the crossing term yields an equation in the form of (2.21) with

Ċ1 =
∫ L

0
wfdx ≤ δ2L4

∫ L

0
w2

xx
dx +

1
δ2

∫ L

0
f2dx, (2.49)

Ċ2 = b

∫ L

0
wẇdx ≤ bL4δ3

∫ L

0
w2

xx
dx +

b

δ3

∫ L

0
ẇ2dx, (2.50)

where (2.7) and (2.9) are used. Integration by parts simplifies the last two terms to

Ċ3 = −EI

∫ L

0
wwxxxxdx = −EI

∫ L

0
w2

xx
dx, (2.51)

Ċ4 = −D

∫ L

0
wxẇxxxxdx ≤ Dδ4

∫ L

0
w2

xx
dx +

D

δ4

∫ L

0
ẇ2

xx
dx. (2.52)
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Substitution of (2.49) – (2.52) into (2.21) yields

Ċ ≤
(

ρ +
b

δ3

)∫ L

0
ẇ2 dx +

D

δ2

∫ L

0
ẇ2

xx
dx +

1
δ2

∫ L

0
f2dx

−
[
EI − (δ2 + bδ3) L4 − Dδ4

] ∫ L

0
w2

xx
dx (2.53)

providing the missing negative term in Ė. Combination of (2.48) and (2.53) results in

V̇ ≤ −β
[
EI − (δ2 + bδ3)L4 − Dδ4

] ∫ L

0
w2

xx
dx +

(
1
δ1

+
β

δ2

)∫ L

0
f2dx

−
[
b +

D

2L4 − δ1 − β

(
ρ +

b

δ3

)]∫ L

0
ẇ2dx − D

(
1
2
− β

δ4

)∫ L

0
ẇ2

xx
dx

≤ −λ3E (t) + ε, (2.54)

where

ε =
(

1
δ1

+
β

δ2

)
max

t∈[0,∞)

∫ L

0
f2dx < ∞,

and for sufficiently small β, δ1, δ2, δ3, and δ4,

1
2

≥ β

δ4
, (2.55)

ε1 = β
[
EI − (δ2 + bδ3)L4 − Dδ4

]
> 0, (2.56)

ε2 = b +
D

2L4 − δ1 − β

(
ρ +

b

δ3

)
> 0, (2.57)

λ3 =
min (ε1, ε2)
max (ρ, EI)

. (2.58)

Equations (2.20), (2.33), and (2.34) apply so V (t) < L∞ and
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EI

L3 λ1w2 ≤ EI

L2 λ1

∫ L

0
w2

x
dx ≤ λ1E(t) ≤ V (t) ∈ L∞. (2.59)

�

2.3.2 Boundary Damped Beams

wx0(t)

f(x,t)

wxxL(t)
w0(t)

x

Fig. 2.4. Schematic diagram of a boundary damped beam with distributed and bound-
ary disturbances.

Finally, we consider the boundary damped beam shown in Fig. 2.4. In this

case, the viscous and material damping are removed from the field equation and the

translational boundary condition at the right end is changed to a damper

ρẅ + EIwxxxx = f , x ∈ (0, L), (2.60)

w(0, t) = w0 (t) , wx(0, t) = wx0 (t) ,

wxx(L, t) = 0, EIwxxx(L, t) = cbẇ (L, t) ,
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where cb is the boundary damping gain.

Theorem 2.4: The response of the damped beam governed by (2.60) is bounded,

w(x, t) ∈ L∞(0, L), if f , w0, ẅ0, wx0, ẅx0 ∈ L∞ and cb > 0.

Proof: Using the transformation

w∗(x, t) = w(x, t) −
[
a0

(
x − L

L

)4
+ a1

(
x − L

L

)5
]

, (2.61)

where

a0 = 5w0(t) + wx0(t)L, a1 = 4w0(t) + wx0(t)L,

and f∗ = f − ρ

[
ä0

(
x−L

L

)4
+ ä1

(
x−L

L

)5
]
− 24EI

L4

[
a0 + 5a1(x−L)

L

]
.

We drop the ∗ to obtain

ρẅ + EIwxxxx = f , x ∈ (0, L), (2.62)

w(0, t) = 0, wx(0, t) = 0,

wxx(L, t) = 0, EIwxxx(L, t) = cbẇ (L, t) .

Combination of the energy (2.47) and the crossing term (2.40) produces a positive

functional as in (2.20) with

η =
ρLmax(1, L2)
min (ρ, EI)

.
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The time derivative

V̇ ≤ −
(

βρ

2
− δ1

)∫ L

0
ẇ2dx − β

[
3
2
EI − L3δ2 − cbL

2δ3

] ∫ L

0
w2

xx
dx

−
[
cb − βL

(
ρ

2
+

cb
δ3

)]
ẇ2 (L, t) +

(
1
δ1

+
βL

δ2

)∫ L

0
f2dx

≤ −λ3E + ε, (2.63)

where, for sufficiently small β, δ1, δ2, and δ3,

cb ≥ βL

(
ρ

2
+

cb
δ3

)
, (2.64)

ε =
(

1
δ1

+
βL

δ2

)
max

t∈[0,∞)

∫ L

0
f2dx < ∞, (2.65)

ε1 = β

(
3
2
EI − L3δ2 − cbL

2δ3

)
> 0, (2.66)

ε2 =
βρ

2
− δ1 > 0, (2.67)

λ3 =
min (ε1, ε2)
max (ρ, EI)

. (2.68)

Thus, (2.33), (2.34), and (2.59) apply, so w(x, t) ∈ L∞, ∀x ∈ (0, L).

�

2.4 Damped Membranes

For the damped membrane model shown in Fig. 2.5, we assume that the mem-

brane is inextensible and perfectly flexible, the in-plane stress P is constant, and bounded

distributed forcing f(x, t) is applied in the domain Ω. First, a membrane with distributed

viscous and material damping is considered. Then, we consider a membrane without
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damping in the field equation and with a damped boundary condition on Γ1 with the

remaining boundary Γ0 pinned.

2.4.1 Distributed Damped Membranes

The field equation, boundary conditions, and initial conditions of the damped

membrane are

ρẅ + bẇ − D∆ẇ − P∆w = f in Ω × R+, (2.69)

w(x, t) = 0 on Γ × R+, (2.70)

w(x, 0) = w0 on Ω, (2.71)

ẇ(x, 0) = ẇ0 on Ω, (2.72)

where dots indicate time differentiation, ρ is the mass/area, b is viscous damping, D is

Kelvin-Voigt damping, Γ is the boundary, Ω is the open, bounded, connected, Lipschitz,

2D domain, and n is the unit-normal vector to Γ pointing toward the exterior of Ω.

Theorem 2.5: The response of the damped membrane governed by (2.69) –

(2.72) is weakly bounded if either b or D is nonzero and f(x, t) is bounded ∀x ∈ Ω and

t > 0 (f ∈ L∞ (Ω)).

Proof: The energy of the membrane

E =
1
2

∫
Ω

(ρẇ2 + P |∇w|2)dx ≥ 0 (2.73)



36

 f(x,t)

w(x,t)

r(x)

x1
x2

Fig. 2.5. Schematic diagram of a distributed damped membrane with distributed dis-
turbances.
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has a time rate of change which can be upper bounded by

Ė =
∫
Ω

[ẇ (f − bẇ + D∆ẇ + P∆w) + P∇w · ∇ẇ] dx

≤ δ1

∫
Ω

ẇ2dx − b

∫
Ω

ẇ2dx + D

∫
Γ

∂ẇ

∂n
ẇdΓ + P

∫
Ω

(∇w · ∇ẇ) dx

−D

∫
Ω
|∇ẇ|2 dx + P

∫
Γ

∂w

∂n
ẇdΓ − P

∫
Ω

(∇w · ∇ẇ) dx +
1
δ1

∫
Ω

f2dx

≤ −
(

b +
D

2m1
− δ1

)∫
Ω

ẇ2dx − D

2

∫
Ω
|∇ẇ|2 dx +

1
δ1

∫
Ω

f2dx, (2.74)

where (2.3), (2.7), and (2.10) are used. Inequality (2.74) lacks the
∫
Ω |∇w|2 term that

appears in E. We therefore define a functional as (2.17) by adding the crossing term

C(t), where

C(t) = ρ

∫
Ω

ẇwdx. (2.75)

The functional V (t) is positive because

|C(t)| ≤ 1
2
ρ

∫
Ω

(
ẇ2 + w2

)
dx ≤ 1

2
ρ

∫
Ω

(
ẇ2 + m1 |∇w|2

)
dx

≤ ρ max (1, m1)
min (ρ, P )

1
2

∫
Ω

(
ρẇ2 + P |∇w|2

)
dx

= ηE, (2.76)

using inequalities (2.7) and (2.10), where

η =
ρ max (1, m1)

min (ρ, P )
. (2.77)
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This means that

0 ≤ λ1E(t) ≤ V (t) ≤ λ2E(t), (2.78)

where

λ1 = 1 − βη > 0,

λ2 = 1 + βη > 1,

for sufficiently small β. Differentiation of the crossing term produces

Ċ =
∫
Ω

ρẅ wdx +
∫
Ω

ρẇ2 dx

=
∫
Ω

(f − bẇ + D∆ẇ + P∆w) wdx + ρ

∫
Ω

ẇ2 dx

= ρ

∫
Ω

ẇ2 dx + Ċ1 + Ċ2 + Ċ3 + Ċ4. (2.79)

The terms in (2.79) simplify as follows

Ċ1 =
∫
Ω

fwdx ≤ δ2

∫
Ω

w2dx +
1
δ2

∫
Ω

f2dx

≤ δ2m1

∫
Ω
|∇w|2 dx +

1
δ2

∫
Ω

f2dx, (2.80)

Ċ2 = −
∫
Ω

bẇwdx ≤ bδ3

∫
Ω

w2dx +
b

δ3

∫
Ω

ẇ2dx

≤ bm1δ3

∫
Ω
|∇w|2 dx +

b

δ3

∫
Ω

ẇ2dx, (2.81)
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Ċ3 =
∫
Ω

Dw∆ẇdx = D

∫
Γ

∂ẇ

∂n
wdΓ − D

∫
Ω

(∇w · ∇ẇ) dx

≤ Dδ4

∫
Ω
|∇w|2 dx +

D

δ4

∫
Ω
|∇ẇ|2 dx, (2.82)

Ċ4 =
∫
Ω

Pw∆wdx =
∫
Γ

P
∂w

∂n
wdΓ − P

∫
Ω
|∇w|2 dx

= −P

∫
Ω
|∇w|2 dx, (2.83)

using the boundary condition (2.70) and (2.3), (2.7), and (2.10). Substitution of (2.80)

– (2.83) into (2.79) yields

Ċ ≤
(

ρ +
b

δ3

)∫
Ω

ẇ2 dx +
D

δ4

∫
Ω
|∇ẇ|2 dx +

1
δ2

∫
Ω

f2dx

− [P − (δ2 + bδ3)m1 − Dδ4]
∫
Ω
|∇w|2 dx. (2.84)

Substitution of the derivative of crossing term (2.84) into (2.17) produces

V̇ ≤ −
[
b +

D

2m1
− δ1 − β

(
ρ +

b

δ3

)]∫
Ω

ẇ2dx +
(

1
δ1

+
β

δ2

)∫
Ω

f2dx

−β [P − (δ2 + bδ3)m1 − Dδ4]
∫
Ω
|∇w|2 dx − D

(
1
2
− β

δ4

)∫
Ω
|∇ẇ|2 dx

≤ −λ3E + ε, (2.85)
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where, for sufficiently small β, δ1, δ2, δ3, and δ4,

1
2

≥ β

δ4
, (2.86)

ε1 = b +
D

2m1
− δ1 − β

(
ρ +

b

δ3

)
> 0, (2.87)

ε2 = β [P − (δ2 + bδ3)m1 − Dδ4] > 0, (2.88)

ε =
(

1
δ1

+
β

δ2

)
max

t∈[0,∞)

∫
Ω

f2dx < ∞, (2.89)

λ3 =
min

(
ε1,ε2

)
max (ρ, P )

> 0 (2.90)

for bounded f . Using (2.78), we obtain

V̇ ≤ −λV + ε, (2.91)

where λ = λ3/λ2, with the solution

V (t) ≤ V (0)e−λt +
ε

λ
∈ L∞ (2.92)

and

E(t) ≤ 1
λ1

V (t) ∈ L∞. (2.93)

�

Thus, the system is weakly stable with respect to the energy norm.
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2.4.2 Boundary Damped Membranes

We remove the distributed damping in (2.69) to obtain the two dimensional wave

equation with partially damped boundary conditions shown in Fig. 2.6. The governing

equations are

ρẅ − P∆w = f in Ω × R+, (2.94)

w = 0 on Γ0 × R+, (2.95)

P
∂w

∂n
+ cẇ = 0 on Γ1 × R+, (2.96)

where Γ = Γ0 ∪ Γ1, c is boundary damping coefficient, and the initial conditions are

given in (2.71) and (2.72). We assume the boundary normals satisfy

r · n ≤ 0 on Γ0, (2.97)

r · n > 0 on Γ1, (2.98)

where r = x − x0 and x0 ∈ R
2 [38, 40].

Theorem 2.6: The response of the boundary damped membrane governed by

(2.94) – (2.96) is weakly bounded if c > 0, f ∈ L∞ (Ω), and the boundary normal

conditions (2.97) and (2.98) are satisfied.

Proof: The energy given in (2.73) has a time derivative

Ė =
∫
Ω

(ẇf + Pẇ∆w + P∇w · ∇ẇ)dx

≤ −c

∫
Γ1

ẇ2dΓ + δ1

∫
Ω

ẇ2dx +
1
δ1

∫
Ω

f2dx, (2.99)
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 f(x,t)

w(x,t)

r(x)

x1

1
0

x2

Γ
Γ

Fig. 2.6. Schematic diagram of a boundary damped membrane with distributed distur-
bances.
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using (2.3), (2.7), and (2.96).

The boundary damper does not match the distributed input, providing neither a

negative kinetic nor potential energy domain integral. A positive functional is defined

as in (2.17) with a different crossing term

C(t) = C1 + C2, (2.100)

where C1 = 2
∫
Ω ρẇ (r · ∇w) dx and C2 =

∫
Ω ρẇ wdx.

We bound the crossing term (2.100) with respect to the system energy as follows:

|C(t)| ≤ 2ρR

∫
Ω
|ẇ| |∇w| dx +

1
2
ρ

∫
Ω

(
ẇ2 + w2

)
dx

≤ 2ρR

2

∫
Ω

(
ẇ2 + |∇w|2

)
dx +

1
2
ρ

∫
Ω

(
ẇ2 + m1 |∇w|2

)
dx

≤ ηE, (2.101)

using (2.7) and (2.10), where

R = sup
Γ1

‖r(x)‖ , (2.102)

η =
ρ max [(2R + 1) , (2R + m1)]

min (ρ, P )
. (2.103)

The time derivative of the crossing term (2.100) depends on

Ċ1 = 2
∫
Ω

(f + P∆w) (r · ∇w) dx + 2ρ

∫
Ω

ẇ (r · ∇ẇ) dx
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≤ 2R

∫
Ω
|f | |∇w| dx + 2P

∫
Ω

∆w (r · ∇w) dx + 2ρ

∫
Ω

ẇ (r · ∇ẇ) dx

≤ 2Rδ2

∫
Ω
| ∇w|2 dx +

2R

δ2

∫
Ω

f2dx + Ċ3 + Ċ4, (2.104)

where inequality (2.7) is used.

The third term in (2.104) simplifies as follows

Ċ3 = 2P

∫
Ω

∆w (r · ∇w) dx

= 2P

∫
Γ

(r · n) |∇w|2 dΓ − 2P

∫
Ω
|∇w|2 dx − P

∫
Ω

r · ∇
(
|∇w|2

)
dx

≤ Rc2

P

∫
Γ1

ẇ2dΓ, (2.105)

using the boundary conditions (2.95) and (2.96), (2.2) – (2.4), and (2.7). Based on (2.2)

and the boundary condition (2.97), 2P
∫
Γ0

(r · n) |∇w|2 dΓ ≤ 0 is dropped from (2.105).

The forth term in Eq. (2.104),

Ċ4 = 2ρ

∫
Ω

ẇ (r · ∇ẇ) dx

≤ 2ρR

∫
Γ1

ẇ2dΓ − 4ρ

∫
Ω

ẇ2dx − Ċ4, (2.106)

using the boundary conditions, (2.2), and (2.7). Solving (2.106),

Ċ4 ≤ ρR

∫
Γ1

ẇ2dΓ − 2ρ

∫
Ω

ẇ2dx. (2.107)
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The time derivative of crossing term C2

Ċ2 =
∫
Ω

(f + P∆w)w dx + ρ

∫
Ω

ẇ 2dx

≤ −
[
P − δ3m1 − 1

2
cm2

] ∫
Ω
|∇w|2 dx + ρ

∫
Ω

ẇ2dx

+
1
δ3

∫
Ω

f2dx +
1
2
c

∫
Γ1

ẇ2dΓ, (2.108)

using (2.3), (2.7), (2.10), and (2.11). Substitution of (2.100), (2.104), (2.105), and

(2.107) into (2.17) yields

V̇ ≤ −β

[
P − 2Rδ2 − δ3m1 − 1

2
cm2

] ∫
Ω
|∇w|2 dx − (βρ − δ1)

∫
Ω

ẇ2dx

+
[

1
δ1

+ β

(
2R

δ2
+

1
δ3

)]∫
Ω

f2dx

−
{

c − β

[
R

(
c2

P
+ ρ

)
+

1
2
c

]}∫
Γ1

ẇ2dΓ, (2.109)

where for sufficiently small β, δ1, δ2, and δ3,

c ≥ β

[
R

(
c2

P
+ ρ

)
+

1
2
c

]
, (2.110)

ε1 = βρ − δ1 > 0, (2.111)

ε2 = β

[
P − 2Rδ2 − δ3m1 − 1

2
cm2

]
> 0, (2.112)

ε =
(

1
δ1

+
2βR

δ2
+

β

δ3

)
max

t∈[0,∞)

∫
Ω

f2dx, (2.113)

λ3 =
min

(
ε1,ε2

)
max (ρ, P )

> 0. (2.114)

Therefore, (2.93) holds and the response is weakly bounded.
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a 

bc

d
1

x0

Γ

1Γ

1Γ

0Γ

Fig. 2.7. Circular (solid) and rectangular (dashed) domain showing damped (thin) and
undamped (thick) boundaries.
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The partially damped boundary normal conditions (2.97) and (2.98) require damp-

ing on part of the boundary (Γ1 �= ∅). We are free to choose x0 to determine the

minimal Γ1 for stability. If x0 is located at the center of a star shaped domain, then

the entire boundary has r · n > 0 so Γ1 = Γ and the entire boundary must be damped.

Locating x0 outside Ω, however leads to Γ0 �= ∅ and part of the boundary need not be

damped. Fig. 2.7 shows example circular (solid) and rectangular (dashed) domains with

x0 /∈ Ω. In both cases, damping is not required on ab. In the limit as x0 → ∞, half

of the circular domain is damped. For the rectangular domain as x0 → ∞, r · n < 0 on

ab and r · n = 0 on bc and da, so r · n ≤ 0 on da ∪ ab ∪ bc. Thus, only one side cd = Γ1

requires damping.

2.5 Distributed Plates

In this section, we investigate the stability of distributed and boundary damped

Kirchhoff plates with distributed excitation. We assume the plates are inextensible and

homogeneous with uniform cross-section.

2.5.1 Distributed Damped Plates

The field equation of the distributed damped plate includes distributed viscous

and material damping and forcing:

ρẅ + bẇ + D∆2ẇ + DE∆2w = f in Ω × R+, (2.115)



48

with boundary condition

w = 0 on Γ × R+, (2.116)

∂w

∂n
= 0 on Γ × R+, (2.117)

where DE is the plate flexural rigidity. The initial conditions are given in (2.71) and

(2.72).

Theorem 2.7: The response of the damped plate governed by (2.115) – (2.117)

is weakly bounded if either b or D is nonzero and f ∈ L∞.

Proof: The energy of the plate is

E =
1
2

∫
Ω

⎧⎨
⎩2 (1 − µ)

⎡
⎣
(

∂2w

∂x1∂x2

)2
− ∂2w

∂x2
1

∂2w

∂x2
2

⎤
⎦ + ρẇ2 + DE (∆w)2

⎫⎬
⎭ dx, (2.118)

where µ is Poisson’s ratio. The Gaussian curvature 2 (1 − µ)

[(
∂2w

∂x1∂x2

)2
− ∂2w

∂x2
1

∂2w
∂x2

2

]

complicates the energy. For a clamped plate with either a rectangular domain or a

smooth boundary, however, the Gaussian curvature integral is zero [60].

Elimination of the Gaussian curvature integral and differentiation of (2.118) pro-

duces

Ė =
∫
Ω

[
ẇ
(
f − bẇ − D∆2ẇ − DE∆2w

)
+ DE∆w∆ẇ

]
dx

≤ −
(

b +
D

2m2
1
− δ1

)∫
Ω

ẇ2dx − D

2

∫
Ω

(∆ẇ)2 dx +
1
δ1

∫
Ω

f2dx, (2.119)

where (2.2), (2.3), (2.7), and (2.10) are used.
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Both viscous and material damping match the disturbance input, producing a

negative kinetic energy term in Ė. The energy cannot be used to prove stability, how-

ever, because the time derivative lacks the − ∫
Ω (∆w)2 dx term that is found in E. We

therefore add the crossing term in (2.75) to form positive functional (2.17). The crossing

term can be bounded by (2.76), where

η =
ρ max

(
1, m2

1

)
min (ρ, DE)

. (2.120)

The time derivative of the crossing term (2.75) has the form of (2.84) with

Ċ3 ≤ Dδ4

∫
Ω

(∆w)2 dx +
D

δ4

∫
Ω

(∆ẇ)2 dx (2.121)

and

Ċ4 = −DE

∫
Ω

(∆w)2 dx. (2.122)

Substitution of (2.80), (2.81), (2.121), and (2.122) into (2.84) produces

V̇ ≤ −
[
b +

D

2m2
1
− δ1 − β

(
ρ +

b

δ3

)]∫
Ω

ẇ2dx − D

(
1
2
− β

δ4

)∫
Ω

(∆ẇ)2 dx

−β
[
DE − (δ2 + bδ3)m2

1 − Dδ4

] ∫
Ω

(∆w)2 dx +
(

1
δ1

+
β

δ2

)∫
Ω

f2dx

≤ −λ3E + ε, (2.123)
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where, for sufficiently small β, δ1, δ2, δ3, and δ4,

1
2

≥ β

δ4
, (2.124)

ε1 = b +
D

2m2
1
− δ1 − β

(
ρ +

b

δ3

)
> 0, (2.125)

ε2 = β
[
DE − (δ2 + bδ3)m2

1 − Dδ4

]
> 0, (2.126)

ε =
(

1
δ1

+
β

δ2

)
max

t∈[0,∞)

∫
Ω

f2dx < ∞, (2.127)

λ3 =
min (ε1, ε2)
max (ρ, DE)

> 0. (2.128)

Therefore, (2.93) holds and the system is weakly stable.

�

2.5.2 Boundary Damped Plates

For the boundary clamped plate model, the viscous and material damping are

removed from the field equation and clamped boundary condition is changed to a damper

on Γ1. The field equation and boundary conditions are

ρẅ + DE∆2w = f in Ω × R+, (2.129)

w = 0 on Γ0 × R+, (2.130)

∂

∂n
w = 0 on Γ0 × R+, (2.131)

∆w = 0 on Γ1 × R+, (2.132)

DE
∂

∂n
∆w − cẇ = 0 on Γ1 × R+, (2.133)
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and the initial conditions are given in (2.71) and (2.72)

Theorem 2.8: The response of the boundary damped plate governed by (2.129)

– (2.133) is bounded if c > 0, f ∈ L∞ (Ω), and the normal boundary conditions (2.97)

and (2.98) are satisfied.

Proof: The time derivative of the energy

Ė ≤ −c

∫
Γ1

ẇ2dΓ + δ1

∫
Ω

ẇ2dx +
1
δ1

∫
Ω

f2dx, (2.134)

using boundary conditions and (2.7).

The boundary damper does not match the distributed input, providing neither

a negative kinetic nor potential energy domain integral term. A positive functional is

defined as in (2.17) with a different crossing term

C(t) =
∫
Ω

ρẇ (r · ∇w) dx. (2.135)

We can bound this crossing term with respect to the system energy as in (2.101)

using (2.7), (2.10), and (2.11), where

η =
ρR max(1, m1)
min (ρ, DE)

. (2.136)

The time derivative of the crossing term

Ċ =
∫
Ω

(
f − DE∆2w

)
(r · ∇w) dx +

∫
Ω

ρẇ (r · ∇ẇ) dx

≤ Rm1δ2

∫
Ω

(∆w)2 dx +
R

δ2

∫
Ω

f2dx + Ċ3 + Ċ4, (2.137)
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using (2.2), (2.4), (2.7), and (2.10).

The third term in (2.137) simplifies as follows

Ċ3 = −
∫
Ω

DE∆2w (r · ∇w) dx

= −DE

∫
Γ

∂∆w

∂n
(r · ∇w) dΓ + DE

∫
Γ

∆w
∂

∂n
(r · ∇w) dΓ

−DE

∫
Ω

∆ (r · ∇w) ∆wdx

= −DE

∫
Γ

∂∆w

∂n
(r · ∇w) dΓ − 1

2
DE

∫
Ω

r · ∇ (∆w)2 dx

+DE

∫
Γ

∆w [∇ (r · ∇w) · n] dΓ − 2DE

∫
Ω

(∆w)2 dx

≤ Rc

δ3

∫
Γ1

ẇ2dΓ + Rcδ3

∫
Γ1

|∇w|2 dΓ − DE

∫
Ω

(∆w)2 dx

+
1
2
DE

∫
Γ0

(r · n) (∆w)2 dΓ

≤ − (DE − Rcm2δ3)
∫
Ω

(∆w)2 dx +
Rc

δ3

∫
Γ1

ẇ2dΓ, (2.138)

using the boundary conditions and (2.2) – (2.7), and (2.10). Based on the boundary

conditions (2.97), 1
2DE

∫
Γ0

(r · n) (∆w)2 dΓ ≤ 0 can be dropped. The fourth term in

(2.137),

Ċ4 =
∫
Ω

ρẇ (r · ∇ẇ) dx ≤ ρR

2

∫
Γ1

ẇ2dΓ − ρ

∫
Ω

ẇ2dx, (2.139)

using boundary conditions and (2.2), (2.4), and (2.102).



53

Substitution of (2.134), (2.137) – (2.139) into (2.17) produces

V̇ ≤ −
[
c − βR

(
ρ

2
+

c

δ3

)]∫
Γ1

ẇ2dΓ − (βρ − δ1)
∫
Ω

ẇ2dx

−β [DE − R (m1δ2 − cm2δ3)]
∫
Ω

(∆w)2 dx +
(

1
δ1

+
βR

δ2

)∫
Ω

f2dx

≤ −λ3E + ε, (2.140)

where, for sufficiently small β, δ1, δ2, and δ3,

c ≥ βR

(
ρ

2
+

c

δ3

)
, (2.141)

ε1 = βρ − δ1 > 0, (2.142)

ε2 = β (DE − Rm1δ2 − Rcm2δ3) > 0, (2.143)

ε =
(

1
δ1

+
βR

δ2

)
max

t∈[0,∞)

∫
Ω

f2dx < ∞, (2.144)

λ3 =
min (ε1, ε2)
max (ρ, DE)

> 0. (2.145)

Therefore, (2.93) holds and the response is weakly stable.

�
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Chapter 3

Iterative Learning Velocity and Tension Control

for Axially Moving Materials

In this chapter, we apply the ILC approach in [55] to a single span axially moving

material system with bounded periodic velocity perturbations at one boundary roller

and a control torque applied to the other boundary roller. First, we prove boundedness

of the distributed response under PD control [66]. Then we prove boundedness of the

ILC controlled system and compare the simulated response of open loop, PD, and ILC

control.

3.1 System Model

Figure 3.1 shows a schematic diagram of the axially moving material model. The

axial motion u(x, t) depends on position x and time t. The right end (x = L) undergoes

prescribed periodic motion with u̇L (t) = u̇L (t + T ). The left end (x = 0) is controlled

by the torque input τ0 (t) applied to a pulley with radius r0, rotary inertia J0, and applied

upstream tension PB . The material has uniform axial stiffness EA and mass/length ρ.

The linear field equation is

ρü − EA uxx = 0 ∀ x ∈ (0, L), (3.1)
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u(x,t) uL(t)

x

PB

J0 P, EAr0

t0

Fig. 3.1. Schematic diagram of an axially moving material system.
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where
(·) and subscript x indicate time and spatial differentiation, respectively. The

boundary conditions are

mü (0, t) − EA ux (0, t) = f0 (t) , (3.2)

u (L, t) = uL (t) , (3.3)

where m = J0
r2
0

and f0 (t) = τ0(t)
r0

− PB . The string tension

P (x, t) = EAux (x, t) . (3.4)

We transform the displacement field

υ (x, t) = uL (t) − u (x, t) +
PD
EA

(x − L) , (3.5)

where PD is the constant desired material tension. The transformed Eq. (3.1)

ρϋ (x, t) − EA υxx (x, t) = ρüL (t) ∀ x ∈ (0, L), (3.6)

and boundary conditions

mϋ (0, t) − EA υx (0, t) + PD = müL (t) − f0 (t) , (3.7)

υ (L, t) = 0. (3.8)
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We assume the model described by Eqs. (3.7) and (3.8) is well posed and has an unique

solution for all f0 (t), u̇L (t), and üL (t) ∈ L∞.

If we design f0 (t) to ensure υ (x, t) = 0, then u (x, t) = uL (t) + PD
EA (x − L)

and P (x, t) = PD. The material translates under constant tension, PD. In addition,

u (0, t) = uL (t)− PDL
EA . So the left end follows the right end displacement offset by the

constant material stretch. In practice, uL (t) may be unknown, so the result υ (x, t) = 0

may not be achieved. If υ (x, t) can be shown to be bounded, however, then the tension

and displacement will be weakly and pointwise bounded, respectively.

3.2 Control Formulation

We define the combined velocity/tension setpoint error

η (t) = υ̇ (0, t) − κυx (0, t) = u̇L (t) − ηm (t) , (3.9)

using Eqs. (3.4) and (3.5), where κ is a positive scalar control gain and ηm (t) =

u̇ (0, t) + κ
EA [PD − P (0, t)] is the measurable part of η (t). In Theorem 3.1 we show

that PD tension plus D velocity feedback can ensure exponential transient υ (x, t) decay

and bounded υ (x, t) in the presence of bounded disturbance u̇L, üL ∈ L∞.

Theorem 3.1: In the absence of a disturbance (üL (t) ≡ 0), the response υ (x, t)

of the system governed by Eqs. (3.6) – (3.8) decays exponentially for a control law of

the form

f0 (t) =
mκ

EA
Ṗ (0, t) − P (0, t) − ksηm (t) . (3.10)

With a bounded disturbance (u̇L (t), üL (t) ∈ L∞), υ (x, t) is bounded.
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Proof: We define a Lyapunov functional

V (t) = Es (t) + Ec (t) +
1
2
mη2, (3.11)

where the energy related term

Es (t) =
1
2
βs

∫ L

0
(ρυ̇2 + EA υ2

x
)dx ≥ 0 (3.12)

includes kinetic and potential energy and the crossing term

Ec (t) = 2βcρ

∫ L

0
(x − L) υ̇υxdx. (3.13)

where βs and βc are constants. Ec (t) can be bounded by

|Ec (t)| ≤ βcρL

∫ L

0

(
υ̇2 + υ2

x

)
dx = ξEs (t) (3.14)

using inequality (2.7), where

ξ =
2βcρL

βs min (ρ, EA)
.

This means that

0 ≤ (1 − ξ) Es ≤ Es + Ec ≤ (1 + ξ)Es.

Therefore, we can obtain the upper and lower bounds,

0 ≤ λ1

(
Es + η2

)
≤ V ≤ λ2

(
Es + η2

)
, (3.15)
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where

λ1 = min
(
ξ1,

m

2

)
> 0,

λ2 = max
(
ξ2,

m

2

)
> 1.

The time derivative of Eq. (3.12)

Ės = βsρ

∫ L

0
üLυ̇dx + βsEA

∫ L

0
υxxυ̇dx + βsEA

∫ L

0
υxυ̇xdx

= βsρ

∫ L

0
üLυ̇dx − βsEAυx (0, t) υ̇ (0, t)

= βsρ

∫ L

0
üLυ̇dx − βsEA

2κ
υ̇2 (0, t) +

βsEA

2κ
η2 − βsκEA

2
υ2
x

(0, t) (3.16)

using Eq. (3.9).

The time derivative of Eq. (3.13) simplifies to

Ėc = 2βcρ

∫ L

0
(x − L) üLυxdx + 2βcρ

∫ L

0
(x − L) υ̇υ̇xdx

+2βcEA

∫ L

0
(x − L) υxxυxdx

= 2βc

[
ρ

∫ L

0
(x − L) üLυxdx − EA

∫ L

0
υ2
x
dx

−ρ

∫ L

0
υ̇2dx − EA

∫ L

0
(x − L) υxxυxdx

ρ (x − L) υ̇2|L0 + EA (x − L) υ2
x
|L0 − ρ

∫ L

0
(x − L) υ̇υ̇xdx

= βc

[
2ρ

∫ L

0
(x − L) üLυxdx + EALυ2

x
(0, t)

+ρLυ̇2 (0, t) − EA

∫ L

0
υ2
x
dx − ρ

∫ L

0
υ̇2dx

]
, (3.17)
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using the boundary conditions (3.7) and (3.8).

The time derivative of the final term in Eq. (3.11)

d

dt

(
1
2
mη2

)
= η [mϋ (0, t) − mκυ̇x (0, t)]

= η [müL + EAυx (0, t) − f0 − PD − mκυ̇x (0, t)]

= η
{

müL − P (0, t) +
mκ

EA
Ṗ (0, t) − mκ

EA
Ṗ (0, t)

+P (0, t) + ks

{
u̇ (0, t) +

κ

EA
[PD − P (0, t)]

}}

= η [−ksη + müL + ksu̇L]

= −ksη
2 + ηq(t), (3.18)

using Eqs. (3.4), (3.5), (3.7), (3.9), and (3.22), where

q (t) = müL + ksu̇L. (3.19)

Substitution of Eqs. (3.16) – (3.18) into Eq. (3.11) produces

V̇ = −
(

ks −
βsEA

2κ

)
η2 −

(
βsκEA

2
− βcEAL

)
υ2
x

(0, t)

+ηq − βcρ

∫ L

0
υ̇2dx − βcEA

∫ L

0
υ2
x
dx + βsρ

∫ L

0
üLυ̇dx

−
(

βsEA

2κ
− βcρL

)
υ̇2 (0, t) + 2βcρ

∫ L

0
(x − L) üLυxdx

≤ −
(

ks −
βsEA

2κ
− δ3

)
η2 − ρ (βc − βsδ1)

∫ L

0
υ̇2dx

−βc (EA − 2ρLδ2)
∫ L

0
υ2
x
dx + ε

≤ −λV + ε, (3.20)
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where

ε1 = ρ (βc − βsδ1) > 0,

ε2 = βc (EA − 2ρLδ2) > 0,

ε3 = ks −
βsEA

2κ
− δ3 > 0,

for sufficiently small βs, δ1, δ2, and δ3,

ε = ρL

(
βs
δ1

+
2βcL

δ2

)
max

t∈[0,∞)

(
ü2
L

)
+

1
δ3

max
t∈[0,∞)

(müL + ksu̇L)2 ∈ L∞,

and

λ3 =
2 min (ε1, ε2)

βs max (ρ, EA)
,

λ =
min (λ3, ε3)
max

(
λ3, m

2
) .

In the absence of a disturbance (uL = 0), we have ε = 0 and υ and V decay

exponentially. Using Eqs. (2.8), (3.12), and (3.15), we can show

βsEA

2L
υ2 (x, t) ≤ βsEA

2

∫ L

0
υ2
x

(x, t) dx ≤ Es ≤ V (3.21)

So u (x, t) → PD
EA (x − L) exponentially using Eq. (3.5). With disturbance, V ∈ L∞ and

using inequality (3.21), υ (x, t) and u (x, t) ∈ L∞. We cannot show pointwise bounded-

ness of P (x, t) but inequality (3.21) implies weak boundedness.

�
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Theorem 3.1 shows that bounded inputs produce bounded response for the control

law (3.10). In Theorem 3.2 we prove that the control law can be augmented with an

iterative feedforward term if u̇L (t) = u̇L (t + T ). The iterative control law

f0 (t) = f0,j (τ) =
mκ

EA
Ṗ (0, t) − P (0, t) + ∆j (τ) − ksηm (t) (3.22)

where τ = t − jT ∈ [0, T ] and j indicates the trial number that relates to the local time

τ during each trial to time t. The learning term ∆j is designed to compensate the

unknown time function while maintaining stability. It is updated from trial to trial by

the following learning law: for τ ∈ [0, T ] and j ≥ 0,

γ∆̇j + (1 + β) ∆j = (1 − γ) ∆j−1 − ηm, (3.23)

where β ≥ 0 and 0 < γ < 1 are control gains. The conditions for the ILC are

∆−1 = 0, (3.24)

∆j (0) = ∆j−1 (T ) . (3.25)

Theorem 3.2: The control law (3.22) – (3.25) ensures that the response of the

system (3.6) and (3.8) υ (x, t) ∈ L∞ for any uL (t) = uL (t + T ) with u̇L (t), üL (t), and

...
uL (t) ∈ L∞.

Proof: We define the Lyapunov functional V (t), the energy related term Es (t)

and the crossing term Ec (t) as in (3.11) – (3.13). The time derivative of the boundary
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term

d

dt

(
1
2
mη2

)
= η

{
müL − P (0, t) +

mκ

EA
Ṗ (0, t) − mκ

EA
Ṗ (0, t) + P (0, t)

−∆j (τ) + ks

{
u̇ (0, t) +

κ

EA
[PD − P (0, t)]

}}

= −ksη
2 + η

[
q(t) − ∆j (τ)

]
, (3.26)

using Eqs. (3.4), (3.5), (3.7), (3.9), and (3.22).

Substitution of Eqs. (3.16), (3.17), and (3.26) into (3.11) produces

V̇ ≤ −
(

ks −
βsEA

2κ

)
η2 − ρ (βc − βsδ1)

∫ L

0
υ̇2dx

−βc (EA − 2ρLδ2)
∫ L

0
υ2
x
dx + η

[
q − ∆j (τ)

]
+ ε

≤ −λV + ε + η
[
q − ∆j (τ)

]
, (3.27)

where

βsEA

2κ
≥ βcρL,

βsκ

2
≥ βcL,

ε1 = ρ (βc − βsδ1) > 0,

ε2 = βc (EA − 2ρLδ2) > 0,

ε3 = ks −
βsEA

2κ
> 0,
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for sufficiently small δ1, δ2, and βs. The constant

ε = ρL

(
βs
δ1

+
2βcL

δ2

)
max

t∈[0,∞)

(
ü2
L

)
∈ L∞,

and the exponent

λ =
min (λ3, ε3)
max

(
λ3, m

2
) .

where λ3 = 2min(ε1,ε2)
βs max(ρ,EA) . Eq. (3.27) can be rewritten as

V̇ ≤ −λV + ε + (u̇L − ηm)
[
q − ∆j (τ)

]
. (3.28)

Now we define a positive function for the learning algorithm

Lj =
1
2

(1 − γ)
∫ T

0

[
q (τ) − ∆j (τ)

]2
dτ +

1
2
γ
[
q (T ) − ∆j (T )

]2
. (3.29)

The incremental change of Lj from trial j − 1 to j is

δLj = Lj − Lj−1

=
1
2
γ

{[
q (T ) − ∆j (T )

]2 −
[
q (T ) − ∆j−1 (T )

]2}

+
1
2

(1 − γ)
∫ T

0

[(
q − ∆j

)2 −
(
q − ∆j−1

)2
]

dτ

=
1
2

(1 − γ)
∫ T

0

[(
q − ∆j

)2 −
(
q − ∆j−1

)2
]

dτ

+
1
2
γ

{[
q (T ) − ∆j (T )

]2 −
[
q (0) − ∆j (0)

]2}
,
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using (3.25) and q (T ) = q (0). Further simplification produces

δLj =
1
2

(1 − γ)
∫ T

0

[(
q − ∆j

)2 −
(
q − ∆j−1

)2
]

dτ

+
1
2
γ

∫ T

0

d

dt

[(
q − ∆j

)2
]

dτ

=
1
2

(1 − γ)
∫ T

0

[(
q − ∆j

)2 −
(
q − ∆j−1

)2
]

dτ

+γ

∫ T

0

(
q − ∆j

)(
q̇ − ∆̇j

)
dτ

=
∫ T

0

{
−

(
q − ∆j

)
(u̇L − ηm) − β

(
q − ∆j

)2

−1
2

(1 − γ)
(
∆j−1 − ∆j

)2

−
{

1
2
√

γ
[γq̇ + (β − γ) q + u̇L] +

√
γ∆j

}2

+
1
4γ

[γq̇ + (β + γ) q + u̇L]2
}

dτ (3.30)

using Eq. (3.23). Finally, discarding the negative third and fourth terms in Eq. (3.30)

δLj ≤
∫ T

0

[
d − β

(
q − ∆j

)2 −
(
q − ∆j

)
(u̇L − ηm)

]
dτ, (3.31)

where

d (t) =
1
4γ

[γq̇ + (β + γ) q + u̇L]2 ∈ L∞ (3.32)

by the Theorem assumptions.

Now we combine Eqs. (3.11) and (3.29) to produce

VT (t) = V (t) + VL (t) > 0, (3.33)
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with

VL =
1
2

(1 − γ)
∫ t

t−T
(q − ∆)2 dτ +

1
2
γ (q − ∆)2 , (3.34)

where for all j ≥ 0

∆ (τ) = ∆j (t − jT ) τ ∈ [jT, (j + 1)T ] . (3.35)

The learning law (3.23) can be rewritten as

γ∆̇ (t) + (1 + β) ∆ (t) = (1 − γ) ∆ (t − T ) − ηm. (3.36)

Substituting Eq. (3.36) into the time derivative of Eq. (3.34) yields

V̇L ≤ d − β [q (t) − ∆ (t)]2 − [q (t) − ∆ (t)] (u̇L − ηm) . (3.37)

Substitution of Eq. (3.37) into the time derivative of (3.33) produces

V̇T ≤ −λV + ε + (u̇L − ηm)
[
q − ∆j (τ)

]
+ d

− [q (t) − ∆ (t)] (u̇L − ηm) − β [q (t) − ∆ (t)]2 (3.38)

using Eq. (3.37). The right hand side of inequality (3.38) contains all the terms in

Eq. (3.33) with negative coefficients except
∫ t
t−T

(q − ∆)2 dτ term in VL. Bound-

edness of the integrand, however, implies boundedness of the finite integral because

∫ t
t−T

(q − ∆)2 dτ ≤ T max
t∈(t−T,t)

(q − ∆)2. Thus, for sufficiently large VT , V̇T < 0 so
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VT ∈ L∞ [54] and

βsEA

2L
υ2 (x, t) ≤ βsEA

2

∫ L

0
υ2
x

(x, t) dx ≤ Es ≤ V ≤ VT ∈ L∞,

using (2.8), (3.12), (3.15), and (3.33).

�

3.3 Simulation

In this section, numerical simulation verifies the stability and performance of the

open loop system and PD and ILC closed loop systems. Eq. (3.1) can be rewritten in

the form

ϋ + Aυ = Bf ,

where υ(x, t) = [υ(x, t) υ(0, t)]T ∈ H denotes the composite displacement vector that

contains all dynamic distributed and lumped displacement, A is the stiffness matrix

operator with Aυ = −EA
[
υ
xx

(x) υ
xx

(0)
]
T

, B is the control input operator, and f

∈ R
m is the control input vector with Bf =

[
ρü

L
(t) mü

L
(t) − f0 (t)

]
T

.

The system is discretized using a four admissible function expansion

υ(x, t) =
4
Σ

j=1
q
j
(t) Φ

j
(x) ,

with

Φ
j
(x) =

[
Φ

j
(x) Φ

j
(0)

]
T
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and free-pinned string eigenfunctions for Φ
j
(x). Application of Galerkin’s method pro-

duces the discretized equations.

These equations and Eq. (3.36) are numerically integrated using Matlab with the

parameters in Table 3.1.

Table 3.1. Simulation Parameters
Parameters Values
Equivalent mass m 0.5 [kg]
Span length L 1.5 [m]
Material linear density ρ 0.01 [kg/m]
Material Young’s modulus EA 1000 [N ]
Desired tension P

D
50 [N ]

Figure 3.2 shows the stop-start u̇
L

(t) used in simulation. Figures 3.2(a)-(b) show

the right end starts with constant acceleration at 24 m/s2 and then switches to −24 m/s2.

The material dwells at zero velocity to produce an overall T = 0.042 s, near the first

natural frequency of the open loop system (12 Hz). The speed trajectory corresponds

to forward indexing of the material and does not satisfy the bounded jerk assumption of

Theorem 3.2. Figure 3.2 (c) shows the open loop velocity error υ̇ (0, t) = u̇
L

(t)− u̇ (0, t)

from Eq. (3.5) is almost ten times the input velocity. Figure 3.2(d) shows almost 100%

tension error.

Figure 3.3 shows velocity error, learning term ∆, tension error, and control force

at the left transport under PD and ILC control using control gains in the Table 3.2.
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D
−
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Table 3.2. Control Gains
Parameters Values
κ 100
k
s

10
β 0.01
γ 0.0001

The PD controller reduces the velocity and tension errors by an order of magnitude

to less than 0.3 m/s and 3 N, respectively. The iterative term in Fig. 3.3(b) slowly

increases as the controller learns the periodic disturbance. The velocity and tension

errors decrease to less than 0.15 m/s and 1 N by the end of the simulation (t = 3 s). The

ILC controller uses almost the same control effort amplitude to achieve this performance

improvement.

3.4 Robustness

The ILC control law (3.22) and (3.23) depends on P (0, t) and u̇ (0, t) which are

measured tension and velocity at controlled roller, Ṗ (0, t) which can be calculated by

time derivative of measured tension, and the desired tension P
D

. The control law also

requires exact knowledge of the parameters m and EA. EA appears in two places in

Eq. (3.22) in the form m/EA. Thus, changes in EA scale the control gain κ and may

lead to changes in performance but not stability. Changes in m, however, directly affect

a feedforward term in (3.22) so instability is possible.

To investigate the stability and performance robustness of the ILC controller,

we simulate the following cases: (i) m = 0.067 kg, EA = 667 N; (ii) m = 0.067 kg,
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EA = 1500 N; (iii) m = 0.15 kg, EA = 667 N; and (iv) m = 0.15 kg, EA = 1500 N with

the same control gains in Table 3.2. These cases correspond to ±3 dB changes in m and

EA. The simulation results (see Appendix A shows stable and improved performance

response.
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Chapter 4

Repetitive Control of an Electrostatic

Microbridge Actuator

In this chapter, we apply the RLC approach in [23] to an electrostatic micro-

bridge actuator with a bounded periodic desired trajectory, a distributed electrostatic

force actuator, and distributed displacement sensing. Offline processing that updates

a waveform generator’s parameters based on measured response reduces errors between

the desired and actual output. First, we prove boundedness of the distributed response

under distributed damping using the energy multiplier method [56, 66]. Then, we prove

boundedness of the repetitive controlled system and compare the simulated response

under open loop and RLC. The contributions of this chapter include (i) a novel, feedfor-

ward control strategy for MEMS actuators, (ii) the first repetitive controller with proven

stability characteristics designed for a distributed flexible system, and (iii) simulated

response showing significant performance improvement under RLC.

4.1 System Model

Figure 4.1 shows a schematic diagram of the electrostatic microbridge model. It

includes a partial differential equation for transverse displacement w (x, t) as a function of

a distributed electrostatic applied force f (t). It is assumed that the transverse stiffness

of the microbridge is due mainly to the residual tensile stress associated with device
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fabrication and that bending stiffness can be neglected. Thus, a string model is used

with uniform distributed forcing over the domain.

f(t)

w(x,t)  xV(t)
y(t)

Fig. 4.1. Schematic diagram of the electrostatic microbridge model.

The field equation and boundary conditions are

ρẅ + cẇ − Pw
xx

= f, ∀ x ∈ (0, L), (4.1)

w (0, t) = w (L, t) = 0, (4.2)

where ρ is the mass/length, P is the residual tension, L is the length, c is squeeze

film damping coefficient, and f (t) is uniformly distributed electrostatic force. We

assume that the microbridge operates around a nonzero voltage equilibrium and the

force variation f (t) in Eq. (4.1) is proportional to the applied voltage variation.

The control objective for the microbridge is to force the displacement w (x, t) to

track a desired shape and time trajectory υ (x, t). The desired trajectory is assumed to

be bounded, periodic, and satisfying boundary conditions υ (0, t) = υ (L, t) = 0. We
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define the distributed response error e (x, t) = υ (x, t) − w (x, t) and the transformed

equations are

ρë + cė − Pe
xx

= q − f, ∀ x ∈ (0, L), (4.3)

e (0, t) = e (L, t) = 0, (4.4)

where q (x, t) = ρϋ+cυ̇−Pυ
xx

is periodic but unknown due to the unknown parameters

ρ, c, and P .

We assume that system is designed such that the device capacitance can be mea-

sured in real-time. Capacitance depends on the average gap between microbridge and

electrode so the output y (t) =
∫ L

0
wdx is therefore available via high-speed data acqui-

sition.

4.2 Control Architecture

The control objective is to design the control input V (t) to force the bridge to

follow a periodic desired spatial and time trajectory v (x, t) based on the measured out-

put y (t). Figure 4.2 shows the proposed control architecture to achieve this objective.

The actuation voltage is produced by a waveform generator that is periodically triggered

with a sample period of T . The structure reacts to the forcing and produces the mea-

sured time response y (t). Several periods of the output are buffered in the high speed

Analog to Digital Converter (ADC). A block of N samples of the ADC data (sampled at
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T/N) is loaded into the control microprocessor every T
R

seconds. The repetitive algo-

rithm is implemented on this microprocessor and used to update the waveform generator

trajectory.

MEMS
Structure

Sensor

Waveform
Generator

Trigger

TR

TR

Electrostatic
Actuator

High Speed
ADC

Feedforward
Controller

V(t)

v(x,t) 

y(t)

T

Fig. 4.2. Repetitive control block diagram.

4.3 Control Formulation

The current method for setpoint regulation in microbridge actuators uses square

wave inputs that move the structure quickly but produce excessive residual vibration.

Between waveform generator updates in the proposed control approach (e.g. 0 < t <

T
R

), the actuator is also forced with a bounded and periodic f (t). In both case,

therefore, it is important to determine that damping ensures bounded response.
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In Theorem 4.1 we show that distributed squeeze film damping can ensure bounded

w (x, t) under bounded uniformly distributed electrostatic force f (t) for all x ∈ (0, L)(
f (t) ∈ L∞

)
.

Theorem 4.1: Under uniformly distributed electrostatic force, the response

w (x, t) of the system governed by Eqs. (4.1) and (4.2) is bounded under distributed

squeeze film damping with bounded input f (t) ∈ L∞.

Proof: We define a Lyapunov functional

V (t) = E
s
(t) + E

c
(t) , (4.5)

where the energy related term E
s
(t) and the crossing term E

c
(t) for the microbridge

are

E
s
(t) =

1
2
β
s

∫
L

0
(ρẇ

2 + Pw
2

x
)dx ≥ 0, (4.6)

E
c
(t) = β

c
ρ

∫
L

0
ẇwdx, (4.7)

where β
s

and β
c

are positive constants. E
c
(t) can be bounded by

∣∣∣E
c
(t)

∣∣∣ ≤
β
c
ρ

2

∫
L

0

(
ẇ

2 + w
2)

dx

≤
β
c
max

(
1, L

2
)

β
s
min (ρ, P )

1
2
β
s

∫
L

0

(
ρẇ

2 + Pw
2

x

)
dx

= ξE
s
(t) (4.8)
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using the inequality (2.7), where

ξ =
β
c
max

(
1, L

2
)

β
s
min (ρ, P )

.

This means that

0 ≤ ξ1E
s
≤ E

s
+ E

c
≤ ξ2E

s
,

where

ξ1 = 1 − ξ > 0,

ξ2 = 1 + ξ > 1.

Time derivative of the energy related term (4.6)

Ė
s

= β
s
P

∫
L

0
ẇw

xx
dx − β

s
c

∫
L

0
ẇ

2
dx + β

s

∫
L

0
fẇdx + β

s
P

∫
L

0
w

x
ẇ

x
dx

≤ −
(
β
s
c − β

s
δ1

)∫
L

0
ẇ

2
dx +

β
s

δ1

∫
L

0
f
2
dx. (4.9)

using integration by parts and Ineq. (2.7).

Time derivative of the crossing term (4.7)

Ė
c

= β
c
ρ

∫
L

0
ẇ

2
dx − β

c
c

∫
L

0
wẇdx + β

c
P

∫
L

0
ww

xx
dx + β

c

∫
L

0
fwdx

≤ β
c
ρ

∫
L

0
ẇ

2
dx + β

c
δ2L

2
∫

L

0
w

2

x
dx +

β
c

δ2

∫
L

0
f
2
dx + Ċ1 + Ċ2, (4.10)
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using (2.9), where Ċ1 = −β
c
c
∫ L

0
wẇdx and Ċ2 = β

c
P

∫ L

0
ww

xx
dx. Using (2.7)

Ċ1 ≤
β
c
c

δ3

∫
L

0
ẇ

2
dx + β

c
δ3c

∫
L

0
w

2
dx

≤
β
c
c

δ3

∫
L

0
ẇ

2
dx + β

c
δ3cL

2
∫

L

0
w

2

x
dx. (4.11)

Integration by parts produces

Ċ2 = −β
c
P

∫
L

0
w

2

x
dx. (4.12)

Use of (4.9) – (4.12) produces

V̇ ≤ −
[
β
s

(
c − δ1

)
− β

c

(
ρ +

c

δ3

)]∫
L

0
ẇ

2
dx

−β
c

[
P −

(
δ2 + δ3c

)
L

2] ∫ L

0
w

2

x
dx + ε,

where, for sufficiently small δ1, δ2, δ3, and β
c
,

β
s

(
c − δ1

)
− β

c

(
ρ +

c

δ3

)
> 0, (4.13)

β
c

[
P −

(
δ2 + δ3c

)
L

2]
> 0, (4.14)

ε = max
t∈[0,∞)

(
β
s

δ1
+

β
c

δ2

)∫
L

0
f
2
dx ∈ L∞. (4.15)
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Thus, V̇ ≤ −λV + ε and V (t) ≤ ε/λ. Using (4.6), (4.8), and inequality (2.9) we

can show

β
s
EA

2L
w

2 (x, t) ≤
β
s
EA

2

∫
L

0
w

2

x
(x, t) dx ≤ E

s
≤ V ∈ L∞. (4.16)

�

Theorem 4.1 shows that bounded inputs produce bounded response for the string

model under distributed squeeze film damping. In Theorem 4.2 we prove that the control

law can be augmented with a repetitive feedforward term if υ (t) = υ (t + T ). We divide

the control input into a square wave f0 (t) plus the learning term ∆ (t). The learning

law updates ∆ (t) based on the previous ∆ (t − T ) and ”error” q
e
(t) as follows:

∆ (t) = sat
σ

[∆ (t − T )] + q
e
(t − T ) for t ∈ [0, T ] (4.17)

where

sat
σ

(ζ) =

⎧⎪⎪⎨
⎪⎪⎩

ζ, for |ζ| ≤ σ

sgn (ζ) σ, for |ζ| > σ

(4.18)

and

q
e
(t) =

∫
L

0

(
β
s
ė + β

c
e
)

dx. (4.19)

The second term in Eq. (4.19) is measured using the capacitance y (t). The

first term, however, is measured by differentiation of the capacitance signal. This

is not real-time differentiation but offline processing of periodic data for t ∈ [0, T ].

Thus, central difference and data smoothing filters can be applied to reduce noise. The

desired space/time trajectory is chosen and combined with the measured integrated
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displacement and integrals in Eq. (4.19). For each period T (known), ∆ (t) is updated

using the previous period q
e
(t). In practice, many periods of data could be collected

and averaged before the waveform generator is updated. Finally, the ILC control law

does not require knowledge of the systems parameters. The control gains β
s

and β
c

must satisfy inequalities based on the system parameters but these can be conservative,

worst case estimates.

Theorem 4.2: Without exact knowledge of the parameters ρ, c, and P , the

control law (4.17) – (4.19) ensures that the error response of the system governed by

Eqs. (4.3) and (4.4), e (x, t) ∈ L∞ for any υ (x, t) = υ (x, t + T ) with f0 (t), υ (x, t),

υ̇ (x, t), and ϋ (x, t) ∈ L∞ if
β
s

β
c

>
ρ+L

2
c
2

P
c .

Proof: We define the Lyapunov functional V (t), the energy related term E
s
(t)

and the crossing term E
c
(t) as in (4.5) – (4.7) except with w (x, t) replaced by e (x, t).

Substitution of time derivatives of Eqs. (4.6) and (4.7) into the derivative of Eq.

(4.5) considering electrostatic force produces

V̇ ≤ −
(

β
s
c − β

c
ρ −

β
c
c

δ3

)∫
L

0
ė
2
dx − β

c

(
P − δ3cL

2)∫
L

0
e
2

x
dx

+
∫

L

0

(
q − f0 − ∆

)(
β
s
ė + β

c
e
)

dx.
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The third term can be written as

∫
L

0

(
q − f0 − ∆

)(
β
s
ė + β

c
e
)

dx

≤ β
s
δ1

∫
L

0
ė
2
dx + β

c
δ2L

2
∫

L

0
e
2

x
dx − ∆

∫
L

0

(
β
s
ė + β

c
e
)

dx

+

(
β
s

δ1
+

β
c

δ2

)∫
L

0

(
q − f0

)2
dx.

So

V̇ ≤ −
[
β
s

(
c − δ1

)
− β

c

(
ρ +

c

δ3

)]∫
L

0
ė
2
dx

−β
c

[
P −

(
δ2 + δ3c

)
L

2] ∫ L

0
e
2

x
dx + ε − ∆ (t) q

e
(t) (4.20)

using Ineqs. (2.7) and (2.9) and Eq. (4.19). For sufficiently small δ1, δ2, δ3 , and β
c
,

Ineqs. (4.13), (4.14), and

ε =

(
β
s

δ1
+

β
c

δ2

)∫
L

0

(
q − f0

)2
dx (4.21)

hold true. Ineq. (4.13) limits the gain ratio
β
s

β
c

>
ρ+ c

δ3
c−δ

1
where δ3 <

P

L2−δ
2

c from Ineq.

(4.13). If we choose δ2 � P
L2 and δ1 � c, then δ3 ≈ P

L2c
and

β
s

β
c

>
ρ+L

2
c
2

P
c .

Inequality (4.20) can be rewritten as

V̇ ≤ −λV + ε − ∆ (t) q
e
(t) . (4.22)



83

Now we form the total Lyapunov functional

V
T

(t) = V (t) + V
L

(t) > 0, (4.23)

with the learning function

V
L

=
1
2

∫
t

t−T

{
sat

σ
[∆ (τ)]

}2
dτ > 0.

The time derivative of (4.23)

V̇
T

≤ −λV + ε − ∆q
e

+
1
2

{
sat

σ
[∆ (t)]

}2 − 1
2

{
sat

σ

[
∆

(
t − T

b

)]}2

≤ −λV + ε − 1
2

{
∆2 −

[
sat

σ
(∆)

]2}

≤ −λV + ε.

Therefore,

β
s
EA

2L
e
2 (x, t) ≤

β
s
EA

2

∫
L

0
e
2

x
(x, t) dx ≤ E

s
≤ V ≤ V

T
∈ L∞,

using (2.9), (4.6), (4.8), and (4.23).

�

This result indicates that RLC can be applied to distributed MEMS actuators and

provide stable response. This means that none of the infinite modes will be destabilized

by the control. The control law is also implementable using capacitive sensing and a

programmable waveform generator.
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4.4 Simulation

In this section, numerical simulation verifies the stability and performance of the

open loop system and the repetitively controlled closed loop system.

The system is discretized using a five mode expansion,

e(x, t) =
5
Σ

j=1
p
j
(t) Φ

j
(x)

with pinned-pinned string eigenfunctions for Φ
j
(x). Application of Galerkin’s method

produces the discretized equations. These equations and Eq. (4.17) are numerically

integrated using Matlab with the typical microbridge parameters in Table 4.1 [59]. The

desired spatial and time trajectory for the string v (x, t) = φ
d

(x)P
d

(t) is shown in

Figure 4.3.

Table 4.1. Microbridge Simulation Parameters
Parameters Values
Length, L 100×10−6 [m]
Mass/length, ρ 9.32×10−9 [kg/m]
Low damping coefficient, c 2.66×10−13 [Ns/m]
High damping coefficient, c 7×10−5 [Ns/m]
Tension, P 10−7 [N ]

Table 4.2 shows the control gains used for the actual (low damping) case and a

high damping case. Note that
β
s

β
c

> 3.5 × 104 and 1.1 × 10−3 for the low and high
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damping case, respectively. Table 4.2 shows that the ”best” gains (based on trial and

error) have β
s

= β
c
, violating the proof conditions for the low damping case. For the

high damping case, however, these conditions are satisfied.

Table 4.2. Control Gains
Gains Low Damping High Damping
β
s

1 50
β
c

1 50

σ 7×10−4 0.05

Figure 4.4 shows the simulation results for RLC of the microbridge under low

damping with v (x, t) given in Figure 4.3. The spatial variation of the desired trajectory

φ
d

(x) is designed to provide a large spatial range (35 µm < x < 65 µm) with constant

displacement. The desired time trajectory p
d

(t) provides fast response with short tran-

sitions (< 0.3 ms) from one state to another.

Figure 4.4 shows the open and closed loop response of the microbridge to the

square wave (thin) and repetitive (thick) input in Figure 4.4(a). The midpoint response

shows significant vibration in response to the inputs due to the small squeeze film damp-

ing. The measured error signal is fed to the repetitive algorithm with T
R

= T to

show fast convergence. The repetitive controller, due to the low gains, does not change

the control effort much but has a significant affect on the response, reducing q
e

from

1.2 × 10−3 to 0.32×10−3. The midpoint displacement error also reduces by half.
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Figure 4.5 shows much improved performance with higher damping. The error

converges within 3 cycles to less than 7 × 10−4. The midpoint displacement improves

by an order of magnitude from open loop to closed loop, providing a maximum midspan

displacement overshoot of 36%.

Figure 4.6 shows the desired spatial distribution of the bridge deflection φ
d

(x)

(solid) and the actual displacement w
(
x, 2N−1

2 T
)

under RLC during the first (N = 1,

dashed) and last (N = 10, dash-dotted) iterations. The plotted actual displacement

distributions are fixed time snapshots in the middle of the constant amplitude, dwell

region of the periodic desired time trajectory
(

T
2

)
. The RLC algorithm is based on

the spatial integral of error between the desired and actual distributions or the average

error over the domain. The figure shows that, after 10 periods of RLC, the error re-

duces significantly. The bridge maintains constant amplitude during the dwell period so

the resulting shape is a half-sine, corresponding to steady-state bridge response under

uniform loading. This physical limitation on the achievable displacement profile could

be used in the desired spatial distribution design. The theory predicts only bounded

response, so any desired spatial distribution can be specified. The repetitive controller

reduces the average error between the desired and actual distributions. One would ex-

pect, therefore, that the midpoint error could be further reduced by using a physically

motivated, half-sine desired spatial distribution.
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Chapter 5

Repetitive Contact Imaging

In this chapter, we apply the RLC approach in [23, 67] to 3D contact imaging.

This is the first time that this control approach has been applied to a distributed param-

eter beam system. Distributed model-based control has the advantages of generating

implementable, physically motivated controllers while eliminating spillover instabilities

[5] associated with discretized (e.g. FEM, modal, and finite difference) model-based

controllers. The repetitive controller moves the whisker back and forth across the ob-

ject while regulating the vertical contact force using hub moment and encoder feedback.

First, we prove boundedness of the distributed response under distributed damping us-

ing the energy multiplier method [56, 66]. Then, we prove boundedness of the repetitive

controlled system. Finally, we experimentally implement the controller and compare

the response under PD and RLC.

5.1 System Model

Figure 5.1 shows the 3D contact imager [19]. A flexible whisker is mounted to

a pitch-yaw gimballed platform through a load cell. The yaw axis is PID controlled to

provide a prescribed yaw trajectory that sweeps back and forth across the object. RLC

is implemented on the pitch axis to regulated the contact force between the whisker and

the object.
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Figure 5.2 shows a schematic diagram of the pitch axis model. The distributed

transverse displacement υ(x, t) depends on position x and time t. The right end (x =

L) undergoes prescribed motion υ
L

(t) associated with the whisker sweeping over the

contacted object. The left end (x = 0) is controlled by the motor torque input τ (t)

applied to an effective rotary inertia J . The whisker has uniform stiffness EI and

mass/length ρ. The linear field equation is

ρϋ + bυ̇ + EIυ
xxxx

= u , x ∈ (0, L), (5.1)

with boundary conditions

υ(0, t) = 0, Jϋ
x
(0, t) − EIυ

xx
(0, t) = τ (t) , (5.2)

υ(L, t) = υ
L

(t), υ
xx

(L, t) = 0, (5.3)

where b is damping coefficient and u (x, t) is a bounded disturbance force [56]. We

transform the displacement field

ω(x, t) = υ(x, t) − x

L
υ
L

(t), (5.4)

to move all disturbances to the transformed field equation

ρω̈ + bω̇ + EIω
xxxx

= f , x ∈ (0, L), (5.5)
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and obtain transformed boundary conditions

ω(0, t) = 0, Jω̈
x
(0, t) − EIω

xx
(0, t) = τ (t) − J

L
ϋ
L

(t), (5.6)

ω(L, t) = ω
xx

(L, t) = 0, (5.7)

where f = u − ρx
L ϋ

L
− bx

L υ̇
L

. This produces the pinned boundary condition (5.7) at

x = L.

We assume the model given by Eqs. (5.5) – (5.7) is well posed and has an unique

solution for all f (x, t) ∈ L∞ (0, L) and ϋ
L

(t) ∈ L∞.

The control objective for the pitch axis is to maintain contact between the whisker

and the contacted object. We can approach this control objective by regulating the hub

bending moment EIw
xx

(0, t) at a specified value M0. This maintains the whisker in a

bent configuration pressing into the object.

5.2 Control Formulation

We define the combined moment setpoint error

η (t) = ω̇
x

(0, t) − κ

[
ω

xx
(0, t) −

M0
EI

]

= η
m

(t) − 1
L

υ̇
L

(t), (5.8)

using Eq. (5.4), where κ is a positive scalar control gain and η
m

(t) = υ̇
x

(0, t) −

κ

[
υ
xx

(0, t) − M
0

EI

]
is the measurable part of η (t). In Theorem 5.1, we show that
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PD plus moment setpoint regulation (PDM) feedback control with distributed damping

can ensure bounded ω (x, t) in the presence of bounded disturbances f , υ̇
L

, and ϋ
L

.

Theorem 5.1: With the PDM control law

τ (t) = −k
s
η
m

− EIυ
xx

(0, t) + Jκυ̇
xx

(0, t) , (5.9)

where k
s

and κ are positive control gains, the response υ (x, t) of Eqs. (5.5) – (5.7) is

strongly bounded (υ (x, t) ∈ L∞) if f ∈ L∞ (0, L) and υ̇
L

and ϋ
L

(t) ∈ L∞.

Proof: We define a Lyapunov functional

V (t) = E
s
(t) + E

c
(t) +

1
2
Jη

2 (t) , (5.10)

where β
s

and β
c

are positive constants and the energy related term

E
s

=
1
2
β
s

∫
L

0
(ρω̇

2 + EIω
2

xx
)dx ≥ 0 (5.11)

includes kinetic and potential energy. The crossing term

E
c
(t) = β

c
ρ

∫
L

0
ωω̇dx (5.12)

can be bounded by

∣∣∣E
c
(t)

∣∣∣ ≤ 1
2
β
c
ρ

∫
L

0

(
ω̇

2 + ω
2)

dx = ξE
s
(t) (5.13)
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using inequalities (2.7) and (2.9), where

ξ =
β
c
ρ max

(
1, L

4
)

β
s
min (ρ, EI)

.

This means that

0 ≤ ξ1E
s
≤ E

s
+ E

c
≤ ξ2E

s
,

where

ξ1 = 1 − ξ,

ξ2 = 1 + ξ.

Therefore, we can obtain the upper and lower bounds, where

0 ≤ λ1

(
E

s
+ η

2) ≤ V ≤ λ2

(
E

s
+ η

2)
, (5.14)

λ1 = min
(

ξ1,
J

2

)
> 0,

λ2 = max
(

ξ2,
J

2

)
> 1.

The time derivative of Eq. (5.10) is

V̇ ≤ −λV + ε (5.15)

where λ, ε > 0 (see Lemma 1 in Appendix B).
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Using Eqs. (2.8), (5.9), (5.11), and (5.14), we can show

β
s
EI

2L3 ω
2 (x, t) ≤

β
s
EI

2

∫
L

0
ω

2

xx
(x, t) dx ≤ E

s

≤ V ≤ V (0) e
−λt +

ε

λ
. (5.16)

Thus, V ∈ L∞ and ω (x, t) and υ (x, t) ∈ L∞ (0, L). We cannot show pointwise bound-

edness of EIω
xx

(0, t), but inequality (5.16) implies weak boundedness.

�

Theorem 5.1 shows that bounded inputs produce bounded response with dis-

tributed damping and the control law (5.9). In Theorem 5.2 we prove that the control

law can be augmented with a repetitive feedforward term if υ
L

(t) = υ
L

(t + T ). The

repetitive learning (RL) control law

τ (t) = −k
s

{
ω̇

x
(0, t) − κ

[
ω

xx
(0, t) −

M0
EI

]}
− EIω

xx
(0, t)

+Jκω̇
xx

(0, t) −
k
s

L
υ̇
L

(t) + ∆ (t)

= −k
s
η
m

− EIω
xx

(0, t) + Jκω̇
xx

(0, t) −
k
s

L
υ̇
L

(t) + ∆ (t) (5.17)

includes the term ∆ that is designed to learn the unknown boundary motion while

ensuring stability. It is updated from trial to trial by the learning law:

∆ (t) = sat
σ

[∆ (t − T )] − η
m

(t) for t ∈ [0, T ] , (5.18)

where
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sat
σ

(ζ) =

⎧⎪⎪⎨
⎪⎪⎩

ζ, for |ζ| ≤ σ

sgn (ζ) σ, for |ζ| > σ.

(5.19)

Theorem 5.2: The RLC law (5.17) – (5.19) ensures that the response of the

system (5.5) – (5.7) υ (x, t) ∈ L∞ (0, L) for any υ
L

(t) = υ
L

(t + T ) with υ̇
L

(t), ϋ
L

(t) ∈

L∞ and f ∈ L∞ (0, L).

Proof: We define the Lyapunov functional V (t), the energy related term E
s
(t),

and the crossing term E
c
(t) as in Eqs. (5.10) – (5.12), so the Ineq. (5.14) holds.

Lemma 2 in the Appendix B shows that V̇ ≤ −λV + ε + η [∆ (t) − q (t)] and q (t) =

1
L

[
k
s
υ̇
L

(t) + Jϋ
L

(t)
]
.

Now we add a learning term V
L

(t) to the positive functional in Eq. (5.10) as

follows

V
T

(t) = V (t) + V
L

(t) > 0, (5.20)

where

V
L

=
1
2

∫
t

t−T

[
sat

σ
(∆) − sat

σ
(q)

]2
dτ,

where for all j ≥ 0

∆ (τ) = ∆
j
(t − jT ) , τ ∈ [jT, (j + 1) T ] . (5.21)

We define an estimation error term q̃(t) = ∆ (t)−q(t) =sat
σ

[∆ (t − T )]−sat
σ

[q (t)]−

η (t) − 1
Lυ̇

L
(t).
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The time derivative of (5.20)

V̇
T

≤ −λV + ε + η [∆ (t) − q (t)] +
1
2

{
sat

σ
[∆ (t)] − sat

σ
[q (t)]

}2

−1
2

[
∆ (t) − q (t) + η (t) +

1
L

υ̇
L

(t)
]2

= −λV + ε − 1
2

{
[∆ (t) − q (t)]2 −

{
sat

σ
[∆ (t)] − sat

σ
[q (t)]

}2}

−
{

sat
σ

[∆ (t − T )] − sat
σ

[q (t)] − 1
2L

υ̇
L

(t)
}

1
L

υ̇
L

(t) − 1
2
η
2 (t)

≤ −λV + ε
T

, (5.22)

using (5.8) and (5.18), where ε
T

= ε + 4σ
2 + 1

L2 max
t∈(0,∞)

υ̇
2

L
∈ L∞. Therefore V

T
∈ L∞

and [55],

β
s
EI

2L3 ω
2 (x, t) ≤

β
s
EI

2

∫
L

0
ω

2

xx
(x, t) dx ≤ E

s
≤ V ≤ V

T
∈ L∞

using (2.8), (5.11), (5.14), and (5.20). Thus, υ (x, t) ∈ L∞ (0, L).

�

5.3 Experiment

Figure 5.3 shows the repetitive imaging experimental hardware [19]. The test

stand consists of a whisker mounted on a two degree-of-freedom robot through a load

cell. A 1.19 mm diameter steel whisker of length 45.5 cm attaches to the top of an ATI

Mini 40 six-axis force/torque sensor. Two Maxon brushed-DC motors torque gear trains

that control pitch and yaw motions. Encoders (4000 count/rev with quadrature) attach

to the motor shafts and provide rotational feedback. Forces and moments are fed into
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the control PC. The RLC algorithm is implemented in QNX using the real-time Qmotor

software. The contacted object is covered with a 1 mm thick Teflon sheet to minimize

sharp edges and high friction surfaces that may snag the whisker.

The yaw motor sweeps sinusoidally back and forth across the object under PID

control at 0.1 Hz. The pitch axis is controlled using either the PDM control algorithm

(5.9) or the RLC algorithm (5.17) – (5.19) with the control gains in Table 5.1. The

desired hub moment M0 = 0.05 Nm.

Table 5.1. Control Gains
Parameters Values
k
s

0.001
κ 200000
σ 1300

Figure 5.4 shows the experimental results. The whisker starts above the object

surface, moves down into contact, and slides back and forth across the object. The yaw

angle (Fig. 5.4(a)) sweeps sinusoidally between 0 and 40 degrees. During the first 20

seconds, PDM control is applied. The maximum moment error (Fig. 5.4(c)) is 0.012

Nm and the pitch axis (Fig. 5.4(b)) does not move to accurately track the object shape.

After t = 20 s, the RL controller is applied. The learning term ∆ (t) for the period

20s ≤ t ≤ 30 s uses error data from the previous period. The learning term converges

after a few cycles, the control voltage adjusts accordingly, and the moment error reduces

to 0.003 Nm. The object profile can be discerned from the pitch trajectory. Further



101

Object

Pitch motor

Yaw motor

W
hi

sk
er

Fig. 5.3. Repetitive contact imaging experiment.
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processing of the load cell and encoder data using the elastica algorithm [19, 58] can

produce a 3D contact point trajectory.

The performance of the repetitive contact imager is limited by the modeling as-

sumptions. The linear, decoupled pitch-yaw model means that surface normals must be

close to vertical or the whisker becomes stuck. A combination of the RLC algorithm

presented in this chapter and the nonlinear algorithm in [19, 58] would provide the best

performance. The endpoint contact assumptions, however, does not affect performance

in the objects tested. The object in Fig. 5.3, for example, had contact at the endpoint

and in the domain x ∈ (0, L) at different points in the trajectory. The stability and

convergence of the response is unaffected by contact point location in these cases (see

the Appendix C).

5.4 Robustness

The RLC law (5.17) and (5.18) can be rewritten as

τ (t) = −k
s
υ̇
x

(0, t) +
k
s
κ

EI

[
EIυ

xx
(0, t) − M0

]
− EIυ

xx
(0, t) +

Jκ

EI
EIυ̇

xx
(0, t) ,(5.23)

� (t) = sat
σ

[� (t − T )] − υ̇
x

(0, t) +
κ

EI

[
EIυ

xx
(0, t) − M0

]
for t ∈ [0, T ] ,(5.24)

where EIυ
xx

(0, t) and υ̇
x

(0, t) are the measured moment and angle velocity at the load

cell, EIυ̇
xx

(0, t) can be calcuated by time derivative of measured moment, and M0 is

desired moment.

The RL controller also requires knowledge of the system parameters EI and J .

The parameter EI appears as κ
EI in Eqs. (5.23) and (5.24) so it acts to scale the control
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104

gain κ. The system is proven stable for all κ > 0 so changes in EI change performance

but not stability. The parameter J , however, appears as a feedforward term in Eq. (5.23)

and, if not perfectly known, may cause instability. This term was not implemented in

the experimental control with no ill effects.
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Chapter 6

Conclusions, Contributions, and Future Work

6.1 Conclusions

The purpose of this dissertation is two-fold. First, we prove b.i.b.o. stability for

one and two dimensional distributed parameter systems under distributed and boundary

disturbance based on energy multiplier method. Second, we theoretically prove, simu-

late, and experimentally implement feedforward DPS model-based controllers for several

flexible distributed parameter systems.

6.1.1 BIBO Stability of Distributed Flexible Systems

Chapter 2 shows that distributed and boundary damping can ensure bounded re-

sponse for strings and beams under boundary and distributed excitation and for pinned

membranes and clamped plates under distributed excitation. Either external, viscous

damping or internal, material damping ensures boundedness for strings and beams and

weak stability with respect to the energy norm for membranes and plates. The dis-

tributed input can include spatial and time variations provided it is L2 spatially and

L∞ temporally bounded, respectively. Thus, time-bounded point forces are allowed

because they have a bounded L2 spatial norm.

For string systems, the boundary displacement can be arbitrary but bounded

on both boundaries under distributed damping or on one boundary when the other
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boundary has a damper. For damped beam systems, prescribed boundary rotations and

translations combined with distributed forcing result in bounded response if the inputs

are bounded. For two dimensional DPSs, boundary damping must satisfy the normal

boundary conditions (2.97) and (2.98) to ensure stability. Circular and rectangular

domains satisfy these conditions with damping on half and one side, respectively.

For each of the cases studied, ε = 0 if f = 0 so without inputs these systems are

strongly exponentially stable.

6.1.2 Iterative Learning Velocity and Tension Control for Axially Moving

Materials

In Chapter 3 we prove that the PD tension/speed controller (3.10) ensures strong

and weak boundedness of the axially moving material displacement and tension, respec-

tively, in response to bounded speed disturbances. Addition of the ILC compensation in

Eqs. (3.22) – (3.25) produces the same theoretical result, provided the disturbance has a

known period. Simulations demonstrate, however, that the ILC controller outperforms

PD control with half the speed error and 30% of the tension error using the same control

effort.

6.1.3 Repetitive Control of an Electrostatic Microbridge Actuator

In Chapter 4 we prove that distributed squeeze film damping ensures boundedness

of the transverse displacement of a microbridge in response to bounded force inputs.

RLC is proven to provide bounded error for a bounded desired trajectory. Simulations

demonstrate that the repetitive controller outperforms distributed damping alone with
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70% less q
e

and 50% less e
(

L
2 , t

)
under low damping and 97% less q

e
and 36% less

e
(

L
2 , t

)
under high damping.

6.1.4 Repetitive Contact Imaging

In Chapter 5, we prove that the PDM controller (5.9) ensures boundedness of

force/moment in response to a bounded periodic input. Addition of RLC compensation

in Eqs. (5.17) – (5.19) produces the same theoretical result, provided the disturbance

has a known period. Experiments demonstrate that RL outperforms PDM with 75%

reduction in the moment error using only 50% increase of control effort.

6.2 Contributions

This dissertation provides the following contributions:

• Extended energy multiplier method to study the b.i.b.o. stability of flexible DPSs.

• Proved the b.i.b.o. stability of domain and boundary damped string, beam, mem-

brane, and plate DPS models under bounded inputs.

• Developed, proved stability, and simulated the first DPS model-based ILC con-

troller for axially moving systems.

• Developed, proved stability, and simulated the first DPS model-based repetitive

controller for second order flexible systems.

• Developed, proved stability, and experimentally implemented the first DPS model-

based repetitive controller for fourth order flexible systems.
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6.3 Future Work

This dissertation proves b.i.b.o. stability for one and two dimensional distributed

parameter systems and provides several learning control applications with design, simu-

lation, and experiments. Future work can also be divided into these two categories.

6.3.1 BIBO Stability

 

wL(t)

f(x,t) 

J

x
wxL(t)

Fig. 6.1. Schematic diagram of a boundary rotary damped beam with distributed and
boundary disturbances.

The b.i.b.o. stability proofs in Chapter 2 provide the fundamental theorems

for the following chapters in the dissertation. Many cases which are not mentioned

in Chapter 2 can be analyzed as future work. For example, consider the boundary

rotary damped beam shown in Figure 6.1. In this case, the field equation and boundary
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conditions are

ρẅ + EIw
xxxx

= f , x ∈ (0, L), (6.1)

Jẅ
x
(0, t) − EIw

xx
(0, t) = −c

b
ẇ

x0 (t) , w
xxx

(0, t) = 0,

w(L, t) = w
L

(t) , w
x
(L, t) = w

xL
(t)

where c
b

is the boundary rotary damping gain. We have been unable to prove that the

response of the damped beam governed by (6.1) is bounded, w(x, t) ∈ L∞(0, L), if f ,

w
L

, w
xL

∈ L∞ and c
b

> 0.

6.3.2 Additional Applications of ILC/Repetitive Control

The proposed research has broader impacts beyond three applications discussed

in Chapters 3 - 5. The control theory developed can be applied to noise control, cable

vibration control, flexible robot manipulator control, and process control. Thus, the

research impacts a wide range of applications including HVAC systems, underwater

vehicles, civil engineering structures, aerospace systems, and manufacturing. Future

work can be to extend the approaches used in this dissertation to other systems.

Based on the string model for the electrostatic microbridge in Chapter 4, for

example, we can extend the model to one dimensional, fourth order differential equation

with four boundary conditions if bending stiffness is considered (see Figure 6.2). A

piezoelectrically actuated microcantilever has a similar model with the distributed forcing

replaced by a boundary control moment on the free end.
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Microcantilever

y(t)
 xw(x,t)V(t)

Fig. 6.2. Schematic diagram of microcantilever model.

The control approach can also be applied to the elimination of vibration in

macroscale civil, mechanical, and aerospace structures where setpoint regulation and/or

periodic disturbances or reference trajectories are required. The most typical appli-

cation would be periodic disturbances resulting from rotating unbalance mass. Piezo-

electric actuators on an aircraft wing could reduce the periodic vibration induced by

engine rotation, for example. As illustrated in [4, 33], the feedforward vibration control

has the potential to impact cable control technology where cable deformations caused

by cross flows and/or high frequency strumming vibrations severely degrade the overall

performance.

Finally, learning control algorithms have yet to be applied to 2D DPSs such as

web sheets, flexible space mirrors, or aircraft fuselages. Sensing and actuation are much

more complicated because the boundary is distributed. Feedforward learning techniques

such as ILC and RLC have tremendous potential to improve the performance of 2D

systems.
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Appendix A

Robustness Discussion for Iterative Learning Velocity

and Tension Control for Axially Moving Materials

Case 1: m = 0.067 kg, EA = 667 N

Figure A.1(c) shows the open loop velocity error υ̇ (0, t) = u̇
L

(t)−u̇ (0, t) is almost

ten times the input velocity. Figure A.1(d) shows almost 75% tension error. The PD

controller reduces the velocity and tension errors by an order of magnitude to less than

0.3 m/s and 2 N, respectively. The iterative term in Fig. A.2(b) slowly increases as the

controller learns the periodic disturbance. The velocity and tension errors decrease to

less than 0.15 m/s and 0.05 N by the end of the simulation (t = 3 s). The ILC controller

uses almost the same control effort amplitude to achieve this performance improvement.

Case 2: m = 0.067 kg, EA = 1500 N

Figure A.3(c) shows the open loop velocity error υ̇ (0, t) = u̇
L

(t)−u̇ (0, t) is almost

ten times the input velocity. Figure A.3(d) shows almost 75% tension error. The PD

controller reduces the velocity and tension errors by an order of magnitude to less than

0.35 m/s and 3.3 N, respectively. The iterative term in Fig. A.4(b) slowly increases as

the controller learns the periodic disturbance. The velocity and tension errors decrease

to less than 0.1 m/s and 1 N by the end of the simulation (t = 3 s). The ILC controller

uses almost the same control effort amplitude to achieve this performance improvement.

Case 3: m = 0.15 kg, EA = 667 N
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Figure A.5(c) shows the open loop velocity error υ̇ (0, t) = u̇
L

(t)−u̇ (0, t) is almost

ten times the input velocity. Figure A.5(d) shows almost 150% tension error. The PD

controller reduces the velocity and tension errors by an order of magnitude to less than

0.15 m/s and 3 N, respectively. The iterative term in Fig. A.6(b) slowly increases as

the controller learns the periodic disturbance. The velocity error is almost same, but

the tension errors decreases to less than 1 N by the end of the simulation (t = 3 s). The

ILC controller uses almost the same control effort amplitude to achieve this performance

improvement.

Case 4: m = 0.15 kg, EA = 1500 N

Figure A.7(c) shows the open loop velocity error υ̇ (0, t) = u̇
L

(t)−u̇ (0, t) is almost

ten times the input velocity. Figure A.7(d) shows almost 150% tension error. The PD

controller reduces the velocity and tension errors by an order of magnitude to less than

0.2 m/s and 4 N, respectively. The iterative term in Fig. A.8(b) slowly increases as the

controller learns the periodic disturbance. The velocity and tension errors decrease to

less than 0.15 m/s and 1.5 N by the end of the simulation (t = 3 s). The ILC controller

uses almost the same control effort amplitude to achieve this performance improvement.
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Appendix B

Lemmas for Repetitive Contact Imaging Proofs

Lemma 1: Given the model Eqs. (5.5) – (5.7), Lyapunov functional (5.10), and

the control law (5.9), V̇ ≤ −λV + ε, where λ, ε > 0.

Proof: The time derivative of Eq. (5.11)

Ė
s

= β
s

(∫
L

0
ω̇fdx − b

∫
L

0
ω̇

2
dx − EI

∫
L

0
ω̇ω

xxxx
dx + EI

∫
L

0
ω̇

xx
ω

xx
dx

)

≤ β
s

[
−

(
b − δ1

)∫
L

0
ω̇

2
dx +

1
δ1

∫
L

0
f
2
dx − EIω̇

x
(0, t)ω

xx
(0, t)

]

= β
s

{
−

(
b − δ1

)∫
L

0
ω̇

2
dx +

1
δ1

∫
L

0
f
2
dx

−EI

[(
1
2κ

− δ6

)
ω̇

2

x
(0, t) +

(κ

2
− δ7

)
ω

2

xx
(0, t)

− 1
2κ

η
2 (t) +

(
κ

2
− 1

δ6
− κ

2

δ7

)(
M0
EI

)2]}

using Eq. (5.8).

The time derivative of Eq. (5.12) simplifies to

Ė
c

= β
c
ρ

∫
L

0
ω̇

2
dx + β

c

∫
L

0
ω
(
f − bω̇ − EIω

xxxx

)
dx

= β
c
ρ

∫
L

0
ω̇

2
dx + Ė

c1 + Ė
c2 + Ė

c3. (B.1)
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The terms in (B.1) simplify as follows

Ė
c1 = β

c

∫
L

0
ωfdx ≤ β

c
δ2L

4
∫

L

0
ω

2

xx
dx +

β
c

δ2

∫
L

0
f
2
dx. (B.2)

Ė
c2 = −β

c
b
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c
δ3bL
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dx.

The third term
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ω
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2

xx
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using the boundary conditions and inequality (2.8).

The time derivative of the final term in Eq. (5.10)

d

dt

(
1
2
Jη

2
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= η
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s
η
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using Eqs. (5.4), (5.6), (5.8), and (5.9), where

q (t) =
1
L

[
k
s
υ̇
L

(t) + Jϋ
L

(t)
]
. (B.6)
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The time derivative of the functional V (t)
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and

λ3 =
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�

Lemma 2: Given the model Eqs. (5.5) – (5.7), Lyapunov functional (5.10), and

the control law (5.17) – (5.19) V̇ ≤ −λV + ε + η [� (t) − q (t)], where λ, ε > 0 and

q (t) = 1
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using Eqs. (5.4), (5.6), (5.8), and (5.17).
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The time derivative of Lyapunov functional
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Appendix C

Additional Repetitive Contact Imaging Experiment

Another case is discussed for repetitive contact imager in order to show general

applications. The profile of the object is steeper (see Fig. C.1) and the desired moment

is M0 = 0.08 Nm.

The yaw motor sweeps sinusoidally back and forth across the object under PID

control at 0.1 Hz. The pitch axis is controlled using either the PDM control algorithm

(5.9) or the RLC algorithm (5.17) – (5.19) with the control gains in Table C.1.

Table C.1. Control Gains
Parameters Values
k
s

0.0015
κ 200000
σ 2000

The yaw angle (Fig. C.2(a)) sweeps sinusoidally between 0 and 40 degrees. Dur-

ing the first 20 seconds, PDM control is applied. The maximum moment error (Fig.

C.2(c)) is 0.016 Nm and the pitch axis (Fig. C.2(b)) does not move to accurately track

the object shape. After t = 20 s, the RL controller is applied. The learning term ∆ (t)

for the period 20 s ≤ t ≤ 30 s uses error data from the previous period. The learning
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term converges after a few cycles, the control voltage adjusts accordingly, and the mo-

ment error reduces to 0.005 Nm. The object profile can be discerned from the pitch

trajectory.

The object in Fig. C.3, for example, had contact at the midpoint of the whisker.

The stability and convergence of the response is unaffected by contact point location in

these cases.
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Fig. C.3. Contact point.
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