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Abstract

Coupling a Fluidic Flexible Matrix Composite (F2MC) to an air-pressurized fluid port
produces a fundamentally new class of tunable vibration isolator. This fluidlastic device
provides significant vibration reduction at an isolation frequency that can be tuned over
a broad frequency range. The material properties and geometry of the F2MC element,
as well as the port inertance, determine the isolation frequency. A unique feature of
this device is that the port inertance depends on pressure so the isolation frequency
can be adjusted by changing the air pressure. For constant port inertance, the isolation
frequency is largely independent of the isolated mass so the device is robust to changes
in load. A nonlinear model is developed to predict isolator length and port inertance.
The model is linearized and the frequency response calculated. Experiments agree with
theory, demonstrating a tunable isolation range from 9 Hz to 36 Hz and transmitted force
reductions of up to 60 dB at the isolation frequency.

Replacing rigid pitch links on rotorcraft with coupled fluidic devices has the po-
tential to reduce the aerodynamic blade loads transmitted through the pitch links to
the swashplate. Analytical models of two fluidic devices coupled with three different
fluidic circuits are derived. These passive fluidlastic systems are tuned, by varying the
fluid inertances and capacitances of each fluidic circuit, to reduce the transmitted pitch-
link loads. The different circuit designs result in transmitted pitch link loads reduction
at up to three main rotor harmonics. The simulation results show loads reduction at
the targeted out-of-phase and in-phase harmonics of up to 88% and 93%, respectively.
Experimental validation of two of the fluidic circuits demonstrates loads reduction of up
to 89% at the out-of-phase isolation frequencies and up to 81% at the in-phase isolation
frequencies.

Replacing rigid pitch links on rotorcraft with fluidic pitch links changes the blade
torsional impedance. At low frequency, the pitch link must have high impedance to pass
through the pilot’s collective and cyclic commands to control the aircraft. At higher fre-
quencies, however, the pitch-link impedance can be tuned to change the blade pitching
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response to higher harmonic loads. Active blade control to produce higher harmonic
pitch motions has been shown to reduce hub loads and increase rotor efficiency. This
work investigates whether fluidic pitch links can passively provide these benefits. An
analytical model of a fluidic pitch link is derived and incorporated into a rotor aeroelastic
simulation for a rotor similar to that of the UH-60. Eighty-one simulations with varied
fluidic pitch link parameters demonstrate that their impedance can be tailored to reduce
rotor power and all six hub forces and moments. While no impedance was found that
simultaneously reduced all components, the results include cases with reductions in the
lateral 4/rev hub force of up to 91% and 4/rev hub pitching moment of up to 67%, and
main rotor power of up to 5%.
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Chapter 1
Introduction

Rotating machinery often produces unsatisfactory levels of vibration at one or more

frequencies. While a simple elastomer is not always sufficient for isolating these vi-

brations, fluidlastic technology enables the design of vibration isolators that outperform

elastomers. Fluidic vibration isolators are typically optimized for a single frequency,

which limits their effectiveness in applications where the excitation consists of either

multiple frequencies or a single frequency that changes over time.

The goal of this work is to expand the performance and potential applications of flu-

idic vibration isolators. Mathematical models are developed, and analysis tools (Maple

and Matlab®) are used to determine the frequency responses of the new devices. Bench-

top experiments are conducted to verify predictions. A fluidic vibration isolator using a

composite tube as the pumping mechanism is presented. The behavior of coupled fluidic

devices, and their potential as pitch links on helicopters, is investigated. Replacing the

rigid pitch links on helicopters with fluidic pitch links to reduce vibratory hub loads and

required rotor power is also analyzed.
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1.1 Vibration Isolation

Two main methods exist for passively reducing unwanted vibration in mechanical sys-

tems: vibration absorbers and vibration isolators. A vibration absorber uses a secondary

system attached to the primary device to reduce vibration. A vibration isolator is a de-

vice inserted between the source of vibration and the primary device to reduce vibration

transmission [1].

Vibration control devices may be passive, active, or semi-active. Passive vibration

isolators and absorbers are pre-configured structural elements that do not require exter-

nal power [2, 3]. In active vibration control, an actuator applies a force directly to the

mechanical system. A microprocessor collects data from sensors located at critical po-

sitions throughout the system and sends an appropriate command to the actuator(s) [4].

Semi-active control reduces vibration by tuning system parameters, and thus, it requires

less power than active control [5]. Combining passive and active control in a hybrid

approach has also been demonstrated [6].

Passive and active vibration control have practical limitations. The nature of passive

vibration control devices confines their effectiveness to a band (or bands) of frequencies.

If any of the system parameters change or the excitation frequency changes, the driving

frequency will no longer match the passive device’s tuned frequency. Active vibration

control devices can act over a much broader range of frequencies than passive ones, but

they often require large amounts of power and can introduce system instabilities [1].

Semi-active vibration control provides some of the benefits of both passive and ac-

tive vibration control. Semi-active control involves varying the properties of adjustable

system elements (such as variable-rate springs, variable-rate dampers, and piezoelectric

devices) to minimize transmitted vibrations. The goal of a semi-active approach is

to achieve similar performance to active vibration control while consuming signifi-
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cantly less power [1]. Fluidic Flexible Matrix Composites (F2MC) studied by Lotfi-

Gaskarimahalle et al. [7] are semi-active devices that can change stiffness through the

opening and closing of a valve. The work of Hiemenz et al. [8] on magnetorheological

(MR) dampers and that of Han et al. [9] on electrorheological dampers are examples of

variable damping devices. Davis and Lesieutre [10], and Clark [11], use piezoelectric

devices to achieve semi-active vibration control.

Tuned isolators significantly reduce transmitted vibration over a narrow band of

frequencies. An early example of a tuned vibration isolator is the Dynamic Antiresonant

Vibration Isolator (DAVI) [12]. This device uses the inertial force from a cantilevered

mass to cancel vibration at a target frequency. Halwes’ Liquid Inertia Vibration Elim-

inator (LIVE®) device [13] replaces the cantilevered mass of the DAVI system with

liquid that accelerates through a port to produce the canceling inertial force. Smith

and Redinger [14] analyze LIVE® vibration isolator technology on Bell’s Model 427

helicopter. LORD Corporation’s Fluidlastic technology also uses fluid inertance [15].

Researchers have devised various ways of tuning or expanding the narrow frequency

range of isolation in fluidlastic devices. Jones and Downing [16] vary the length of the

inertia track using a rotatable cylinder. Smith and Stamps [17] use a telescoping port,

and Hodgson and Duclos [18] control the length of the port with an electric motor.

du Plooy et al. [19] modify a LIVE® device to allow adjustable reservoir pressure. Ad-

justing the air pressure of the fluid reservoir varies the stiffness and isolation frequency

of the device. Smith et al. [20] integrate smart piezoelectric actuators into a LIVE®

device (P-LIVE), increasing its tunability.

The fluidic composite tunable vibration isolator introduced in this document consists

of an F2MC device connected to a fluid reservoir. An F2MC device consists of a

rubber tube, two families of fibers wound at ±α with respect to the tube’s longitudinal

axis (See Fig. 1.1.), and a working fluid. Philen et al. [21] show that Flexible Matrix
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Composite (FMC) tubes can elongate or contract in response to internal pressure. Tubes

with fiber angles greater than 54∘ extend due to pressurization, while smaller fiber

angles result in contractor tubes (e.g., McKibben actuators) [22, 23, 24]. Liu and

Rahn [25] develop a nonlinear static model that predicts this elongation and contraction.

Shan et al. [26] study the nonlinear-elastic axisymmetric deformation of FMC tubes

using large deformation theory. These models [25, 26] account for the end-fitting effects

that models with infinitely-long tube assumptions neglect. Philen et al. [27] develop a

variable stiffness adaptive structure using F2MC tubes with valve control. They use shell

theory to derive the effective elastic modulus of the tube for open (soft) and closed (stiff)

valves. Shan et al. [28] add the effect of wall compliance by using a 3-D elasticity model

of the laminate. By tailoring material properties such as the Young’s modulus of the

fibers and resin and the fiber angle, one can generate F2MC structures that outperform

currently available variable stiffness materials, including shape memory polymers and

lead zirconate titanate (PZT) materials. Lotfi-Gaskarimahalle et al. [29] show that F2MC

tubes may serve as tuned vibration absorbers.

Chapter 2 models, designs, and experimentally tests F2MC tubes as tunable vibration

isolators. Based on [29, 30], the model of an F2MC tube coupled to a pressurized

reservoir is derived. The model is linearized to produce a second-order model that pre-

dicts the resonance and antiresonance (isolation) frequencies. The theoretical frequency

response is compared with experimental testing results.

1.2 Coupled Fluidic Pitch Links

The helicopter pilot’s collective and cyclic inputs change the orientation of the swash-

plate to control the thrust vector of the main rotor. The pitch link provides a stiff connec-

tion between the swashplate and the blade root, as shown in Fig. 1.2, to control the pitch
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2Ro,o

2Ri,o

Figure 1.1. Schematic of an F2MC tube, illustrating the two families of fibers wound at ±α
angles with respect to the longitudinal axis.

of the blade about the azimuth. The aerodynamic loads on helicopter rotor blades cause

significant unsteady forces that are transmitted through the pitch links to the swashplate.

Pitch-link loads increase with rotor power, often limiting the operational flight envelope

of helicopters [31, 32], justifying the need for loads reduction in new or retrofitted

rotorcraft with larger engines for higher altitude flight, increased aircraft speed, and

heavier payloads. Higher harmonic control and a high control system stiffness also

increase pitch-link loads [33, 34].

For an ideal rotor operating at a constant rotor speed in steady flight, excitation loads

are harmonic and occur at integer multiples of the constant main rotor speed (1/rev,

2/rev, etc.). The 1/rev pitch-link load is usually the largest, and the amplitudes of the

higher harmonic pitch-link loads generally decrease with increasing harmonic number.

The pitch-link loads change with flight condition. For example, in high-speed forward

flight, the higher harmonic pitch-link loads can increase significantly [36, 37]. These
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Figure 1.2. Helicopter pitch link [35].

higher harmonic loads fatigue the swashplate and actuators [38], potentially causing

premature failure.

Very few researchers have investigated techniques to reduce pitch-link loads by lim-

iting or preventing the aerodynamic conditions leading to high blade pitching moments.

Gabel and Tarzanin [39] suggest lowering the torsional natural frequency of the blades

to reduce high pitch-link loads resulting from stall flutter. Adams [40] replaces the stiff

pitch links of a CH-54B with spring-damper assemblies and demonstrates up to a 50%

reduction in stall-induced pitch-link loads in subsequent flight tests. Voskuijl et al. [41]

implement an H∞ controller that reduces pitch-link loads by optimizing the collective

pitch input to prevent stall.

In applications where tonal, rather than broad-band, excitations are dominant, pas-

sive fluidic devices may have potential for vibration and loads control. Fluidic devices

modify the stiffness and damping in addition to increasing the apparent mass of a

system without adding much actual mass, through the use of the mass-like property,

inertance. Fluid in a section of small tubing can have a high inertance, despite having

little actual mass. Fluidic devices also provide more flexible packaging options than

a tuned isolator with a cantilevered mass. The fluid track replaces the cantilever and
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may be routed as desired. Han et al. [42] propose replacing the stiff pitch links on

rotorcraft with fluidlastic isolators. The geometry of the tuning port (or fluid track) of

the fluidlastic isolator dictates the isolation frequency. These fluidic pitch links can only

target a single higher harmonic pitch-link load. Accordingly, Han et al. [43] also propose

connecting fluidic pitch links such that they share the same fluid track. This coupling of

fluidic pitch links improves simultaneous reduction of multiple higher harmonic pitch-

link loads in addition to ensuring equal blade torsional responses if the system were to

leak. Kurczewski et al. [44] model and experimentally verify coupled fluidic pitch links

for loads reduction at an odd harmonic of the rotor frequency.

A coupled fluidic pitch link system has the potential to attenuate vibratory loads

such that the blade pitch control components (e.g. the swashplate and its actuators)

can achieve longer fatigue life, increase flight safety, and be designed with reduced

mass. The use of load-controlling pitch links may also provide increased maximum

forward velocity, payload, and altitude, which are currently limited by high loads due

to retreating blade stall. Although coupled fluidic pitch links offer many potential

benefits, they also increase the complexity, cost, and weight of the pitch control system.

Furthermore, a coupled fluidic pitch link system has more failure modes than traditional

stiff pitch links.

Chapter 3 builds on [44] by investigating the loads-reduction capability of coupled

fluidic pitch link systems on rotors with an even number of blades through model-

ing, frequency-domain analysis, and experimental validation. The coupling fluid track

of [44] is replaced by three different fluidic circuits. Each circuit consists of the simplest

combination of fluid paths and accumulators that reduces the pitch-link loads at the

desired harmonics. The fluidic circuit can be designed to simultaneously target out-of-

phase and in-phase pitch-link loads. Theoretical predictions are presented for a heli-
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copter similar to the UH-60 with coupled fluidic pitch links. Two benchtop experiments

validate the theoretical predictions.

1.3 Impedance Tailored Fluidic Pitch Links

Controlling the higher harmonic pitching motion of rotor blades can increase rotor

performance and reduce noise and vibration. Higher harmonic pitching motion may

be imparted by the swashplate, replacing the pitch links with actuators, or elastically

twisting the blade via an outboard flap. Shaw [45] uses the swashplate to superimpose

higher harmonics on the collective and cyclic inputs – an approach known as Higher

Harmonic Control (HHC). McHugh and Shaw [46] validate the effectiveness of HHC

for vibration reduction with a wind-tunnel test. Wood et al. [47] demonstrate vibration

reduction using HHC in a flight test on a U.S. Army helicopter.

Active, semi-active, and passive pitch-link systems have been developed by previous

researchers. In a full-scale wind-tunnel test, Jacklin et al. [48] use active Individual

Blade Control (IBC) to demonstrate up to a 7% reduction in total power in high-speed

forward flight. They also show significant, simultaneous vibration and noise reduction.

Yeo et al. [49] show the existence of an optimal 2/rev input (amplitude and phase) for

maximum power reduction, in a recent full-scale wind-tunnel test. Optimizing only

for a reduction in required power, however, can cause higher vibration levels [50].

Anusonti-Inthra and Gandhi [51] reduce vibratory hub loads in forward flight by cycli-

cally varying the flap, lag, and torsion stiffness of the blade root region at harmonics

of the rotor rotation speed. They observe that these semi-active changes in the torsion

stiffness significantly increase the pitch-link loads. Nitzsche et al. [52] implement a

semi-active axial switching control device to reduce vibrations transmitted to the hub.
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Milgram et al. [53] replace the rigid pitch link with a spring/damper element to passively

reduce vibratory hub loads.

Millott and Friedmann [54] achieve vibration reduction similar to conventional IBC

using an active trailing edge flap (TEF). The TEF requires a fraction of the power needed

for conventional IBC. Zhang et al. [55] show that the trailing edge flap control effort

may be reduced by a hybrid optimization of both blade structure and flap controller

design. Recently, Bae and Gandhi [56] predict increases in rotor performance at high

speeds and/or gross weights by using spanwise-segmented aerodynamic effectors.

In applications where tonal, rather than broad-band, excitations are dominant, pas-

sive fluidic devices may have potential for vibration and loads control. Passive solutions

are relatively low cost and simple because they do not require power/control signals

in the rotating frame and use materials and components that have already flown on

countless rotorcraft. Han et al. [42] propose replacing the rigid pitch links on rotorcraft

with fluidlastic isolators to reduce pitch-link loads.

Although fluidic pitch links offer potential benefits, they also increase the complex-

ity, cost, and weight of the pitch control system. Furthermore, a fluidic pitch link system

has more failure modes than traditional stiff pitch links. If the fluidic pitch links are

coupled in a ring, similar to the coupling of spring-damper assemblies in [40], all of the

pitch links lose fluid if one develops a leak. This fluidic coupling ensures that the pitch

responses of the blades are identical.

By tailoring the impedance of a fluidic pitch link, the pitching motion of the blade,

θ , in response to the natural aerodynamic loads, Mθ , may approach the pitch trajectory

achieved with the active control approaches outlined above. The impedance of a me-

chanical system relates an applied force to the resulting velocity of the system. Jolly

and Margolis [57] present a framework for describing a mechanical system in terms of
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an impedance matrix. If the eigenvalues of the impedance matrix are positive, then the

impedance can be realized by a passive mechanical system.

In Chapter 4, the objectives are to reduce vibratory hub loads and improve rotor per-

formance for a given flight condition by replacing the rigid pitch links with tuned passive

fluidic pitch links. The fluidic pitch link parameters determine the amplitude and phase

of the pitch response of the blade. We model a fluidic pitch link and modify the rotor

aeroelastic simulation used in [58] to observe how fluidic pitch links affect the vibratory

hub loads and rotor performance. The rotor aeroelastic simulation [58] includes rotor

blade flexibility, but is not as complex as Computational Fluid Dynamics/Computational

Structural Dynamics (CFD/CSD) [59] analyses. Theoretical predictions are presented

for a helicopter rotor similar to the UH-60 with fluidic pitch links.

1.4 Contributions

Coupling a Fluidic Flexible Matrix Composite (F2MC) to an air-pressurized fluid port

produces a fundamentally new class of tunable vibration isolator. This fluidlastic device

provides significant vibration reduction at an isolation frequency that can be tuned over a

broad frequency range. A unique feature of this device is that the port inertance depends

on pressure so the isolation frequency can be adjusted by changing the air pressure.

Experiments agree with theory, demonstrating a tunable isolation range from 9 Hz to

36 Hz and transmitted force reductions of up to 60 dB at the isolation frequency.

Replacing rigid pitch links on rotorcraft with coupled fluidic devices has the poten-

tial to reduce the aerodynamic blade loads transmitted through the pitch links. Analyti-

cal models of two fluidic devices coupled with three different fluidic circuits are derived.

The simulation results show loads reduction at the targeted out-of-phase and in-phase
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harmonics of up to 88% and 93%, respectively. Two benchtop experiments validate the

theoretical predictions.

Replacing rigid pitch links on rotorcraft with fluidic pitch links also changes the

blade torsional impedance. An in-house rotor aeroelastic simulation is modified to

include a fluidic pitch link model and is then used to conduct a parametric study. The

parametric study results include cases with reductions in the lateral 4/rev hub force of

up to 91% and 4/rev hub pitching moment of up to 67%, and reductions in main rotor

power of up to 5%.



Chapter 2
Fluidic Composite Tunable Vibration

Isolators

2.1 F2MC Static Modeling

Figure 2.1 shows a schematic diagram of a fluidic composite tunable isolator. A mass M

is attached to one end of a fluid-filled F2MC tube. The mass is excited by a disturbance

force F(t) and responds with displacement x(t). The F2MC tube is connected to a fluid

port and then a pressurized accumulator. As the mass vibrates, the volume of the F2MC

tube changes, and fluid pressure p1(t) is developed inside the tube. This forces fluid

through the fluid port at a flow rate Q(t). The objective of the isolator is to reduce the

transmitted force Ft(t) to the base.

The fluidic composite tunable vibration isolator is analogous to the DAVI device as

shown in Fig. 2.1. The inertance of the fluid in the fluid port corresponds to m f , and

the ratio of the F2MC tube diameter to the fluid port diameter corresponds to the ratio

of b to a. The axial stiffness of the F2MC tube corresponds to K, and the fluid port’s

resistance to flow appears as C in the DAVI analogy. The system model is developed
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in two parts. First, the nonlinear relationship between the inputs (applied load F(t)

and pressure p1(t)) and the output F2MC displacement x(t) is developed from a static

analysis. This relationship is then linearized and incorporated into a dynamic model that

predicts the force transmissibility frequency response.

Figure 2.1. Schematic (left) and mechanical equivalent (right) of the fluidic composite isolator.

The static model assumes that the rubber is incompressible and that the fibers are

inextensible relative to the extension of the entire tube. It also neglects any effects

caused by clamping the F2MC tube to fittings at either end.

The model equations are derived using the principle of virtual work,

δU = δW, (2.1)

where U is the total strain energy and W is the work done by external forces.
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2.1.1 Strain Energy

The strain energy stored in the F2MC tube

U =Ur +Us, (2.2)

where Ur and Us are the strain energy stored in the rubber tube and the fibers, respec-

tively.

The strain energy of the rubber tube is given by

Ur = urVr, (2.3)

where ur and Vr are the strain energy per unit volume and volume of the rubber tube,

respectively. From Gaussian network theory [60],

ur =
Er

6
(λ 2

1 +λ 2
2 +λ 2

3 −3), (2.4)

where Er is the Young’s modulus of the rubber, λ1 to λ3 are the principal stretches,

λ1 =
L
Lo

, (2.5)

and incompressibility of the rubber implies

λ3 =
1

λ1λ2
. (2.6)

The instantaneous length and unstrained length of the F2MC tube are L and Lo, respec-

tively. The unstrained length is measured at zero internal pressure and axial load. For

inextensible fibers [25],

λ 2
1 cos2 α +λ 2

2 sin2 α = 1. (2.7)

Substitution of Eqs. (2.4), (2.6), and (2.7) into Eq. (2.3) produces the strain energy of

the rubber tube as a function of λ1.



15

The strain energy stored in the fibers

Us =
mT 2Ls

2EsAs
, (2.8)

where m is the number of fibers, T is the tension in the fibers, and Ls, Es, and As are the

length, Young’s modulus, and cross-sectional area of the fibers, respectively. Hooke’s

Law in the x direction,

εx =
1
Er

[σx −ν(σy +σz)], (2.9)

forms the basis for determining the tension in the fibers, where σx, σy, and σz are the

Cartesian components of the stress, ν is the Poisson’s ratio of the rubber, and the strain

in the x direction

εx = λ1 −1. (2.10)

Force balances in the hoop and longitudinal directions of the F2MC tube lead to

σx =
π p1R2

i +F −mT cosβ
π(R2

o −R2
i )

(2.11)

and

σy =
1
t

[
p1Ri − mT tanα sinβ

2πλ1Ro,o

]
, (2.12)

where t, Ri, and Ro are the wall thickness, inner radius, and outer radius of the rubber

tube, respectively. The initial, unstrained tube outer diameter is Ro,o. The wind angle of

the fibers, β , is related to the unstrained wind angle, α , by

cosβ = λ1 cosα (2.13)
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using the inextensibility assumption [25]. Substituting Eqs. (2.10)-(2.12) into Eq. (2.9),

neglecting the through-thickness stress, and solving for the tension yields

T =
Er(λ1 −1)+ ν p1Ri

t − π p1R2
i +F

π(R2
o−R2

i )

m
π

[
ν tanα sinβ

2tλ1Ro,o
− cosβ

R2
o−R2

i

] . (2.14)

From the incompressible rubber assumption,

t =
R2

o,o −R2
i,o

λ1(Ro +Ri)
, (2.15)

or,

t =
Ro,o −Ri,o

λ1λ2
, (2.16)

where Ri,o is the unstrained inner radius of the tube. Finally, the inner and outer radii of

the rubber tube may be written as

Ri =
1
2
[λ2(Ri,o +Ro,o)− t] , (2.17)

and

Ro = Ri + t. (2.18)

Substituting Eq. (2.7) and Eqs. (2.13)-(2.18) into Eq. (2.8) produces the fiber strain

energy as a function of λ1.

2.1.2 Work

The work done on the F2MC tube

W =Wp1 +WF , (2.19)
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where Wp1 and WF are the work done by the applied pressure and axial load, respectively.

The work done by the applied pressure

Wp1 = p1(Vtube −Vtube,o), (2.20)

where Vtube,o is the unstrained volume of the F2MC tube and

Vtube = πR2
i λ1Lo. (2.21)

The work done by the axial load

WF = F(λ1 −1)Lo. (2.22)

Substitution of Eqs. (2.7), (2.16)-(2.18), and (2.21) into Eqs. (2.20) and (2.22) produces

the work as a function of λ1.

Finally, substituting the expressions for strain energy and work into Eq. (2.1) results

in an expression that can be solved numerically for λ1 for a given pressure and axial

load.

2.2 Static Model Validation

The static model is validated by varying both the pressure and axial load of an F2MC

tube and measuring its length. Table 2.1 shows the model parameters used for the

experimental setup. Figure 2.2 shows good agreement between model predictions (lines)

and experimental measurements (symbols). Four pressures are shown with static loads

varying from 0 to 160 N. As the pressure increases, the tube shortens due to its initial

wind angle of 18.5∘, which is less than 54∘, causing the tube to contract under pressur-

ization. Relative to 210 kPa pressurization (solid line), the tube pressurized to 410 kPa

(dash-dotted line) is more than 1 cm shorter. Axial loads, on the other hand, increase
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Table 2.1. Experimental parameter values.

Description Parameter Value

F2MC

Unstrained fiber angle α 18.5o

Cross-sectional area of single fiber As 3.1e-8 m2

Young’s modulus of rubber Er 1.03 MPa
Young’s modulus of fibers Es 2.96e3 MPa
Unstrained tube length Lo 0.138 m
Number of fibers m 80 strands
Unstrained inner radius of tube Ri,o 0.0038 m
Unstrained outer radius of tube Ro,o 0.0056 m
Poisson’s ratio of rubber ν 0.5

Fluid Circuit
Components

Diameter of fluid port d 0.0097 m
Density of fluid ρ 993 kg

m3

Flow resistance R f 4.2e6 Pa⋅s
m3

the length of the tube. Adding weight of 160 N increases the length by over 2 cm,

bringing the tube under 210 kPa pressurization almost back to its original length. For

each pressurization, five length measurements are shown for different axial loads. The

experimental data matches very closely with the theoretical predictions.

The static model also predicts the fluid (in this case, water) height, h, for a given fluid

port diameter, d. Figure 2.3 shows that the experimentally predicted height of water in

the tube (line) matches the experimental measurements (circles) for an applied load of

116 N. The curve is not smooth due to changes in the port diameter due to fittings.
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Figure 2.2. Theoretical and experimental change in tube length versus static load at four
pressures: 210 kPa (solid line and O), 280 kPa (dashed line and X), 340 kPa (dotted line and □),
and 410 kPa (dash-dotted line and △).

2.3 F2MC Isolator Dynamic Modeling

To predict the dynamic behavior of the F2MC-fluidic circuit system, the static model is

linearized about an operating point. Summing the forces on the mass, M, yields

M ¨̄x+C1x̄+C2 p̄1 = F̄(t). (2.23)

Here, C1 and C2 are constants resulting from the linearization of F2MC tube force and an

overbar denotes small-change variables. For an incompressible fluid and linear damping,
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Figure 2.3. Theoretical and experimental port fluid level versus pressure (F = 116 N).

the governing equation for flow in the fluid port is

p̄2 − p̄1 = I ˙̄Q+R f Q̄, (2.24)

where R f is the flow resistance. The dynamics of the accumulator are

˙̄p2 =− 1
Ca

Q̄, (2.25)

where Ca, the capacitance of the accumulator, is the volume of the accumulator divided

by the absolute pressure of the accumulator. The fluid inertance

I =
ρh
a1

, (2.26)
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where ρ and a1 are fluid density and cross-sectional area of the fluid port, respectively.

Additionally, the flow, Q, is related to the volume of the F2MC tube by

Q =
dVtube

dt
. (2.27)

Finally, the change in the F2MC tube volume may be linearized such that

V̄tube =−C3x̄, (2.28)

where C3 is the linearization constant. Combining Eqs. (2.27) and (2.28) gives

Q̄ =−C3 ˙̄x. (2.29)

Summing the forces at the supported end of the F2MC tube yields the force transmitted

to the base.

F̄t =C1x̄+(C2 −a1)p̄1 −R f ARQ̄, (2.30)

where AR = πdh is the wetted area of the fluid port. Substituting Eqs. (2.23)-(2.26) and

(2.29) into Eq. (2.30) and taking the Laplace transform of the resulting expression yields

the isolator transfer function from input force to transmitted force,

F̄t(s)
F̄(s)

= H =
(C2 −a1)Is2 +(AR +C2 −a1)R f s+(C2 −a1)

1
Ca

+ C1
C3[

M
C3

+C2I
]

s2 +C2R f s+
C2
Ca

+ C1
C3

. (2.31)

The transfer function (2.31) has two complex poles and two complex zeros. The poles

correspond to the primary mass resonance. The zeros provide the desired antiresonance

and isolation. This isolation frequency is not explicitly dependent on the primary mass.
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2.4 Dynamic Model Validation

The experimental setup illustrated in Fig. 2.4 is used to validate the dynamic model and

demonstrate vibration isolation. The F2MC tube suspends the mass platform from the

frame. The upper end of the tube is connected to the fluid port. The F2MC tube consists

of a rubber tube and polyethylene terephthalate (PET) fibers. A Ling LMT-100 shaker

excites the system. Force transducers from PCB Piezotronics, Inc. measure the input

and transmitted forces (Models 208C02 and 208C01, respectively). A National Instru-

ments’ LabVIEW system generates a chirp signal for the shaker input and calculates the

frequency response function based on the resulting force transducer signals.

Figure 2.4. Experimental setup.

Figure 2.5 shows the experimentally measured and theoretically predicted frequency

responses of the force transmission transfer function at four different system pressures.



23

(See Appendix A for the Matlab® code.) The resonant peaks and isolation valleys are

clearly visible in the responses. The theory and experiment match closely, indicating

the fidelity of the system model and validity of the underlying assumptions. The theory

overpredicts the amplitude of the first peak because the model neglects the material

damping in the F2MC tube. A second, higher frequency peak in the experimental fre-

quency responses is not predicted by the model. This peak may be due to the unmodeled

compliance of the F2MC tube, but it is more likely due to the unmodeled motion of

the flexible fluid port. As the fluid height (and thus, mass) in the port decreases, the

associated peak shifts to a higher frequency.
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Figure 2.5. Theoretical (solid lines) and experimental (dashed lines) frequency responses for a
constant system fluid volume of 30 cm3 and static load of 116 N at four equilibrium pressures:
(a) 210 kPa, (b) 280 kPa, (c) 340 kPa, and (d) 410 kPa.
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Figure 2.5 also shows that the isolation frequency fi can be tuned by changing

the applied pressure in the accumulator. Increasing the accumulator pressure causes

the F2MC tube volume to increase, lowering the fluid in the port and the associated

inertance. Thus, fi increases with increasing pressure. The responses in Fig. 2.5 show

an isolation range that is tunable from 9 Hz to 36 Hz. The isolator is 90% efficient

at 210 kPa (reducing the transmitted force by 20 dB) and 99.9% efficient at 410 kPa

(reducing the transmitted force by 60 dB) when the driving frequency matches the

isolation frequency. Optimal force transmission reduction requires low fluid damping.

Thus, the fluid port should not have constrictions or an exceedingly small diameter, and

the fluid should be as inviscid as possible.

Figure 2.6 plots the theoretically predicted relationship between applied pressure

and isolation frequency and the four experimental data points from Fig. 2.5. Figure 2.7

shows the isolation frequency as a function of fluid level at four different system pres-

sures. In these curves, the system pressure is maintained constant while the fluid height

is varied. The higher the fluid height, the higher the inertance, and the lower the isolation

frequency. The four experimental data points from Fig. 2.5 lie close to the theoretically

predicted curves. In practice, the volume of fluid would be constant during operation

but the pressure could be changed. Thus, the fluid height is a system design parameter

while the applied pressure is a tuning parameter that could be varied during operation to

minimize the transmitted load.

Figure 2.8 shows that the isolator is relatively independent of the isolated mass,

M, if the system pressure is adjusted such that h remains constant. The responses are

not identical because the stiffness of the F2MC tube depends on the wind angle which

changes with system pressure and axial load.
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Figure 2.6. Theoretical and experimental isolation frequency versus equilibrium pressure for
three fluid volumes and 116 N static load: 30 cm3 (solid line and symbols), 36 cm3 (dashed
line), and 42 cm3 (dotted line).
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Figure 2.7. Theoretical and experimental isolation frequency versus equilibrium port fluid level
at four equilibrium pressures and 116 N static load: 210 kPa (solid line and O), 280 kPa (dashed
line and X), 340 kPa (dotted line and □), and 410 kPa (dash-dotted line and △).
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Figure 2.8. Experimental demonstration of the insensitivity of the isolation frequency to static
load for constant inertance (heq = 13 cm): Feq = 96 N and p1,eq = 250 kPa (solid line), Feq =
116 N and p1,eq = 280 kPa (dashed line), and Feq = 136 N and p1,eq = 300 kPa (dotted line).



Chapter 3
Coupled Pitch Links for

Multi-Harmonic Isolation Using

Fluidic Circuits

3.1 Analytical Model

In this chapter, we study two pitch links on opposite sides of the helicopter rotor that are

coupled by a fluidic circuit, as shown in Fig. 3.1. The model applies to rotors with an

even number of blades. Furthermore, the purpose of the model is to demonstrate how a

circuit coupling two fluidic pitch links may be tailored to simultaneously reduce multiple

harmonic pitch-link loads. The model does not include several practical considerations

that should be included in an expanded analysis prior to installation. These practical

considerations include centrifugal-force effects, support and mounting of the fluidic
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circuit to withstand the vibratory environment, and changes in the behavior of the system

with altitude and orientation.

The blade pitch inertia, Iθ , is represented by an equivalent mass, m. For a given

distance between the pitch link and the blade pitch axis, lph,

m =
Iθ

lph
2 . (3.1)

The loading on each blade is

f (t) = fo + f1c cos(Ωt)+ f1s sin(Ωt)+ f2c cos(2Ωt)+ f2s sin(2Ωt)

+ f3c cos(3Ωt)+ f3s sin(3Ωt)+ ⋅ ⋅ ⋅ .
(3.2)

Identical blades in steady-state flight results in harmonic blade loading that causes the

two pitch links to see the same magnitude and in-phase forcing for even harmonics and

180-degree out-of-phase forcing for odd harmonics. Three different fluidic circuits are

studied to demonstrate the correlation between circuit configuration and loads reduction

at odd and even harmonics. Each of the three circuits is the simplest configuration that

results in loads reduction for the desired combination of odd and even harmonics.

3.1.1 Fluidic Circuit I

The first fluidic circuit (See Fig. 3.1.) has two pitch links that are coupled by a horizontal

fluid-filled tube of diameter d and length 2L, which gives loads reduction at an odd

harmonic [44]. The fluid in the horizontal tube has density ρ and lumped inertance 2I,

where

I =
4ρL
πd2 . (3.3)

We assume the resistance to fluid flow in the horizontal tube, 2R f , is constant and that

the fluid is incompressible. Unlike the fluidic circuit in [44], however, a vertical tube of
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Figure 3.1. Schematic of Fluidic Circuit I.

diameter d rises from a tee at the center of the horizontal tube. The fluid in the vertical

tube has lumped inertance Iv and resistance Rv. An air-over-fluid accumulator at the top

of the tube has length La and capacitance Ca and permits fluid flow for in-phase forcing,

allowing for loads reduction at an even harmonic in addition to the aforementioned odd

harmonic. We assume that the pressure and volume fluctuations of the accumulator

during operation are relatively small, so the accumulator capacitance is approximately

constant. From [61], the capacitance of the accumulator is the ratio of the volume of the

accumulator to the absolute pressure of the accumulator; i.e.,

Ca =
πd2La

4(pao + patm)
, (3.4)

where pao and patm are the system pre-pressure and the atmospheric pressure, respec-

tively. The system is pre-pressurized to prevent cavitation. Each pitch link has ca-
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pacitance Cp and a piston of diameter D that is sealed and elastically restrained by

an elastomer with damping cd and stiffness kd . The mass, connected to the piston

with a spring of stiffness ko and to the ground by a damper with damping value co,

moves with displacement xo(t) in response to f (t). The mass models the blade pitch

inertia and the stiffness models the control system stiffness and blade torsion stiffness.

The blade loading and aerodynamic damping are modeled by the forcing and damping,

respectively. To obtain a linear model, we assume the damping, co, is constant. xo(t)

is assumed to be proportional to the pitch motion of the blade root. The piston moves

with displacement x(t) and the pressure, p(t), generated in the pitch link induces in-

compressible fluid flow Q(t). In-phase forcing induces fluid flow Qa(t) in the vertical

tube. A summary of assumptions is as follows: rigid swashplate, small blade-root

pitch angles, negligible joint friction, harmonic pitch-link loads, lumped parameters

model the fluid, inviscid fluid flow inside the pitch link, incompressible fluid, constant

flow resistance and damping, and constant accumulator capacitance over the range of

operating pressures and volume changes.

Summing the forces on each mass gives

mẍoi + coẋoi + koxoi − koxi = fi(t), i = 1, 2, (3.5)

where all parameters and variables are defined in the list of symbols. Summing the

forces on each piston yields

cd ẋi +(kd + ko)xi − koxoi =−Api, i = 1, 2, (3.6)
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where A = π
4 D2. The mechanical-fluidic coupling equation is

Qi = Aẋi −Cp ṗi, i = 1, 2. (3.7)

The equation for the fluid flow through each half of the horizontal tube is

pi − pm = IQ̇i +R f Qi, i = 1, 2. (3.8)

Similarly, for the fluid flow through the vertical tubing

pm − pa = IvQ̇a +RvQa. (3.9)

Fluid flow into and out of the accumulator dictates the change in accumulator pressure

ṗa =
1

Ca
Qa. (3.10)

Conservation of flow at the tee gives

Q1 +Q2 = Qa. (3.11)

The transmitted force for each pitch link is

fti = cd ẋi + kdxi +Api, i = 1, 2. (3.12)

For out-of-phase (OP) forcing, f2 = − f1. Pitch-link capacitance is due to com-

pliance in the pitch-link housing and is negligible. To simplify the complexity of the

following transfer functions, we also neglect the elastomer damping, which is small rel-

ative to the aerodynamic and fluid damping. Taking the Laplace transform of Eqs. (3.5)-
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(3.12), the resulting system of thirteen equations is solved symbolically for Xoi , Xi, Pi,

Qi, Pm, Qa, Pa, and Fti (i = 1, 2). The transfer function from the input force to the

transmitted force is

H(s) =
Ft1(s)
F1(s)

=
Ft2(s)
F2(s)

=
b1s2 +b2s+b3

a1s4 +a2s3 +a3s2 +a4s+a5
, (3.13)

where the coefficients, ai and bi, are as defined in Appendix B. Neglecting damping,

letting s = jω , and solving for the zero of the transfer function gives

ωzOP =

√
kd

A2I
. (3.14)

Following a similar procedure for in-phase (IP) forcing, f2 = f1, yields a transfer func-

tion of the same form as Eq. (3.13). (See Appendix B for the coefficients.) The

corresponding zero is

ωzIP =

√
2A2 +Cakd

A2Ca(I +2Iv)
. (3.15)

As will be shown, out-of-phase and in-phase excitation forces at the corresponding zero

frequencies above can be significantly attenuated, thus relieving some of the strain on

the swashplate and its actuators.

A design procedure to reduce transmitted forces at one out-of-phase harmonic and

one in-phase harmonic may be deduced from Eqs. (3.14) and (3.15). First, select an

elastomer stiffness that provides sufficient 1/rev load transmission and an acceptable

torsional natural frequency. Second, choose the proper combination of piston area and

horizontal tube inertance to tune the zero of the out-of-phase forcing transfer function
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to the desired odd harmonic of the rotor frequency. The diameter of the swashplate

determines the minimum fluid track length. Selecting a fluid track diameter and fluid

allows one to calculate the horizontal tube inertance. The required piston area may

now be calculated from Eq. (3.14). If the calculated piston area is too large, the fluid

track length may be increased, or the fluid track diameter may be reduced. The fluid

track diameter must not be too small, however, or the flow resistance will be too large.

Finally, choose the inertance of the vertical tube and the capacitance of the accumulator

to tune the zero of the in-phase forcing transfer function to the desired even harmonic.

Simulations using m, ko, and Ω values representative of the equivalent blade pitch

inertia, effective torsional stiffness, and main rotor rotational frequency of a UH-60,

respectively, demonstrate the effectiveness of this design procedure. Table 3.1 lists the

parameters used in the simulations. The piston diameter is 5 cm, the fluid track diameter

is 0.7 cm, and the horizontal fluid track length is 146 cm. The lengths of the vertical fluid

track and accumulator are 13 cm and 4 cm, respectively. Figure 3.2 shows the frequency

response ∣H( jω)∣ from Eq. (3.13) for out-of-phase (top) and in-phase (bottom) forcing.

The out-of-phase frequency response is used to assess the out-of-phase frequencies,

which are highlighted by the gray bars. The in-phase transfer function is used to assess

the in-phase frequencies (again, highlighted by the gray bars). The device in Fig. 3.1

is tuned to isolate the 3/rev and 4/rev rotor harmonics (frequencies highlighted by the

dark-gray bars in Fig. 3.2). The baseline system has no fluid and a stiff pitch link so

it simply consists of the mass, m, suspended by the stiffness, ko, with an assumed co
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equal to 10% of critical. The baseline frequency response shows a peak near 4.5/rev but

no zeros. The out-of-phase transfer function includes the fluid and pitch-link stiffness,

introducing a second peak and a zero. Figure 3.2(a) shows peaks near 2/rev and 6/rev

and a zero at the desired 3/rev frequency. As shown in Table 3.2, the 3/rev and 5/rev

loads are reduced by 76% and 50%, respectively. The 1/rev loads are approximately the

same. Figure 3.2(b) shows a zero at 4/rev and peaks near 3/rev and 6/rev. The targeted

4/rev load decreases by 87% but the 2/rev and 6/rev loads increase.

3.1.2 Fluidic Circuit II

The fluidic circuit shown in Fig. 3.3 is similar to the one in Fig. 3.1, but it facilitates

targeted loads reduction at two even harmonics and one odd harmonic because it has two

vertical fluid tracks, each of which terminates in an accumulator. To achieve the desired

fluid heights, water is added to both vertical tracks, and both accumulators are pre-

pressurized. The accumulator pre-pressures are then further adjusted until the desired

fluid levels are obtained. For this device, Eqs. (3.9)-(3.11) become, respectively,

pm − pai = IviQ̇ai +RviQai , i = 1, 2, (3.16)

ṗai =
1

Cai

Qai , i = 1, 2, (3.17)

Q1 +Q2 = Qa1 +Qa2. (3.18)

The other system equations are the same as for the previous device. The force transfer

function for the out-of-phase forcing case is the same as Eq. (3.13) with a1, ...,a5, b1, ...,b3
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Figure 3.2. Full-scale representative system frequency response of two coupled fluidic pitch
links with a single vertical fluid track. (See Fig. 3.1.)

defined in Appendix B. For in-phase forcing, the transfer function is

H(s) =
b1s4 +b2s3 +b3s2 +b4s+b5

a1s6 +a2s5 +a3s4 +a4s3 +a5s2 +a6s+a7
, (3.19)
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where the coefficients, ai and bi, are defined in Appendix B. This transfer function has

two zeros and three poles. The design parameters are shown in Table 3.1. The piston

diameter, the fluid track diameter, and the horizontal fluid track length are the same

as Fluidic Circuit I. The two vertical fluid track lengths are 34 cm and 4 cm, and the

corresponding accumulator lengths are 63 cm and 8 cm, respectively. Following the

design procedure stated above, but now choosing Ca1 , Ca2 , I, Iv1 , and Iv2 as given in

Table 3.1 to isolate 2/rev, 3/rev, and 4/rev harmonic loads, produces the response shown

in Fig. 3.4. The out-of-phase transfer function has two well-spaced poles, and one zero

(at the targeted 3/rev frequency). As shown in Table 3.2, the 3/rev response is reduced by

76% from the baseline value with little impact on the 1/rev loads. The in-phase transfer

function has three poles, and two zeros (at the targeted 2/rev and 4/rev frequencies).

The 2/rev and 4/rev harmonics are reduced by 19% and 86% from the baseline value,

respectively. The 6/rev harmonic, however, increases by 161% from the baseline value.

3.1.3 Fluidic Circuit III

The two in-line accumulators in the fluidic circuit shown in Fig. 3.5 are sections of

soft tubing. The volume of each section of soft tubing increases for a net flow into the

accumulator and decreases for a net flow out of the accumulator. This device is similar

to the one in [44], but the accumulators provide additional degrees of freedom for out-

of-phase and in-phase forcing resulting in loads reduction at two odd harmonics and one
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Figure 3.3. Schematic of Fluidic Circuit II.

even harmonic. The lumped-parameter fluidic circuit equations for this device are

pi − pai = IQ̇i +R f Qi, i = 1, 2 (3.20)

and

pa1 − pa2 = I3Q̇3 +R3Q3. (3.21)

The pressure change in the first accumulator

ṗa1 =
1

Ca
(Q1 −Q3), (3.22)

and the pressure change in the second accumulator

ṗa2 =
1

Ca
(Q2 +Q3). (3.23)
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Figure 3.4. Full-scale representative system frequency response of two coupled fluidic pitch
links with two vertical fluid tracks. (See Fig. 3.3.)

Since these accumulators are filled with water, Eq. (3.4) does not apply. The capacitance

of these accumulators is a function of material properties, tube geometry, and system

pre-pressure. The force transfer function for this configuration with out-of-phase forcing

is of the same form as Eq. (3.19) (two real zeros), and the transfer function for in-
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phase forcing is of the same form as Eq. (3.13) (one real zero) (coefficients defined in

Appendix B). Choosing Ca, I, and I3 as given in Table 3.1 to isolate the 3/rev, 4/rev, and

5/rev harmonic loads produces the response shown in Fig. 3.6. As shown in Table 3.2,

the 3/rev and 5/rev harmonics are reduced by 71% and 88%, respectively, with little

impact on the 1/rev loads. The 7/rev loads, however, are amplified. The in-phase forcing

shows a 93% reduction at the targeted 4/rev harmonic with amplification at the 2/rev and

6/rev harmonics.

The fluid motion may be described in terms of modes. For out-of-phase forcing,

there are two modes (and two zeros in the out-of-phase frequency response). The first

mode consists of all of the fluid moving as a slug back and forth between the two pitch

links. This mode primarily affects the zero at 3/rev. The second mode consists of the

slug of fluid in the center fluid track oscillating between the two accumulators. This

mode primarily affects the zero at 5/rev. For in-phase forcing, there is a single mode

(and one zero in the in-phase frequency response) – the fluid flows out of each pitch link

simultaneously and into each accumulator. The fluid in the center fluid track remains

stationary.

3.1.4 Summary of Analytic Study

A summary of the responses at the rotor harmonics of the three different systems is

shown in Fig. 3.7. Fluidic Circuit II provides the best 2/rev loads reduction. All three

fluidic circuits significantly reduce the 3/rev pitch-link loads. Fluidic Circuit III gives
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Table 3.1. Simulation parameters for full-scale representative system.

Description Parameter Value

Rotor System

Elastomer damping cd 0 N⋅s
m

Baseline damping co 870 N⋅s
m

Pitch-link capacitance Cp 0 m3

Pa
Fluidic circuit pipe diameter d 0.007 m
Piston diameter D 0.05 m
Elastomer stiffness kd 460 kN

m
Baseline stiffness ko 540 kN

m
Equivalent pitch inertia m 35 kg
System pre-pressure (gage) pao 35 kPa
Flow resistance per length r 5.0e8 Pa⋅s

m3 /m
Fluid (water) density ρ 1000 kg

m3

Rotor rotation rate Ω 27 rad
s

Fluidic Circuit I

Accumulator capacitance Ca 1.13e-11 m3

Pa
Horizontal fluid track half-inertance I 1.90e7 kg

m4

Vertical fluid track inertance Iv 3.38e6 kg
m4

Horizontal fluid track half-length L 0.73 m
Accumulator length La 0.04 m
Vertical fluid track length Lv 0.13 m

Fluidic Circuit II

Accumulator 1 capacitance Ca1 1.82e-10 m3

Pa
Accumulator 2 capacitance Ca2 2.26e-11 m3

Pa
Horizontal fluid track half-inertance I 1.90e7 kg

m4

Vertical fluid track 1 inertance Iv1 8.83e6 kg
m4

Vertical fluid track 2 inertance Iv2 1.04e6 kg
m4

Horizontal fluid track half-length L 0.73 m
Accumulator 1 length La1 0.63 m
Accumulator 2 length La2 0.08 m
Vertical fluid track 1 length Lv1 0.34 m
Vertical fluid track 2 length Lv2 0.04 m

Fluidic Circuit III

Accumulator capacitance Ca 2.89e-11 m3

Pa
Outer fluid track inertance I 1.35e7 kg

m4

Center fluid track inertance I3 5.46e6 kg
m4

Outer fluid track length L 0.52 m
Center fluid track length L3 0.21 m
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Figure 3.5. Schematic of Fluidic Circuit III.

the best 4/rev and 5/rev loads reduction. All three fluidic circuits increase the 6/rev and

7/rev pitch-link loads.

3.2 Experimental Validation – Fluidic Circuit I

The analysis for each of the three fluidic circuits in the previous sections predicts multi-

harmonic isolation. To demonstrate the performance of Fluidic Circuit I and Fluidic

Circuit III, two benchtop tests are conducted.

Figure 3.8 shows the experimental setup used to validate the model for Fluidic Cir-

cuit I and demonstrate multi-harmonic isolation. Each fluidic pitch link is represented by

a diaphragm pump, consisting of a thin disk of rubber clamped at the edges by a plastic

housing. A threaded rod passes through the center of the diaphragm and is clamped
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Figure 3.6. Full-scale representative system frequency response of two coupled fluidic pitch
links with two in-line accumulators. (See Fig. 3.5.)

to the diaphragm by a washer and nut on each side. (The diaphragm pump is similar

to the piston pump used in the analysis sections in that oscillatory motion of the rod

deflects the diaphragm, causing fluid to flow into and out of the pitch link.) The mass is

suspended from the rod and attached to the stinger of an electromagnetic shaker. Clear
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Figure 3.7. Summary of the full-scale representative system frequency responses at the rotor
harmonics of two coupled fluidic pitch links with three different fluidic circuits.

Polyvinyl Chloride (PVC) pipe connects the two diaphragm pumps. The vertical fluid

track is attached to a tee in the center of the horizontal connecting pipe. The system

is filled, then pre-pressurized to prevent cavitation. A Ling LMT-100 shaker and a

Vibration Test Systems VG100A-6 shaker excite the system. Force transducers from

PCB Piezotronics, Inc. measure the input and transmitted forces (Models 208C02 and

208C01, respectively). A National Instruments LabVIEW system sends chirp signals

to the shakers and calculates the input-force-to-transmitted-force frequency response

functions based on the resulting force-transducer signals.



45

Table 3.2. Transmitted loads reduction for full-scale representative system simulation.

Frequency Baseline Fluidic Circuit Reduction
(/rev) (dB) (dB) (%)

Circuit I

1 0.4 0.9 -6
2 1.8 2.9 -14
3 4.6 -7.9 76
4 10.6 -7.1 87
5 10.7 4.6 50

Circuit II

1 0.4 0.9 -6
2 1.8 -0.1 19
3 4.6 -7.9 76
4 10.6 -6.6 86
5 10.7 4.6 50

Circuit III

1 0.4 0.9 -6
2 1.8 4.0 -28
3 4.6 -6.1 71
4 10.6 -12.2 93
5 10.7 -7.8 88

Two experimental runs are conducted to test two different driving conditions. The

two shakers drive out-of-phase for the first run and in-phase for the second run. Fig-

ure 3.9 shows the experimental frequency responses for both out-of-phase and in-phase

forcing for one pitch link compared to the predicted responses. From symmetry, we

expect and observe similar performance in the other pitch link. (See Appendix C for

the frequency responses of both pitch links and the associated Matlab® code.) Although

not shown, the corresponding phase curves decrease and increase, respectively, at the
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pole and zero frequencies. The baseline curves are for the system with “no fluid.” The

baseline model includes only the mass, diaphragm stiffness, and diaphragm damping.

(We neglect the stiffness due to the compressibility of the enclosed air because it is

much less than the diaphragm stiffness.) The diaphragm stiffness is calculated from

the baseline natural frequency and mass. The diaphragm damping is determined by

adjusting cd until the amplitudes of the theoretical and experimental baseline curves

match. The theoretical and experimental curves lie on top of each other, showing a

resonant peak at 23.7 Hz. The experimental and theoretical responses for the system

“with fluid” also match well with the model parameters given in Table 3.3. The pitch-

link capacitance is determined by measuring the change in volume of the pitch link

as the pitch-link pressure changes. We assume the flow resistance per unit length to

be constant, and we determine the effective flow resistance by adjusting r until the

amplitudes of the peaks and zeros of the theoretical and experimental curves coincide.

The remaining parameters come from dimensions as well as capacitance and inertance

formulas. Since the pipe and fittings have different diameters, the inertance for a given

fluid track is the sum of the inertances for each section within that fluid track. The

baseline system and the system “with fluid” exhibit the same low-frequency behavior,

in both forcing cases. The isolation frequency in the out-of-phase-forcing case occurs at

10.6 Hz, where the transmitted load is reduced by 55% from the baseline case. For the

in-phase-forcing case, 71% of the baseline load is reduced at the isolation frequency at

16.9 Hz. Table 3.4 summarizes the experimentally measured performance.
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3.3 Experimental Validation – Fluidic Circuit III

The objective of this circuit is to provide isolation at two odd harmonics and one even

harmonic. Figure 3.10 shows the upper portion of the experimental setup used to

validate the model for Fluidic Circuit III. (The lower portion is unchanged from the

experimental setup for Fluidic Circuit I.) Each of the two in-line accumulators consists

of a section of rubber tubing that is clamped at both ends to the PVC pipe. An external

structure supports the fluid track between the two accumulators.

Figure 3.11 shows the experimental frequency responses for both out-of-phase and

in-phase forcing compared to the predicted responses for one pitch link. (See Ap-

pendix C for the frequency responses of both pitch links and the associated Matlab®

code.) The corresponding phase curves (not shown) decrease and increase, respectively,

at the pole and zero frequencies. The baseline curve is again the frequency response

of the system with “no fluid,” and the theoretical and experimental curves show a

single resonance at 23.7 Hz. The experimental and theoretical responses for the system

“with fluid” also match well. The model parameters are given in Table 3.3. The

baseline system and the system “with fluid” exhibit the same low-frequency behavior,

in both forcing cases. The isolation frequencies in the out-of-phase-forcing case occur

at 10.9 Hz and 20.9 Hz, where the transmitted loads are reduced by 40% and 89% from

the baseline case, respectively. For the in-phase-forcing case, 81% of the baseline load

is reduced at the isolation frequency of 17.6 Hz. Table 3.4 summarizes the experimental

performance.
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Figure 3.8. Fluidic Circuit I experimental setup.
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Figure 3.9. Frequency response of two coupled pitch links with a single vertical fluid track.
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Figure 3.10. Fluidic Circuit III experimental setup.
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Table 3.3. Experimental parameters.

Description Parameter Value
Mass m 1.13 kg

Pitch-Link
Components

Diaphragm damping cd 10 N⋅s
m

Baseline damping co 0 N⋅s
m

Pitch-link capacitance Cp 1.7e-11 m3

Pa
Effective piston diameter D 0.044 m
Diaphragm stiffness kd 25 kN

m
Stinger stiffness ko ∼ ∞
Diaphragm thickness t 0.0032 m

Fluidic Circuit
Components

Pipe inner diameter d 0.012 m
Fitting inner diameter d f 0.017 m
Fitting inner diameter dh 0.011 m
Fitting length L f 0.02 m
System pre-pressure (gage) pao 50 kPa
Fluid (water) density ρ 1000 kg

m3

Fluidic Circuit I
Components

Accumulator capacitance Ca 9.8e-11 m3

Pa
Fitting inner diameter dt 0.010 m
Connecting fluid track half-inertance I 2.3e6 kg

m4

Vertical fluid track inertance Iv 2.6e5 kg
m4

Pipe length L1 0.08 m
Pipe length L2 0.11 m
Accumulator length La 0.13 m
Vertical fluid track length Lv 0.04 m
Flow resistance per length r 6.0e7 Pa⋅s

m3 /m

Fluidic Circuit III
Components

Accumulator capacitance Ca 2.0e-10 m3

Pa
Accum. inner diam. (unpressurized) da 0.019 m
Fitting inner diameter dt 0.008 m
Outer fluid track inertance I 1.3e6 kg

m4

Center fluid track inertance I3 1.1e6 kg
m4

Pipe length L1 0.05 m
Pipe length L2 0.02 m
Accumulator length La 0.08 m
Pipe length Lc 0.06 m
Flow resistance per length r 1.1e8 Pa⋅s

m3 /m
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Table 3.4. Transmitted loads reduction for experiments.

Theory Experiment
Frequency Baseline With Fluid Reduction With Fluid Reduction

(Hz) (dB) (dB) (%) (dB) (%)

Circuit I 10.6 (out-of-phase) 1.8 -6.1 60 -5.2 55
16.9 (in-phase) 6.1 -7.8 80 -4.8 71

Circuit III
10.9 (out-of-phase) 2.0 -2.1 38 -2.5 40
17.6 (in-phase) 7.0 -9.5 85 -7.2 81
20.9 (out-of-phase) 12.9 -7.8 91 -6.6 89



Chapter 4
Impedance Tailored Fluidic Pitch

Links for Passive Hub Vibration

Control and Improved Rotor

Efficiency

4.1 Fluidic Pitch Link Model

A schematic diagram of a fluidic pitch link is shown in Fig. 4.1. The pitch link has a

piston of area A and mass m that is sealed and elastically restrained by an elastomer

with damping cd and stiffness kd . The piston moves with displacement x(t) in response

to F(t). For a given pitch-horn length, lph, F(t) and x(t) are related to the blade-root
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pitching moment, Mθ (t), and the blade-root elastic twist, θr(t), respectively, by

F =
Mθ
lph

(4.1)

and

x = lphθr. (4.2)

The primary chamber of the pitch link has capacitance Cp and pressure, p(t), generated

by the motion of the piston as it forces fluid volume V (t) into the fluid track. The fluid

track has area a and length L. The fluid in the track has density ρ and lumped inertance

I, where

I =
ρL
a
. (4.3)

We assume the resistance to fluid flow, R f , of the fluid track is constant. The fluid track

terminates in an accumulator with capacitance Ca and pressure pa(t).

This model of a fluidic pitch link has two degrees of freedom. Summing the forces

on the piston gives the first equation of motion

mẍ+ cd ẋ+
(

kd +
A2

Cp

)
x− A

Cp
V = F. (4.4)

The mechanical-fluidic coupling equation is

V = Ax−Cp p. (4.5)

The equation for the fluid flow through the fluid track is

p− pa = IV̈ +R f V̇. (4.6)
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Figure 4.1. Schematic of a fluidic pitch link.

Fluid flow into, and out of, the accumulator dictates the change in accumulator pressure

ṗa =
1

Ca
V̇. (4.7)

Combining Eqs. (4.5)-(4.7) yields the second equation of motion

IV̈ +R f V̇ +

(
1

Ca
+

1
Cp

)
V − A

Cp
x = 0. (4.8)
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4.2 Rotor Aeroelastic Simulation

The rotor aeroelastic simulation from [58] (See Appendix D for flow charts showing

how the main subroutines in the aeroelastic simulation interact.) assumes Nb identical

blades. The blade radius and rotation rate are the same as those of the UH-60. The rotor

blade is modeled as a beam and divided into thirteen finite elements. Each element has

eleven nodes – four each for flap and lag, and three for torsion. The root of the blade is

hinged to permit flap and lag motions, and the root pitch is prescribed (no elastic root

pitch). Aerodynamic loads are determined via a table lookup. Drees’ model [62] is used

to calculate the inflow. The steady, periodic response of the blade is calculated in modal

space (three flap, three lag, and two torsion modes) using finite-element-in-time. Each

of the eight time elements has six nodes. The resulting response is used to calculate the

blade-root loads. After a propulsive trim converges, the resulting hub loads are reported

as forces and moments in the coordinate system shown in Fig. 4.2.

Figure 4.2. Coordinate system for hub loads.

Adding the fluidic pitch link model described above introduces one additional degree

of freedom (fluid volume, V ) to the rotor aeroelastic simulation. Also, the root of the

blade can now pitch elastically in addition to the prescribed pitch necessary for trim.
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The mass, damping, and stiffness matrices are modified to include the fluidic pitch link

parameters. The introduction of the fluidic pitch link alters the response, which in turn,

alters the blade-root loads, and thus, the hub loads. The change in blade pitch response

also alters the required rotor power.

4.3 Parametric Study

To investigate the potential of fluidic pitch links to influence hub loads and rotor power,

we conduct a series of aeroelastic simulations with reasonable fluidic pitch link param-

eters. (See Table 4.1.) The following four fluidic pitch link parameters are varied:

accumulator capacitance, elastomer stiffness, inertance, and piston area. These four

parameters depend on fluidic pitch link geometry (piston diameter, accumulator volume,

and fluid track length) and material properties. Each parameter is assigned three values,

as shown in Table 4.2, resulting in eighty-one simulations.

The three best combinations that result in the highest reductions of the 4/rev hub

loads are selected for further study and shown in Table 4.2. Figures 4.3-4.5 show

the nondimensional 4/rev hub loads for each of these three cases. For Case 1, the

longitudinal force, lateral force, and pitching moment are reduced by 47%, 91%, and

58%, respectively. For Case 2, the lateral force, rolling moment, and pitching moment

are reduced by 53%, 41%, and 67%, respectively. Unfortunately, Cases 1 and 2 show a

large increase in FZ . Case 3, however, shows a slight decrease in FZ with reductions

in the lateral force, rolling moment, and pitching moment of 17%, 37%, and 20%,
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Table 4.1. Parameters for aeroelastic simulation.

Description Parameter Value

Rotor System

Blade-loading coefficient CT
σ 0.073

Pitch-horn length lph 0.18 m

Blade mass per unit length mb 11.4 kg
m

Number of blades Nb 4
Blade radius R 8.17 m
Advance ratio µ 0.3

Rotor rotation rate Ω 27 rad
s

Fluidic Pitch Link

Piston area∗ A 0.0046 m2

Elastomer damping cd 220 N⋅s
m

Accumulator capacitance∗ Ca 1.2e-10 m3

Pa

Pitch-link capacitance Cp 1.2e-12 m3

Pa

Inertance∗ I 6.5e6 kg
m4

Elastomer stiffness∗ kd 657 kN
m

Piston mass m 0.44 kg

Flow resistance R f 8.5e6 Pa⋅s
m3

∗Varied for parametric study

respectively. The simulation results clearly show that fluidic pitch links can influence

all six components of the hub loads. While no case shows simultaneous reduction in all

components, the authority and tunability of fluidic pitch links has been demonstrated.

To better understand how a fluidic pitch link changes the higher harmonic pitching

motion of the blade and the hub loads, Fig. 4.6 shows the 2/rev – 5/rev amplitudes and

phases of the elastic tip torsion response for Case 1 compared to the rigid pitch link case.

The amplitude of the 2/rev elastic torsion response increases, but the amplitudes of the
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Table 4.2. Parametric study parameter values and best-performing cases.

Accumulator Capacitance Elastomer Stiffness Inertance Piston Area
Symbol [Units] Ca

[
m3

Pa

]
kd

[kN
m

]
I
[

kg
m4

]
A
[
m2]

Value 1 1.2e-11 438 5.4e6 0.0037

Value 2 1.2e-10 657 6.5e6 0.0046

Value 3 2.4e-10 876 7.6e6 0.0056

Case 1 1.2e-10 657 7.6e6 0.0056

Case 2 1.2e-10 657 7.6e6 0.0037

Case 3 1.2e-11 438 7.6e6 0.0056

3/rev – 5/rev elastic torsion response decrease. The phases of all four fluidic pitch link

harmonics differ from the rigid pitch link case.

The total elastic torsion response versus azimuth angle for Case 1 is shown in Fig. 4.7.

The tip response of the blade with a fluidic pitch link differs noticeably from the blade

with a rigid pitch link. Also, for the blade with a fluidic pitch link, the elastic root

response differs from the elastic tip response, indicating the blade elastically twists in

addition to the fluidic pitch link deflection.

The fluidic pitch link in Case 1 significantly reduces the 4/rev inplane hub shears,

FX and FY , by changing the 3/rev and 5/rev inplane blade-root shears. The radial root

shear, fx, and the chordwise root shear, fy, are shown in Fig. 4.8. Inplane hub shears

are reduced when fx and fy have similar magnitudes and a 90∘ phase difference. From

Fig. 4.8, the 3/rev fx and fy with the fluidic pitch link are closer in magnitude than in

the rigid pitch link case. This is also true for the 5/rev fx and fy. Furthermore, the phase

difference between the 5/rev fx and fy with the fluidic pitch link (72∘) is closer to 90∘
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Figure 4.3. Nondimensional 4/rev hub loads for Case 1.

than in the rigid pitch link case (41∘). These changes in the 3/rev and 5/rev blade-root

shears result in the reductions in 4/rev inplane hub shears in Case 1.

4.4 Impacts on Trim and Torsional Stability

Fluidic pitch links should not significantly impact trim or stability because the aircraft

will handle differently and may become unsafe. Table 4.3 shows the propulsive trim
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Figure 4.4. Nondimensional 4/rev hub loads for Case 2.

results of Cases 1–3. Introduction of a fluidic pitch link does not significantly change the

vehicle trim. The largest discrepancy is in the cosine component of the cyclic pitch for

Case 1 that differs from the rigid pitch link case by only 0.4∘. The aeroelastic simulation

does not predict torsional stability, but the first torsion natural frequency is related to

torsional stability. The first torsion natural frequency is significantly smaller for all three

fluidic pitch link cases compared to the rigid pitch link case. This large reduction is due
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Figure 4.5. Nondimensional 4/rev hub loads for Case 3.

to the combined effects of decreased stiffness and increased inertia, resulting from the

relatively soft elastomer stiffness and the addition of fluid inertance, respectively. The

impact on rotor torsional stability is unclear, but the stability may be ameliorated by the

added damping provided by the fluid track resistance.

The elastomer stiffness may be increased, but the remaining pitch-link parameters

may also have to be changed to maintain a similar reduction in hub loads. For instance,
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Figure 4.6. Amplitude and phase of higher harmonic pitching motion for Case 1.

doubling the elastomer stiffness for the pitch link in Case 2 increases the 4/rev lateral

and pitching moment hub loads. If the elastomer stiffness is doubled, and the piston

diameter and inertance are each increased by about 50%, the 4/rev pitching moment

returns to nearly the same value as in the original Case 2 results. Interestingly, the

aeroelastic simulation also predicts a reduction in the 4/rev vertical hub load with these

modified parameters, as well as a significant increase in the required rotor power. If
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Table 4.3. Propulsive trim and first torsion frequency for best-performing cases.

Rigid Baseline Case 1 Case 2 Case 3
Collective pitch (75% RRR) 7.7∘ 8.0∘ 8.0∘ 7.8∘

Cyclic pitch (cosine component) 0.9∘ 1.3∘ 0.9∘ 0.8∘

Cyclic pitch (sine component) -7.6∘ -7.5∘ -7.5∘ -7.5∘

Forward shaft tilt 2.7∘ 2.5∘ 2.6∘ 2.8∘

Lateral shaft tilt (roll right, positive) -0.4∘ -0.6∘ -0.5∘ -0.4∘

Tail-rotor thrust (nondimensional) 0.20 0.21 0.20 0.19
First torsion natural frequency (/rev) 4.5 2.1 2.4 3.4

the elastomer stiffness is further increased to ten times its original value (and no other

parameters are changed from the original Case 2), the 4/rev vertical hub load doubles,

and the required rotor power decreases moderately. The remaining hub loads are very

similar to the rigid pitch link baseline.

4.5 Rotor Efficiency

Higher harmonic pitching motion of the rotor blade can reduce the required rotor power,

increasing the vehicle’s efficiency. Power is reduced if the pitching motion of the blade

decreases the steady torque on the rotor shaft. While the lift distribution of the rotor disk

may be altered in the process, the total rotor thrust must remain constant to maintain

vehicle trim. A 2/rev input with a phase that decreases the magnitude of the blade’s

angle of attack on the advancing side near 90∘ decreases the resulting drag on the blade.

The associated loss in lift is compensated by the increase in the blade’s angle of attack
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at other azimuths. The lower air velocity at these angular positions results in a lower

drag penalty than at azimuths close to 90∘.

Cases 1–3 studied above for vibration reduction result in a 4.0% increase, a 1.0%

increase, and a 2.5% decrease in rotor power, respectively. The three cases from the

parametric study with the largest increase in rotor efficiency predict power reductions

of 5.0%, 3.7%, and 3.5%, respectively. The corresponding pitch-link parameters for

these cases are shown in Table 4.4. Figure 4.9 shows the amplitudes and phases of the

2/rev – 5/rev pitching harmonics for the case with a 5.0% reduction in rotor power.

Compared to the rigid pitch link case, the 2/rev amplitude and phase increase with

the fluidic pitch link. Since the blade tip is pitched down on the advancing side in

forward flight, increasing the 2/rev amplitude and phase would decrease the magnitude

of the blade’s angle of attack at azimuths near 90∘. This result is consistent with the

explanation in the previous paragraph. The amplitudes and phases of the 4/rev and 5/rev

harmonics decrease slightly. The 3/rev pitching motion is almost eliminated. The higher

harmonic pitching motions of the 3.7% and 3.5% power reduction cases are similar to

the 5.0% power reduction case.

Table 4.4. Fluidic pitch link parameters for highest rotor power reduction.

Accumulator Capacitance Elastomer Stiffness Inertance Piston Area
Symbol [Units] Ca

[
m3

Pa

]
kd

[kN
m

]
I
[

kg
m4

]
A
[
m2]

5.0% power reduction 1.2e-10 876 6.5e6 0.0056

3.7% power reduction 1.2e-10 657 5.4e6 0.0056

3.5% power reduction 2.4e-10 876 7.6e6 0.0046
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Figure 4.9. Amplitude and phase of higher harmonic pitching motion for the case with a 5.0%
rotor power reduction.

Higher harmonic pitching motion that causes a decrease in required rotor power can

increase hub vibration levels. Figure 4.10 shows the corresponding change in 4/rev

hub loads for the case with a 5.0% reduction in rotor power. The longitudinal force and

torsion moment are similar to the rigid pitch link case. The lateral force, rolling moment,

and pitching moment are reduced by 54%, 35%, and 50%, respectively. Unfortunately,
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the vertical force increases by 75%. Again, the changes in hub loads for the 3.7% and

3.5% power reduction cases are similar.
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Figure 4.10. Nondimensional 4/rev hub loads for the case with a 5.0% rotor power reduction.

4.6 Semi-Active Fluidic Pitch Link

The optimal fluidic circuit that reduces the most vibration and/or power may depend

on flight condition (advance ratio, maneuvering, etc.). Using valves, fluidic circuits
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with different fluid track lengths, for example, could be switched in based on the flight

regime. Another advantage of semi-active control is the ability to turn off the pitch

links by closing the valves. Closing all the fluid tracks would prevent fluid flow, and the

pitch link would mimic a rigid pitch link. To verify this behavior, Fig. 4.11 shows the

aeroelastic simulation results with a fluidic pitch link that has been turned off. Apart

from a modest increase in FZ , all of the 4/rev hub loads for the fluidic pitch link with a

closed orifice (no flow) match the rigid pitch link 4/rev hub loads. Thus, turning off a

fluidic pitch link using valves results in the baseline, rigid pitch link performance.
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Chapter 5
Conclusions and Recommendations

for Future Work

5.1 Fluidic Composite Tunable Vibration Isolators

Coupling a Fluidic Flexible Matrix Composite (F2MC) to an air-pressurized fluid port

produces a tunable vibration isolator. A nonlinear model describes the tube length as a

function of pressure and axial load. Linearization of this static model and combination

with the lumped-parameter fluid dynamics flow in the fluid port produces an overall

system model. This model accurately predicts the primary resonance and isolation

frequency of the transfer function from input force to transmitted force. The isolation

frequency depends strongly on the fluid inertance. The isolation frequency can be tuned

by varying the system pressure. Experimental results show a tunable isolation range

from 9 Hz to 36 Hz with experimentally observed force reductions of 20 dB to 60 dB
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at the isolation frequency. The isolation frequency is theoretically and experimentally

shown to be relatively insensitive to changes in the isolated mass.

5.2 Coupled Pitch Links for Multi-Harmonic Isolation

Using Fluidic Circuits

Replacing the stiff pitch links on rotorcraft having an even number of blades with

coupled fluidic devices has the potential to reduce the higher harmonic blade loads

transmitted through the pitch links to the swashplate. Analytical models of two fluidic

devices coupled with three different fluidic circuits allow model-based tuning of the

fluid inertances and capacitances to reduce the transmitted pitch-link loads for up to

three main rotor harmonics. Each of the three circuits is the simplest configuration

that results in loads reduction for the desired combination of out-of-phase and in-phase

harmonics.

The simulation results using representative full-scale pitch-link parameters show

loads reduction at the targeted out-of-phase and in-phase harmonics (3/rev and 4/rev,

respectively) of 76% and 87%, respectively, for the fluidic circuit with a single vertical

fluid track. The fluidic circuit with two vertical fluid tracks reduces the targeted out-

of-phase harmonic load (3/rev) by 76% and the targeted in-phase harmonic loads (2/rev

and 4/rev) by 19% and 86%, respectively. Pitch links coupled by a fluid track with two

in-line accumulators reduce the targeted out-of-phase harmonic loads (3/rev and 5/rev)
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by more than 71% and the targeted in-phase harmonic load (4/rev) by 93%. Increases in

the non-targeted harmonics are observed.

Experimental results validate the theoretical predictions. The benchtop experiment

for the fluidic circuit with a single vertical fluid track reduces the out-of-phase load and

in-phase load by 55% and 71% at the respective isolation frequencies. Experimental

results for the fluidic circuit with two in-line accumulators show out-of-phase loads

reduction of 40% and 89% at the two isolation frequencies and in-phase loads reduction

of 81% at the isolation frequency. Pitch-link loads may be amplified at a harmonic that is

close to the primary resonance. The percent reductions of the experimental results differ

from the theoretical percent reductions by less than 12%. Reducing the dissimilarity

between pitch links, smoothing the fluid track, and replacing the diaphragm pumps with

piston pumps should reduce the discrepancy between theory and experiment. Optimiza-

tion of the benchtop experiments may further improve loads reduction performance.

5.3 Impedance Tailored Fluidic Pitch Links for

Passive Hub Vibration Control and

Improved Rotor Efficiency

Replacing rigid pitch links on rotorcraft with fluidic pitch links has the potential to

reduce the vibratory hub loads and rotor power. A rotor aeroelastic simulation for a

rotor similar to the UH-60 predicts reductions in the lateral hub force of up to 91% and
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reductions in the hub rolling and pitching moments of up to 41% and 67%, respectively.

Some of the remaining hub loads increase modestly. Rotor power reductions of up to

5% are also predicted. A semi-active fluidic pitch link with valves can have multiple

fluid circuits that are switched in based on flight condition, including a fail-safe mode

where the fluidic pitch link is rigid.

5.4 Summary

Coupling a Fluidic Flexible Matrix Composite (F2MC) to an air-pressurized fluid port

produces a fundamentally new class of tunable vibration isolator. This fluidlastic device

provides significant vibration reduction at an isolation frequency that can be tuned over a

broad frequency range. A unique feature of this device is that the port inertance depends

on pressure so the isolation frequency can be adjusted by changing the air pressure.

Experiments agree with theory, demonstrating a tunable isolation range from 9 Hz to

36 Hz and transmitted force reductions of up to 60 dB at the isolation frequency.

Replacing rigid pitch links on rotorcraft with coupled fluidic devices has the po-

tential to reduce the aerodynamic blade loads transmitted through the pitch links. The

simulation results show loads reduction at the targeted odd and even harmonics of up

to 88% and 93%, respectively. The first and third fluidic circuits are validated with

benchtop experiments and demonstrate loads reduction of up to 89% and 81% for out-

of-phase and in-phase loads, respectively.
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Replacing rigid pitch links on rotorcraft with fluidic pitch links has the potential to

reduce the vibratory hub loads and rotor power. A rotor aeroelastic simulation for a

rotor similar to the UH-60 predicts reductions in the lateral hub force of up to 91% and

reductions in the hub rolling and pitching moments of up to 41% and 67%, respectively.

Some of the remaining hub loads increase modestly. Rotor power reductions of up to

5% are also predicted.

5.5 Recommendations for Future Work

Three major practical aspects need to be analyzed before installing fluidic pitch links on

rotorcraft. First, the effect of fluidic pitch links on the aeroelastic stability of the rotor

is an unknown that urgently needs to be addressed. Rigid blade pitch-flap and pitch-

flap-lag stability analyses should be conducted for both single fluidic pitch link and

coupled fluidic pitch link configurations. The remaining two practical aspects are the

robustness of fluidic pitch links to changing flight condition and sensitivity to variations

in the design parameters. The rotor aeroelastic simulation should be conducted for

representative flight conditions as well as fluidic pitch link parameter variations.

Another consideration for future work is accumulator design. The current air-over-

fluid accumulators should be redesigned as sections of soft tubing, or a bladder should

be inserted between the fluid and the air so that the behavior of the coupled pitch

link system is not affected by changing orientation. Furthermore, pre-pressurization to
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compensate for changing pressure with altitude and provision for fluid expansion with

increasing temperature should be considered.

The models presented in the preceding chapters could be expanded to include ad-

ditional material properties. For example, elastomer stiffness and damping depend

on temperature, amplitude, and frequency [63, 64]. Replacing the simple lumped-

parameter fluid models with Computational Fluid Dynamics (CFD) would permit the

modeling of complex geometry and unsteady flow effects [65, 66]. Including more

than just linear viscous damping would also improve the fidelity of the models. The

nonlinearity introduced by the addition of CFD and more complete damping models

would also improve the accuracy of future stability analyses.

Three additional items for future work include repeating the rotor aeroelastic simu-

lation using a free-wake model for the inflow, adding a fluidic pitch link model to a cou-

pled Computational Fluid Dynamics/Computational Structural Dynamics (CFD/CSD)

analysis [59], and optimizing the fluidic pitch link design to achieve even further reduc-

tion of hub loads and increased rotor efficiency. A free-wake inflow model provides a

time-averaged inflow that is more geometrically complex than the linear inflow distribu-

tion assumed by Drees’ model [62]. The resulting change in aerodynamic loads would

improve the accuracy of the predicted blade response and associated hub loads [67].

CFD/CSD analyses provide improved estimates of the blade pitching moment and blade

pitch response, but the long run times required make them impractical for assessing a
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large number of design cases or conducting a formal optimization. Before choosing an

optimization method, the optimization work of [68] and [69, 70] should be reviewed.

In addition to the analysis and benchtop experiments already described, further

analysis and testing is recommended. Coupling fluidic pitch links [43, 44] to improve

failure modes may further reduce vibratory hub loads and increase rotor performance.

Wind-tunnel tests should be conducted to study the centrifugal force effects on the

fluidic pitch link system. Fatigue tests should be used to analyze the resilience of a

design to the vibratory environment. Finally, theoretical predictions should be verified

with flight tests.

5.6 Significant Contributions

Changing the system pressure of a flexible composite tunable vibration isolator adjusts

the isolation frequency. This method of tuning is very simple and relatively easy to

implement. Most tunable vibration isolators require significant alterations to the basic

isolator design, such as adding an electric motor and mechanism to change the fluid track

geometry. While the isolator of [19] is also tuned via pressure changes, the requirement

to maintain a high air stiffness in the accumulators restricts the rate of tuning. Since

changing the system pressure of a flexible composite tunable vibration isolator primarily

affects the fluid track length and a high air stiffness in the accumulator is not required, a

flexible composite tunable vibration isolator can be tuned rapidly.
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A simple, tunable vibration isolator has multiple potential applications. Future

helicopters with variable-speed rotors will require tunable vibration isolators that track

the changes in rotor speed. A rapidly-tunable vibration isolator could also be used to

increase passenger comfort in off-road vehicles. The isolators could either be integrated

into the vehicle suspension or directly applied to the occupant’s seat. An active control

system using road preview [71] would tune the isolators to maximize passenger comfort.

Furthermore, the Fluidic Flexible Matrix Composite (F2MC) can pump up to twenty

times more fluid than a comparable piston pump [72]. Existing isolators can be re-

designed more compactly with this increase in pumping efficiency. Because of the

compactness of flexible composite vibration isolators and the simplicity of their design,

they can be formed into arrays. These arrays of F2MC isolators can then be tuned and

inserted into composite panels to reduce structural vibration and noise.

Coupling fluidic rotorcraft pitch links with tuned fluidic circuits results in up to an

81% reduction of multiple harmonic pitch-link loads. The analytical results for the three

fluidic circuits studied predict pitch link loads reductions that are approximately double

the reductions achieved in [40] using spring-damper pitch links. In comparison to the

directly coupled pitch links of [43, 44], the ability to target individual harmonics by

configuring and tuning the connecting circuit gives the designer more control over the

number of pitch-link loads to reduce as well as the extent of the reduction.

Multiple active blade pitch control approaches have been proposed and tested to

reduce helicopter hub loads and to improve rotor efficiency. Although these active



80

control approaches are often effective, the complexity they add to the rotor increases

cost and raises reliability and maintenance concerns. As such, helicopter manufacturers

have yet to adopt any active blade pitch control designs. Replacing rigid pitch links with

fluidic pitch links to passively reduce vibratory hub loads and improve rotor efficiency is

much less complex than active control solutions, and similar fluidic devices are already

standard equipment on some production rotorcraft.

The modified rotor aeroelastic simulation is the first rotorcraft comprehensive anal-

ysis to include a fluidic pitch link model. The rotor aeroelastic simulation results predict

reductions in vibratory hub loads that exceed the moderate reductions predicted for

passive spring-damper pitch links [53]. Furthermore, passively changing the higher

harmonic pitch to increase the rotor efficiency is unique, and the predicted 5% decrease

in required rotor power is significant. The fluidlastic devices used for pitch links in this

study would be an excellent means to tune the impedance of many mechanical systems,

as they permit significant tuning of the system mass, damping, and stiffness without

adding much weight.



Appendix A
Source Code for F2MC Isolator

A.1 Matlab® Code for F2MC Isolator Pressure Plots

The following Matlab® code was used to generate Fig. 2.5. The code calls two functions,

exprII dyn I and exprII dyn II, which are given in the two sections following the code.

%Lloyd Scarborough
%Created April 24, 2010
%Last modified November 14, 2013
%Code to generate pressure plots for F2MC isolator

close all
clear all
clc

global p F alpha Rio Roo Er Ep ds Ls nu rf delta m L lambda1

Rio=0.15; %initial inner tube radius, in
Roo=0.22; %initial outer tube radius, in
L=5+7/16; %initial tube length, in
alpha=(18.5)*pi/180; %initial mesh angle, rad
Er=150; %Young's modulus of rubber, psi
nu=0.5; %Poisson's ratio of rubber
Ep=430000; %Young's modulus of mesh, psi
ds=0.008; %mesh strand diameter, in
Ls=L/cos(alpha); %mesh strand length, in
m=80; %number of mesh strands
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rf=0.2; %radius of lower tube fitting, in
delta=11111115/16; %end effect dimension(making this value

% very large negates the end effect)

pr=[30 40 50 60]; %vector of operating pressures, psi

for i=1:length(pr)

p op=pr(i); %operating pressure, psi
F op=26; %operating load, lbs

p res=0.01; %resolution of pressure step, psi
lambda1 res=0.001; %resolution of lambda1

%Find lambda1 op
p=p op;
F=F op;
lambda1 op=fsolve('exprII dyn I',1);

%Find Ro op
lambda2 op=sqrt(1−lambda1 opˆ2*(cos(alpha))ˆ2)/sin(alpha);
t op=(Roo−Rio)/(lambda1 op*lambda2 op);
Ro op=0.5*(lambda2 op*(Rio+Roo)+t op);

%Find Vtube op (volume of tube without end effect), inˆ3
Vtube op=pi.*((0.1e1−lambda1 op.ˆ2.*cos(alpha).ˆ2).ˆ(1/2) ...

./sin(alpha).*(Rio+Roo)./0.2e1−(Roo−Rio)./lambda1 op ...

.*(0.1e1−lambda1 op.ˆ2.*cos(alpha).ˆ2).ˆ(−0.1e1./0.2e1) ...

.*sin(alpha)./0.2e1).ˆ2.*lambda1 op.*L;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%Port fluid level calculation
d1=0.38; %1/4" pipe ID, in
L1=6; %length of 1/4" pipe, in
a1=pi/4*d1ˆ2; %area of 1/4" pipe, inˆ2
L1bT=2; %length of 1/4" lower leg of tee, in
L1tT=L1bT+d1; %length of lower leg of tee plus

% length of mid−section of tee, in
LT=1; %length of tee, in
dt=0.25; %clear tubing ID, in
Lt=46; %length of clear tubing, in
dct=0.5; %solid clear pipe ID, in
Lct=12; %length of solid clear pipe, in
dp=0.13; %diameter of peep tube, in

p ref=30; %reference pressure, psi
F ref=26; %reference load, lbs
Ltr=9.75; %reference height of fluid in system

% when p=p ref and F=F ref, in
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%Find V ref (reference volume of tube without end effect), inˆ3
p=p ref;
F=F ref;
lambda1 ref=fsolve('exprII dyn I',1);
lambda2 ref=sqrt(1−lambda1 refˆ2*(cos(alpha))ˆ2)/sin(alpha);
t ref=(Roo−Rio)/(lambda1 ref*lambda2 ref);
Ro ref=0.5*(lambda2 ref*(Rio+Roo)+t ref);
V ref=pi.*((0.1e1−lambda1 ref.ˆ2.*cos(alpha).ˆ2).ˆ(1/2)./sin(alpha) ...

.*(Rio+Roo)./0.2e1−(Roo−Rio)./lambda1 ref.*(0.1e1 ...
−lambda1 ref.ˆ2.*cos(alpha).ˆ2).ˆ(−0.1e1./0.2e1).*sin(alpha) ...
./0.2e1).ˆ2.*lambda1 ref.*L;

if Ltr<L1
if Ltr<L1bT

%Calculation of total amount of fluid in system, inˆ3
Vwater=V ref+pi/4*(d1ˆ2+dpˆ2)*Ltr;
%Volume of fluid in pipe and tubing combined, inˆ3
Vpt=Vwater−Vtube op;

elseif Ltr<L1tT
%Calculation of total amount of fluid in system, inˆ3
Vwater=V ref+pi/4*(d1ˆ2+dpˆ2)*Ltr+0.5*pi/4*d1ˆ2*LT;
%Volume of fluid in pipe and tubing combined, inˆ3
Vpt=Vwater−Vtube op;

else
%Calculation of total amount of fluid in system, inˆ3
Vwater=V ref+pi/4*(d1ˆ2+dpˆ2)*Ltr+pi/4*d1ˆ2*LT;
%Volume of fluid in pipe and tubing combined, inˆ3
Vpt=Vwater−Vtube op;

end
else

%Calculation of total amount of fluid in system, inˆ3
Vwater=V ref+pi/4*(d1ˆ2*(L1+LT)+dtˆ2*(Ltr−L1)+dpˆ2*Ltr);
%Volume of fluid in pipe and tubing combined, inˆ3
Vpt=Vwater−Vtube op;

end

V1=pi/4*(d1ˆ2+dpˆ2)*L1bT; %capacity of lower leg of tee, inˆ3
V2=pi/4*(d1ˆ2*(LT+d1)+dpˆ2*d1); %capacity of middle of tee, inˆ3
V3=pi/4*(d1ˆ2+dpˆ2)*(L1−L1tT); %capacity of upper leg of tee, inˆ3

if Vpt<(V1+V2+V3)
if Vpt<V1

h=Vpt/(pi/4*(d1ˆ2+dpˆ2));
elseif Vpt<(V1+V2)

h=L1bT+d1/V2*(Vpt−V1);
else

h=L1tT+(Vpt−(V1+V2))/(pi/4*(d1ˆ2+dpˆ2));
end

else
h=L1+(Vpt−(V1+V2+V3))/(pi/4*(dtˆ2+dpˆ2));

end
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%Frequency response

patm=14.7; %atmospheric pressure, psi

rho ft=62.4; %density of water, lb/ftˆ3
rho in=rho ft/12ˆ3; %density of water, lb/inˆ3
rho=rho in/(32.2*12); %density of water, lb*sˆ2/inˆ4

M=(F op)/(32.2*12); %mass in motion, lb*sˆ2/in

R=0.01; %resistance to fluid flow, lb*s/inˆ5

f=[0:0.1:60]; %frequency vector, Hz
w=2*pi*f; %frequency vector, rad/s
s=1i*w; %s=jw

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%Find C3
lambda1 op=lambda1 op−lambda1 res;
V tube b=pi.*((0.1e1−lambda1 op.ˆ2.*cos(alpha).ˆ2).ˆ(1/2) ...

./sin(alpha).*(Rio+Roo)./0.2e1−(Roo−Rio)./lambda1 op.*(0.1e1 ...
−lambda1 op.ˆ2.*cos(alpha).ˆ2).ˆ(−0.1e1./0.2e1).*sin(alpha) ...
./0.2e1).ˆ2.*lambda1 op.*L;

lambda1 op=lambda1 op+2*lambda1 res;
V tube a=pi.*((0.1e1−lambda1 op.ˆ2.*cos(alpha).ˆ2).ˆ(1/2) ...

./sin(alpha).*(Rio+Roo)./0.2e1−(Roo−Rio)./lambda1 op.*(0.1e1 ...
−lambda1 op.ˆ2.*cos(alpha).ˆ2).ˆ(−0.1e1./0.2e1).*sin(alpha) ...
./0.2e1).ˆ2.*lambda1 op.*L;

A3=(V tube a−V tube b)/(2*lambda1 res);
C3=−A3/L;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

lambda1 op=lambda1 op−lambda1 res; %reset lambda1 op to true lambda1 op

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%Find C1
p=p op;
lambda1=lambda1 op−lambda1 res;
Ftube b=fsolve('exprII dyn II',20);
lambda1=lambda1 op+2*lambda1 res;
Ftube a=fsolve('exprII dyn II',20);
A1=(Ftube a−Ftube b)/(2*lambda1 res);
C1=A1/L;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

lambda1 op=lambda1 op−lambda1 res; %reset lambda1 op to true lambda1 op
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%Find C2
lambda1=lambda1 op;
p=p op−p res;
Ftube b=fsolve('exprII dyn II',20);
p=p op+2*p res;
Ftube a=fsolve('exprII dyn II',20);
C2=(Ftube a−Ftube b)/(2*p res);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

p=p op; %reset p

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%Experiment Data

%Pressure test
load sixty psi two in water.lvm
load fifty psi two and three fourths in water II.lvm
load forty psi five and one fourth in water II.lvm
load thirty psi nine and three fourths in water.lvm

fs=sixty psi two in water(:,1);
frfs=sixty psi two in water(:,2);

ff=fifty psi two and three fourths in water II(:,1);
frff=fifty psi two and three fourths in water II(:,2);

ffo=forty psi five and one fourth in water II(:,1);
frffo=forty psi five and one fourth in water II(:,2);

ft=thirty psi nine and three fourths in water(:,1);
frft=thirty psi nine and three fourths in water(:,2);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

if h<L1
%Capacitance, inˆ5/lb
C=pi/4*(dctˆ2*Lct+dtˆ2*Lt+d1ˆ2*(L1−h)+dpˆ2*(72−h))/(p op+patm);
%Inertance, lb*sˆ2/inˆ5
I=4*rho*h/(pi*d1ˆ2);
%Area of port in contact with fluid, inˆ2
AR=pi*d1*h;

XoverF=1./((M+I*C2*C3)*s.ˆ2+R*C2*C3*s+C1+C2*C3*(1/C));

FtoverF=((a1−C2)*I*−C3*s.ˆ2+((a1−C2)−AR)*R*−C3*s...
+(a1−C2)*(1/C)*−C3+C1).*XoverF;

H(:,i)=FtoverF;
else

%Capacitance, inˆ5/lb
C=pi/4*(dctˆ2*Lct+dtˆ2*(Lt−h+L1)+dpˆ2*(72−h))/(p op+patm);
%Inertance, lb*sˆ2/inˆ5
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I=4*rho/pi*(L1/d1ˆ2+(h−L1)/dtˆ2);
%Area of port in contact with fluid, inˆ2
AR=pi*(d1*L1+dt*(h−L1));

XoverF=1./((M+I*C2*C3)*s.ˆ2+R*C2*C3*s+C1+C2*C3*(1/C));

FtoverF=((a1−C2)*I*−C3*s.ˆ2+((a1−C2)−AR)*R*−C3*s...
+(a1−C2)*(1/C)*−C3+C1).*XoverF;

H(:,i)=FtoverF;
end

if i<2
subplot(2,2,1)
plot(f,20*log10(abs(H(:,1))),'−',ft,20*log10(0.4)+frft,...

'−−','LineWidth',1.5)
axis([4 50 −60 30])
set(gca,'FontSize',12,'FontName','Times New Roman')
xlabel('∖itf ∖rm(Hz)','FontSize',12,'FontName','Times New Roman')
ylabel(' ∣ ∖itH∖rm ∣ (dB)','FontSize',12,'FontName','Times New Roman')
gtext({'(a)'},'FontName','Times New Roman','Fontsize',12)

elseif i<3
subplot(2,2,2)
plot(f,20*log10(abs(H(:,2))),'−',ffo,20*log10(0.4)+frffo,...

'−−','LineWidth',1.5)
axis([4 50 −60 30])
set(gca,'FontSize',12,'FontName','Times New Roman')
xlabel('∖itf ∖rm(Hz)','FontSize',12,'FontName','Times New Roman')
ylabel(' ∣ ∖itH∖rm ∣ (dB)','FontSize',12,'FontName','Times New Roman')
gtext({'(b)'},'FontName','Times New Roman','Fontsize',12)

elseif i<4
subplot(2,2,3)
plot(f,20*log10(abs(H(:,3))),'−',ff,20*log10(0.4)+frff,...

'−−','LineWidth',1.5)
axis([4 50 −60 30])
set(gca,'FontSize',12,'FontName','Times New Roman')
xlabel('∖itf ∖rm(Hz)','FontSize',12,'FontName','Times New Roman')
ylabel(' ∣ ∖itH∖rm ∣ (dB)','FontSize',12,'FontName','Times New Roman')
gtext({'(c)'},'FontName','Times New Roman','Fontsize',12)

else
subplot(2,2,4)
plot(f,20*log10(abs(H(:,4))),'−',fs,20*log10(0.4)+frfs,...

'−−','LineWidth',1.5)
axis([4 50 −60 30])
set(gca,'FontSize',12,'FontName','Times New Roman')
xlabel('∖itf ∖rm(Hz)','FontSize',12,'FontName','Times New Roman')
ylabel(' ∣ ∖itH∖rm ∣ (dB)','FontSize',12,'FontName','Times New Roman')
gtext({'(d)'},'FontName','Times New Roman','Fontsize',12)

end

end



87

A.2 Function exprII dyn I

%Lloyd Scarborough
%Created April 12, 2010
%Last modified November 14, 2013
%Function to be solved numerically by F2MC isolator pressure plots.m

function Fo=exprII dyn I(lambda1 op)
global p alpha Rio Roo Er Ep ds Ls nu rf delta m F L

Fo=−p.*pi.*L.*(0.2e1.*(sqrt(0.1e1−lambda1 op.ˆ2.*cos(alpha).ˆ2) ...
./sin(alpha).*(Rio+Roo)./0.2e1−(Roo−Rio)./lambda1 op ...
.*(0.1e1−lambda1 op.ˆ2.*cos(alpha).ˆ2).ˆ(−0.1e1./0.2e1) ...
.*sin(alpha)./0.2e1).*lambda1 op.*(−(0.1e1−lambda1 op.ˆ2 ...
.*cos(alpha).ˆ2).ˆ(−0.1e1./0.2e1)./sin(alpha).*(Rio+Roo) ...
.*lambda1 op.*cos(alpha).ˆ2./0.2e1+(Roo−Rio)./lambda1 op.ˆ2 ...
.*(0.1e1−lambda1 op.ˆ2.*cos(alpha).ˆ2).ˆ(−0.1e1./0.2e1) ...
.*sin(alpha)./0.2e1−(Roo−Rio).*(0.1e1−lambda1 op.ˆ2 ...
.*cos(alpha).ˆ2).ˆ(−0.3e1./0.2e1).*sin(alpha).*cos(alpha).ˆ2 ...
./0.2e1)+(sqrt(0.1e1−lambda1 op.ˆ2.*cos(alpha).ˆ2)./sin(alpha) ...
.*(Rio+Roo)./0.2e1−(Roo−Rio)./lambda1 op.*(0.1e1−lambda1 op.ˆ2 ...
.*cos(alpha).ˆ2).ˆ(−0.1e1./0.2e1).*sin(alpha)./0.2e1).ˆ2)−F.*L+Er ...
.*(0.2e1.*lambda1 op−0.2e1.*lambda1 op.*cos(alpha).ˆ2 ...
./sin(alpha).ˆ2−0.2e1./lambda1 op.ˆ3./(0.1e1−lambda1 op.ˆ2 ...
.*cos(alpha).ˆ2).*sin(alpha).ˆ2+0.2e1./lambda1 op ...
./(0.1e1−lambda1 op.ˆ2.*cos(alpha).ˆ2).ˆ2.*sin(alpha).ˆ2 ...
.*cos(alpha).ˆ2).*pi.*L.*(Roo.ˆ2−Rio.ˆ2)./0.6e1+0.4e1.*m.*(Er ...
.*(lambda1 op−0.1e1)+nu.*p.*(sqrt(0.1e1−lambda1 op.ˆ2 ...
.*cos(alpha).ˆ2)./sin(alpha).*(Rio+Roo)./0.2e1−(Roo−Rio) ...
./lambda1 op.*(0.1e1−lambda1 op.ˆ2.*cos(alpha).ˆ2).ˆ(−0.1e1 ...
./0.2e1).*sin(alpha)./0.2e1)./(Roo−Rio).*lambda1 op ...
.*sqrt(0.1e1−lambda1 op.ˆ2.*cos(alpha).ˆ2)./sin(alpha)−(pi.*p ...
.*(sqrt(0.1e1−lambda1 op.ˆ2.*cos(alpha).ˆ2)./sin(alpha).*(Rio+Roo) ...
./0.2e1−(Roo−Rio)./lambda1 op.*(0.1e1−lambda1 op.ˆ2 ...
.*cos(alpha).ˆ2).ˆ(−0.1e1./0.2e1).*sin(alpha)./0.2e1).ˆ2+F)./pi ...
./((sqrt(0.1e1−lambda1 op.ˆ2.*cos(alpha).ˆ2)./sin(alpha).*(Rio ...
+Roo)./0.2e1+(Roo−Rio)./lambda1 op.*(0.1e1−lambda1 op.ˆ2 ...
.*cos(alpha).ˆ2).ˆ(−0.1e1./0.2e1).*sin(alpha) ...
./0.2e1).ˆ2−(sqrt(0.1e1−lambda1 op.ˆ2.*cos(alpha).ˆ2)./sin(alpha) ...
.*(Rio+Roo)./0.2e1−(Roo−Rio)./lambda1 op.*(0.1e1−lambda1 op.ˆ2 ...
.*cos(alpha).ˆ2).ˆ(−0.1e1./0.2e1).*sin(alpha)./0.2e1).ˆ2)).*(0.1e1 ...
+(sqrt(0.1e1−lambda1 op.ˆ2.*cos(alpha).ˆ2)./sin(alpha).*(Rio+Roo) ...
./0.2e1+(Roo−Rio)./lambda1 op.*(0.1e1−lambda1 op.ˆ2 ...
.*cos(alpha).ˆ2).ˆ(−0.1e1./0.2e1).*sin(alpha)./0.2e1−rf).ˆ2 ...
./delta.ˆ2)./(nu.*m.*tan(alpha).*(0.1e1−lambda1 op.ˆ2 ...
.*cos(alpha).ˆ2)./(Roo−Rio)./sin(alpha)./pi./Roo./0.2e1−m ...
.*lambda1 op.*cos(alpha)./pi./((sqrt(0.1e1−lambda1 op.ˆ2 ...
.*cos(alpha).ˆ2)./sin(alpha).*(Rio+Roo)./0.2e1+(Roo−Rio) ...
./lambda1 op.*(0.1e1−lambda1 op.ˆ2.*cos(alpha).ˆ2).ˆ(−0.1e1 ...
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./0.2e1).*sin(alpha)./0.2e1).ˆ2−(sqrt(0.1e1−lambda1 op.ˆ2 ...

.*cos(alpha).ˆ2)./sin(alpha).*(Rio+Roo)./0.2e1−(Roo−Rio) ...

./lambda1 op.*(0.1e1−lambda1 op.ˆ2.*cos(alpha).ˆ2).ˆ(−0.1e1 ...

./0.2e1).*sin(alpha)./0.2e1).ˆ2)).ˆ2.*L./cos(alpha)./Ep./pi./ds.ˆ2 ...

.*(Er+nu.*p.*(−(0.1e1−lambda1 op.ˆ2.*cos(alpha).ˆ2).ˆ(−0.1e1 ...

./0.2e1)./sin(alpha).*(Rio+Roo).*lambda1 op.*cos(alpha).ˆ2./0.2e1 ...
+(Roo−Rio)./lambda1 op.ˆ2.*(0.1e1−lambda1 op.ˆ2 ...
.*cos(alpha).ˆ2).ˆ(−0.1e1./0.2e1).*sin(alpha)./0.2e1−(Roo−Rio) ...
.*(0.1e1−lambda1 op.ˆ2.*cos(alpha).ˆ2).ˆ(−0.3e1./0.2e1) ...
.*sin(alpha).*cos(alpha).ˆ2./0.2e1)./(Roo−Rio).*lambda1 op ...
.*sqrt(0.1e1−lambda1 op.ˆ2.*cos(alpha).ˆ2)./sin(alpha)+nu.*p ...
.*(sqrt(0.1e1−lambda1 op.ˆ2.*cos(alpha).ˆ2)./sin(alpha).*(Rio+Roo) ...
./0.2e1−(Roo−Rio)./lambda1 op.*(0.1e1−lambda1 op.ˆ2 ...
.*cos(alpha).ˆ2).ˆ(−0.1e1./0.2e1).*sin(alpha)./0.2e1)./(Roo−Rio) ...
.*sqrt(0.1e1−lambda1 op.ˆ2.*cos(alpha).ˆ2)./sin(alpha)−nu.*p ...
.*(sqrt(0.1e1−lambda1 op.ˆ2.*cos(alpha).ˆ2)./sin(alpha).*(Rio+Roo) ...
./0.2e1−(Roo−Rio)./lambda1 op.*(0.1e1−lambda1 op.ˆ2 ...
.*cos(alpha).ˆ2).ˆ(−0.1e1./0.2e1).*sin(alpha)./0.2e1)./(Roo−Rio) ...
.*lambda1 op.ˆ2.*(0.1e1−lambda1 op.ˆ2.*cos(alpha).ˆ2).ˆ(−0.1e1 ...
./0.2e1)./sin(alpha).*cos(alpha).ˆ2−0.2e1.*p ...
.*(sqrt(0.1e1−lambda1 op.ˆ2.*cos(alpha).ˆ2)./sin(alpha).*(Rio+Roo) ...
./0.2e1−(Roo−Rio)./lambda1 op.*(0.1e1−lambda1 op.ˆ2 ...
.*cos(alpha).ˆ2).ˆ(−0.1e1./0.2e1).*sin(alpha)./0.2e1) ...
.*(−(0.1e1−lambda1 op.ˆ2.*cos(alpha).ˆ2).ˆ(−0.1e1./0.2e1) ...
./sin(alpha).*(Rio+Roo).*lambda1 op.*cos(alpha).ˆ2./0.2e1 ...
+(Roo−Rio)./lambda1 op.ˆ2.*(0.1e1−lambda1 op.ˆ2 ...
.*cos(alpha).ˆ2).ˆ(−0.1e1./0.2e1).*sin(alpha)./0.2e1−(Roo−Rio) ...
.*(0.1e1−lambda1 op.ˆ2.*cos(alpha).ˆ2).ˆ(−0.3e1./0.2e1) ...
.*sin(alpha).*cos(alpha).ˆ2./0.2e1)./((sqrt(0.1e1−lambda1 op.ˆ2 ...
.*cos(alpha).ˆ2)./sin(alpha).*(Rio+Roo)./0.2e1+(Roo−Rio) ...
./lambda1 op.*(0.1e1−lambda1 op.ˆ2.*cos(alpha).ˆ2).ˆ(−0.1e1 ...
./0.2e1).*sin(alpha)./0.2e1).ˆ2−(sqrt(0.1e1−lambda1 op.ˆ2 ...
.*cos(alpha).ˆ2)./sin(alpha).*(Rio+Roo)./0.2e1−(Roo−Rio) ...
./lambda1 op.*(0.1e1−lambda1 op.ˆ2.*cos(alpha).ˆ2).ˆ(−0.1e1 ...
./0.2e1).*sin(alpha)./0.2e1).ˆ2)+(pi.*p.*(sqrt(0.1e1−lambda1 op.ˆ2 ...
.*cos(alpha).ˆ2)./sin(alpha).*(Rio+Roo)./0.2e1−(Roo−Rio) ...
./lambda1 op.*(0.1e1−lambda1 op.ˆ2.*cos(alpha).ˆ2).ˆ(−0.1e1 ...
./0.2e1).*sin(alpha)./0.2e1).ˆ2+F)./pi./((sqrt(0.1e1−lambda1 op.ˆ2 ...
.*cos(alpha).ˆ2)./sin(alpha).*(Rio+Roo)./0.2e1+(Roo−Rio) ...
./lambda1 op.*(0.1e1−lambda1 op.ˆ2.*cos(alpha).ˆ2).ˆ(−0.1e1 ...
./0.2e1).*sin(alpha)./0.2e1).ˆ2−(sqrt(0.1e1−lambda1 op.ˆ2 ...
.*cos(alpha).ˆ2)./sin(alpha).*(Rio+Roo)./0.2e1−(Roo−Rio) ...
./lambda1 op.*(0.1e1−lambda1 op.ˆ2.*cos(alpha).ˆ2).ˆ(−0.1e1 ...
./0.2e1).*sin(alpha)./0.2e1).ˆ2).ˆ2.*(0.2e1 ...
.*(sqrt(0.1e1−lambda1 op.ˆ2.*cos(alpha).ˆ2)./sin(alpha).*(Rio+Roo) ...
./0.2e1+(Roo−Rio)./lambda1 op.*(0.1e1−lambda1 op.ˆ2 ...
.*cos(alpha).ˆ2).ˆ(−0.1e1./0.2e1).*sin(alpha)./0.2e1) ...
.*(−(0.1e1−lambda1 op.ˆ2.*cos(alpha).ˆ2).ˆ(−0.1e1./0.2e1) ...
./sin(alpha).*(Rio+Roo).*lambda1 op.*cos(alpha).ˆ2 ...
./0.2e1−(Roo−Rio)./lambda1 op.ˆ2.*(0.1e1−lambda1 op.ˆ2 ...
.*cos(alpha).ˆ2).ˆ(−0.1e1./0.2e1).*sin(alpha)./0.2e1+(Roo−Rio) ...
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.*(0.1e1−lambda1 op.ˆ2.*cos(alpha).ˆ2).ˆ(−0.3e1./0.2e1) ...

.*sin(alpha).*cos(alpha).ˆ2./0.2e1)−0.2e1 ...

.*(sqrt(0.1e1−lambda1 op.ˆ2.*cos(alpha).ˆ2)./sin(alpha).*(Rio+Roo) ...

./0.2e1−(Roo−Rio)./lambda1 op.*(0.1e1−lambda1 op.ˆ2 ...

.*cos(alpha).ˆ2).ˆ(−0.1e1./0.2e1).*sin(alpha)./0.2e1) ...

.*(−(0.1e1−lambda1 op.ˆ2.*cos(alpha).ˆ2).ˆ(−0.1e1./0.2e1) ...

./sin(alpha).*(Rio+Roo).*lambda1 op.*cos(alpha).ˆ2./0.2e1 ...
+(Roo−Rio)./lambda1 op.ˆ2.*(0.1e1−lambda1 op.ˆ2 ...
.*cos(alpha).ˆ2).ˆ(−0.1e1./0.2e1).*sin(alpha)./0.2e1−(Roo−Rio) ...
.*(0.1e1−lambda1 op.ˆ2.*cos(alpha).ˆ2).ˆ(−0.3e1./0.2e1) ...
.*sin(alpha).*cos(alpha).ˆ2./0.2e1)))+0.4e1.*m.*(Er ...
.*(lambda1 op−0.1e1)+nu.*p.*(sqrt(0.1e1−lambda1 op.ˆ2 ...
.*cos(alpha).ˆ2)./sin(alpha).*(Rio+Roo)./0.2e1−(Roo−Rio) ...
./lambda1 op.*(0.1e1−lambda1 op.ˆ2.*cos(alpha).ˆ2).ˆ(−0.1e1 ...
./0.2e1).*sin(alpha)./0.2e1)./(Roo−Rio).*lambda1 op ...
.*sqrt(0.1e1−lambda1 op.ˆ2.*cos(alpha).ˆ2)./sin(alpha)−(pi.*p ...
.*(sqrt(0.1e1−lambda1 op.ˆ2.*cos(alpha).ˆ2)./sin(alpha).*(Rio+Roo) ...
./0.2e1−(Roo−Rio)./lambda1 op.*(0.1e1−lambda1 op.ˆ2 ...
.*cos(alpha).ˆ2).ˆ(−0.1e1./0.2e1).*sin(alpha)./0.2e1).ˆ2+F)./pi ...
./((sqrt(0.1e1−lambda1 op.ˆ2.*cos(alpha).ˆ2)./sin(alpha).*(Rio ...
+Roo)./0.2e1+(Roo−Rio)./lambda1 op.*(0.1e1−lambda1 op.ˆ2 ...
.*cos(alpha).ˆ2).ˆ(−0.1e1./0.2e1).*sin(alpha) ...
./0.2e1).ˆ2−(sqrt(0.1e1−lambda1 op.ˆ2.*cos(alpha).ˆ2)./sin(alpha) ...
.*(Rio+Roo)./0.2e1−(Roo−Rio)./lambda1 op.*(0.1e1−lambda1 op.ˆ2 ...
.*cos(alpha).ˆ2).ˆ(−0.1e1./0.2e1).*sin(alpha)./0.2e1).ˆ2)).ˆ2 ...
.*(sqrt(0.1e1−lambda1 op.ˆ2.*cos(alpha).ˆ2)./sin(alpha).*(Rio+Roo) ...
./0.2e1+(Roo−Rio)./lambda1 op.*(0.1e1−lambda1 op.ˆ2 ...
.*cos(alpha).ˆ2).ˆ(−0.1e1./0.2e1).*sin(alpha)./0.2e1−rf)./delta.ˆ2 ...
.*(−(0.1e1−lambda1 op.ˆ2.*cos(alpha).ˆ2).ˆ(−0.1e1./0.2e1) ...
./sin(alpha).*(Rio+Roo).*lambda1 op.*cos(alpha).ˆ2 ...
./0.2e1−(Roo−Rio)./lambda1 op.ˆ2.*(0.1e1−lambda1 op.ˆ2 ...
.*cos(alpha).ˆ2).ˆ(−0.1e1./0.2e1).*sin(alpha)./0.2e1+(Roo−Rio) ...
.*(0.1e1−lambda1 op.ˆ2.*cos(alpha).ˆ2).ˆ(−0.3e1./0.2e1) ...
.*sin(alpha).*cos(alpha).ˆ2./0.2e1)./(nu.*m.*tan(alpha) ...
.*(0.1e1−lambda1 op.ˆ2.*cos(alpha).ˆ2)./(Roo−Rio)./sin(alpha)./pi ...
./Roo./0.2e1−m.*lambda1 op.*cos(alpha)./pi ...
./((sqrt(0.1e1−lambda1 op.ˆ2.*cos(alpha).ˆ2)./sin(alpha).*(Rio ...
+Roo)./0.2e1+(Roo−Rio)./lambda1 op.*(0.1e1−lambda1 op.ˆ2 ...
.*cos(alpha).ˆ2).ˆ(−0.1e1./0.2e1).*sin(alpha) ...
./0.2e1).ˆ2−(sqrt(0.1e1−lambda1 op.ˆ2.*cos(alpha).ˆ2)./sin(alpha) ...
.*(Rio+Roo)./0.2e1−(Roo−Rio)./lambda1 op.*(0.1e1−lambda1 op.ˆ2 ...
.*cos(alpha).ˆ2).ˆ(−0.1e1./0.2e1).*sin(alpha)./0.2e1).ˆ2)).ˆ2.*L ...
./cos(alpha)./Ep./pi./ds.ˆ2−0.4e1.*m.*(Er.*(lambda1 op−0.1e1)+nu ...
.*p.*(sqrt(0.1e1−lambda1 op.ˆ2.*cos(alpha).ˆ2)./sin(alpha).*(Rio ...
+Roo)./0.2e1−(Roo−Rio)./lambda1 op.*(0.1e1−lambda1 op.ˆ2 ...
.*cos(alpha).ˆ2).ˆ(−0.1e1./0.2e1).*sin(alpha)./0.2e1)./(Roo−Rio) ...
.*lambda1 op.*sqrt(0.1e1−lambda1 op.ˆ2.*cos(alpha).ˆ2) ...
./sin(alpha)−(pi.*p.*(sqrt(0.1e1−lambda1 op.ˆ2.*cos(alpha).ˆ2) ...
./sin(alpha).*(Rio+Roo)./0.2e1−(Roo−Rio)./lambda1 op ...
.*(0.1e1−lambda1 op.ˆ2.*cos(alpha).ˆ2).ˆ(−0.1e1./0.2e1) ...
.*sin(alpha)./0.2e1).ˆ2+F)./pi./((sqrt(0.1e1−lambda1 op.ˆ2 ...
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.*cos(alpha).ˆ2)./sin(alpha).*(Rio+Roo)./0.2e1+(Roo−Rio) ...

./lambda1 op.*(0.1e1−lambda1 op.ˆ2.*cos(alpha).ˆ2).ˆ(−0.1e1 ...

./0.2e1).*sin(alpha)./0.2e1).ˆ2−(sqrt(0.1e1−lambda1 op.ˆ2 ...

.*cos(alpha).ˆ2)./sin(alpha).*(Rio+Roo)./0.2e1−(Roo−Rio) ...

./lambda1 op.*(0.1e1−lambda1 op.ˆ2.*cos(alpha).ˆ2).ˆ(−0.1e1 ...

./0.2e1).*sin(alpha)./0.2e1).ˆ2)).ˆ2.*(0.1e1 ...
+(sqrt(0.1e1−lambda1 op.ˆ2.*cos(alpha).ˆ2)./sin(alpha).*(Rio+Roo) ...
./0.2e1+(Roo−Rio)./lambda1 op.*(0.1e1−lambda1 op.ˆ2 ...
.*cos(alpha).ˆ2).ˆ(−0.1e1./0.2e1).*sin(alpha)./0.2e1−rf).ˆ2 ...
./delta.ˆ2)./(nu.*m.*tan(alpha).*(0.1e1−lambda1 op.ˆ2 ...
.*cos(alpha).ˆ2)./(Roo−Rio)./sin(alpha)./pi./Roo./0.2e1−m ...
.*lambda1 op.*cos(alpha)./pi./((sqrt(0.1e1−lambda1 op.ˆ2 ...
.*cos(alpha).ˆ2)./sin(alpha).*(Rio+Roo)./0.2e1+(Roo−Rio) ...
./lambda1 op.*(0.1e1−lambda1 op.ˆ2.*cos(alpha).ˆ2).ˆ(−0.1e1 ...
./0.2e1).*sin(alpha)./0.2e1).ˆ2−(sqrt(0.1e1−lambda1 op.ˆ2 ...
.*cos(alpha).ˆ2)./sin(alpha).*(Rio+Roo)./0.2e1−(Roo−Rio) ...
./lambda1 op.*(0.1e1−lambda1 op.ˆ2.*cos(alpha).ˆ2).ˆ(−0.1e1 ...
./0.2e1).*sin(alpha)./0.2e1).ˆ2)).ˆ3.*L./cos(alpha)./Ep./pi./ds.ˆ2 ...
.*(−nu.*m.*tan(alpha).*lambda1 op.*cos(alpha).ˆ2./(Roo−Rio) ...
./sin(alpha)./pi./Roo−m.*cos(alpha)./pi ...
./((sqrt(0.1e1−lambda1 op.ˆ2.*cos(alpha).ˆ2)./sin(alpha).*(Rio ...
+Roo)./0.2e1+(Roo−Rio)./lambda1 op.*(0.1e1−lambda1 op.ˆ2 ...
.*cos(alpha).ˆ2).ˆ(−0.1e1./0.2e1).*sin(alpha) ...
./0.2e1).ˆ2−(sqrt(0.1e1−lambda1 op.ˆ2.*cos(alpha).ˆ2)./sin(alpha) ...
.*(Rio+Roo)./0.2e1−(Roo−Rio)./lambda1 op.*(0.1e1−lambda1 op.ˆ2 ...
.*cos(alpha).ˆ2).ˆ(−0.1e1./0.2e1).*sin(alpha)./0.2e1).ˆ2)+m ...
.*lambda1 op.*cos(alpha)./pi./((sqrt(0.1e1−lambda1 op.ˆ2 ...
.*cos(alpha).ˆ2)./sin(alpha).*(Rio+Roo)./0.2e1+(Roo−Rio) ...
./lambda1 op.*(0.1e1−lambda1 op.ˆ2.*cos(alpha).ˆ2).ˆ(−0.1e1 ...
./0.2e1).*sin(alpha)./0.2e1).ˆ2−(sqrt(0.1e1−lambda1 op.ˆ2 ...
.*cos(alpha).ˆ2)./sin(alpha).*(Rio+Roo)./0.2e1−(Roo−Rio) ...
./lambda1 op.*(0.1e1−lambda1 op.ˆ2.*cos(alpha).ˆ2).ˆ(−0.1e1 ...
./0.2e1).*sin(alpha)./0.2e1).ˆ2).ˆ2.*(0.2e1 ...
.*(sqrt(0.1e1−lambda1 op.ˆ2.*cos(alpha).ˆ2)./sin(alpha).*(Rio+Roo) ...
./0.2e1+(Roo−Rio)./lambda1 op.*(0.1e1−lambda1 op.ˆ2 ...
.*cos(alpha).ˆ2).ˆ(−0.1e1./0.2e1).*sin(alpha)./0.2e1) ...
.*(−(0.1e1−lambda1 op.ˆ2.*cos(alpha).ˆ2).ˆ(−0.1e1./0.2e1) ...
./sin(alpha).*(Rio+Roo).*lambda1 op.*cos(alpha).ˆ2 ...
./0.2e1−(Roo−Rio)./lambda1 op.ˆ2.*(0.1e1−lambda1 op.ˆ2 ...
.*cos(alpha).ˆ2).ˆ(−0.1e1./0.2e1).*sin(alpha)./0.2e1+(Roo−Rio) ...
.*(0.1e1−lambda1 op.ˆ2.*cos(alpha).ˆ2).ˆ(−0.3e1./0.2e1) ...
.*sin(alpha).*cos(alpha).ˆ2./0.2e1)−0.2e1 ...
.*(sqrt(0.1e1−lambda1 op.ˆ2.*cos(alpha).ˆ2)./sin(alpha).*(Rio+Roo) ...
./0.2e1−(Roo−Rio)./lambda1 op.*(0.1e1−lambda1 op.ˆ2 ...
.*cos(alpha).ˆ2).ˆ(−0.1e1./0.2e1).*sin(alpha)./0.2e1) ...
.*(−(0.1e1−lambda1 op.ˆ2.*cos(alpha).ˆ2).ˆ(−0.1e1./0.2e1) ...
./sin(alpha).*(Rio+Roo).*lambda1 op.*cos(alpha).ˆ2./0.2e1 ...
+(Roo−Rio)./lambda1 op.ˆ2.*(0.1e1−lambda1 op.ˆ2 ...
.*cos(alpha).ˆ2).ˆ(−0.1e1./0.2e1).*sin(alpha)./0.2e1−(Roo−Rio) ...
.*(0.1e1−lambda1 op.ˆ2.*cos(alpha).ˆ2).ˆ(−0.3e1./0.2e1) ...
.*sin(alpha).*cos(alpha).ˆ2./0.2e1)));
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A.3 Function exprII dyn II

%Lloyd Scarborough
%Created April 2, 2010
%Last modified November 14, 2013
%Function to be solved numerically by F2MC isolator pressure plots.m

function Fo=exprII dyn II(Ftube)
global p alpha Rio Roo Er Ep ds Ls nu rf delta m L lambda1

Fo=−p.*pi.*L.*(0.2e1.*(sqrt(0.1e1−lambda1.ˆ2.*cos(alpha).ˆ2) ...
./sin(alpha).*(Rio+Roo)./0.2e1−(Roo−Rio)./lambda1 ...
.*(0.1e1−lambda1.ˆ2.*cos(alpha).ˆ2).ˆ(−0.1e1./0.2e1).*sin(alpha) ...
./0.2e1).*lambda1.*(−(0.1e1−lambda1.ˆ2.*cos(alpha).ˆ2).ˆ(−0.1e1 ...
./0.2e1)./sin(alpha).*(Rio+Roo).*lambda1.*cos(alpha).ˆ2./0.2e1 ...
+(Roo−Rio)./lambda1.ˆ2.*(0.1e1−lambda1.ˆ2 ...
.*cos(alpha).ˆ2).ˆ(−0.1e1./0.2e1).*sin(alpha)./0.2e1−(Roo−Rio) ...
.*(0.1e1−lambda1.ˆ2.*cos(alpha).ˆ2).ˆ(−0.3e1./0.2e1).*sin(alpha) ...
.*cos(alpha).ˆ2./0.2e1)+(sqrt(0.1e1−lambda1.ˆ2.*cos(alpha).ˆ2) ...
./sin(alpha).*(Rio+Roo)./0.2e1−(Roo−Rio)./lambda1 ...
.*(0.1e1−lambda1.ˆ2.*cos(alpha).ˆ2).ˆ(−0.1e1./0.2e1).*sin(alpha) ...
./0.2e1).ˆ2)−Ftube.*L ...
+Er.*(0.2e1.*lambda1−0.2e1.*lambda1 ...
.*cos(alpha).ˆ2./sin(alpha).ˆ2−0.2e1./lambda1.ˆ3 ...
./(0.1e1−lambda1.ˆ2.*cos(alpha).ˆ2).*sin(alpha).ˆ2+0.2e1./lambda1 ...
./(0.1e1−lambda1.ˆ2.*cos(alpha).ˆ2).ˆ2.*sin(alpha).ˆ2 ...
.*cos(alpha).ˆ2).*pi.*L.*(Roo.ˆ2−Rio.ˆ2)./0.6e1+0.4e1.*m.*(Er ...
.*(lambda1−0.1e1)+nu.*p.*(sqrt(0.1e1−lambda1.ˆ2.*cos(alpha).ˆ2) ...
./sin(alpha).*(Rio+Roo)./0.2e1−(Roo−Rio)./lambda1 ...
.*(0.1e1−lambda1.ˆ2.*cos(alpha).ˆ2).ˆ(−0.1e1./0.2e1).*sin(alpha) ...
./0.2e1)./(Roo−Rio).*lambda1.*sqrt(0.1e1−lambda1.ˆ2 ...
.*cos(alpha).ˆ2)./sin(alpha)−(pi.*p.*(sqrt(0.1e1−lambda1.ˆ2 ...
.*cos(alpha).ˆ2)./sin(alpha).*(Rio+Roo)./0.2e1−(Roo−Rio)./lambda1 ...
.*(0.1e1−lambda1.ˆ2.*cos(alpha).ˆ2).ˆ(−0.1e1./0.2e1).*sin(alpha) ...
./0.2e1).ˆ2+Ftube)./pi./((sqrt(0.1e1−lambda1.ˆ2.*cos(alpha).ˆ2) ...
./sin(alpha).*(Rio+Roo)./0.2e1+(Roo−Rio)./lambda1 ...
.*(0.1e1−lambda1.ˆ2.*cos(alpha).ˆ2).ˆ(−0.1e1./0.2e1).*sin(alpha) ...
./0.2e1).ˆ2−(sqrt(0.1e1−lambda1.ˆ2.*cos(alpha).ˆ2)./sin(alpha) ...
.*(Rio+Roo)./0.2e1−(Roo−Rio)./lambda1.*(0.1e1−lambda1.ˆ2 ...
.*cos(alpha).ˆ2).ˆ(−0.1e1./0.2e1).*sin(alpha)./0.2e1).ˆ2)).*(0.1e1 ...
+(sqrt(0.1e1−lambda1.ˆ2.*cos(alpha).ˆ2)./sin(alpha).*(Rio+Roo) ...
./0.2e1+(Roo−Rio)./lambda1.*(0.1e1−lambda1.ˆ2 ...
.*cos(alpha).ˆ2).ˆ(−0.1e1./0.2e1).*sin(alpha)./0.2e1−rf).ˆ2 ...
./delta.ˆ2)./(nu.*m.*tan(alpha).*(0.1e1−lambda1.ˆ2.*cos(alpha).ˆ2) ...
./(Roo−Rio)./sin(alpha)./pi./Roo./0.2e1−m.*lambda1.*cos(alpha)./pi ...
./((sqrt(0.1e1−lambda1.ˆ2.*cos(alpha).ˆ2)./sin(alpha).*(Rio+Roo) ...
./0.2e1+(Roo−Rio)./lambda1.*(0.1e1−lambda1.ˆ2 ...
.*cos(alpha).ˆ2).ˆ(−0.1e1./0.2e1).*sin(alpha) ...
./0.2e1).ˆ2−(sqrt(0.1e1−lambda1.ˆ2.*cos(alpha).ˆ2)./sin(alpha) ...
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.*(Rio+Roo)./0.2e1−(Roo−Rio)./lambda1.*(0.1e1−lambda1.ˆ2 ...

.*cos(alpha).ˆ2).ˆ(−0.1e1./0.2e1).*sin(alpha)./0.2e1).ˆ2)).ˆ2.*L ...

./cos(alpha)./Ep./pi./ds.ˆ2.*(Er+nu.*p.*(−(0.1e1−lambda1.ˆ2 ...

.*cos(alpha).ˆ2).ˆ(−0.1e1./0.2e1)./sin(alpha).*(Rio+Roo).*lambda1 ...

.*cos(alpha).ˆ2./0.2e1+(Roo−Rio)./lambda1.ˆ2.*(0.1e1−lambda1.ˆ2 ...

.*cos(alpha).ˆ2).ˆ(−0.1e1./0.2e1).*sin(alpha)./0.2e1−(Roo−Rio) ...

.*(0.1e1−lambda1.ˆ2.*cos(alpha).ˆ2).ˆ(−0.3e1./0.2e1).*sin(alpha) ...

.*cos(alpha).ˆ2./0.2e1)./(Roo−Rio).*lambda1.*sqrt(0.1e1−lambda1.ˆ2 ...

.*cos(alpha).ˆ2)./sin(alpha)+nu.*p.*(sqrt(0.1e1−lambda1.ˆ2 ...

.*cos(alpha).ˆ2)./sin(alpha).*(Rio+Roo)./0.2e1−(Roo−Rio)./lambda1 ...

.*(0.1e1−lambda1.ˆ2.*cos(alpha).ˆ2).ˆ(−0.1e1./0.2e1).*sin(alpha) ...

./0.2e1)./(Roo−Rio).*sqrt(0.1e1−lambda1.ˆ2.*cos(alpha).ˆ2) ...

./sin(alpha)−nu.*p.*(sqrt(0.1e1−lambda1.ˆ2.*cos(alpha).ˆ2) ...

./sin(alpha).*(Rio+Roo)./0.2e1−(Roo−Rio)./lambda1 ...

.*(0.1e1−lambda1.ˆ2.*cos(alpha).ˆ2).ˆ(−0.1e1./0.2e1).*sin(alpha) ...

./0.2e1)./(Roo−Rio).*lambda1.ˆ2.*(0.1e1−lambda1.ˆ2 ...

.*cos(alpha).ˆ2).ˆ(−0.1e1./0.2e1)./sin(alpha).*cos(alpha).ˆ2−0.2e1 ...

.*p.*(sqrt(0.1e1−lambda1.ˆ2.*cos(alpha).ˆ2)./sin(alpha).*(Rio+Roo) ...

./0.2e1−(Roo−Rio)./lambda1.*(0.1e1−lambda1.ˆ2 ...

.*cos(alpha).ˆ2).ˆ(−0.1e1./0.2e1).*sin(alpha)./0.2e1) ...

.*(−(0.1e1−lambda1.ˆ2.*cos(alpha).ˆ2).ˆ(−0.1e1./0.2e1)./sin(alpha) ...

.*(Rio+Roo).*lambda1.*cos(alpha).ˆ2./0.2e1+(Roo−Rio)./lambda1.ˆ2 ...

.*(0.1e1−lambda1.ˆ2.*cos(alpha).ˆ2).ˆ(−0.1e1./0.2e1).*sin(alpha) ...

./0.2e1−(Roo−Rio).*(0.1e1−lambda1.ˆ2.*cos(alpha).ˆ2).ˆ(−0.3e1 ...

./0.2e1).*sin(alpha).*cos(alpha).ˆ2./0.2e1) ...

./((sqrt(0.1e1−lambda1.ˆ2.*cos(alpha).ˆ2)./sin(alpha).*(Rio+Roo) ...

./0.2e1+(Roo−Rio)./lambda1.*(0.1e1−lambda1.ˆ2 ...

.*cos(alpha).ˆ2).ˆ(−0.1e1./0.2e1).*sin(alpha) ...

./0.2e1).ˆ2−(sqrt(0.1e1−lambda1.ˆ2.*cos(alpha).ˆ2)./sin(alpha) ...

.*(Rio+Roo)./0.2e1−(Roo−Rio)./lambda1.*(0.1e1−lambda1.ˆ2 ...

.*cos(alpha).ˆ2).ˆ(−0.1e1./0.2e1).*sin(alpha)./0.2e1).ˆ2)+(pi.*p ...

.*(sqrt(0.1e1−lambda1.ˆ2.*cos(alpha).ˆ2)./sin(alpha).*(Rio+Roo) ...

./0.2e1−(Roo−Rio)./lambda1.*(0.1e1−lambda1.ˆ2 ...

.*cos(alpha).ˆ2).ˆ(−0.1e1./0.2e1).*sin(alpha)./0.2e1).ˆ2+Ftube) ...

./pi./((sqrt(0.1e1−lambda1.ˆ2.*cos(alpha).ˆ2)./sin(alpha).*(Rio ...
+Roo)./0.2e1+(Roo−Rio)./lambda1.*(0.1e1−lambda1.ˆ2 ...
.*cos(alpha).ˆ2).ˆ(−0.1e1./0.2e1).*sin(alpha) ...
./0.2e1).ˆ2−(sqrt(0.1e1−lambda1.ˆ2.*cos(alpha).ˆ2)./sin(alpha) ...
.*(Rio+Roo)./0.2e1−(Roo−Rio)./lambda1.*(0.1e1−lambda1.ˆ2 ...
.*cos(alpha).ˆ2).ˆ(−0.1e1./0.2e1).*sin(alpha)./0.2e1).ˆ2).ˆ2 ...
.*(0.2e1.*(sqrt(0.1e1−lambda1.ˆ2.*cos(alpha).ˆ2)./sin(alpha).*(Rio ...
+Roo)./0.2e1+(Roo−Rio)./lambda1.*(0.1e1−lambda1.ˆ2 ...
.*cos(alpha).ˆ2).ˆ(−0.1e1./0.2e1).*sin(alpha)./0.2e1) ...
.*(−(0.1e1−lambda1.ˆ2.*cos(alpha).ˆ2).ˆ(−0.1e1./0.2e1)./sin(alpha) ...
.*(Rio+Roo).*lambda1.*cos(alpha).ˆ2./0.2e1−(Roo−Rio)./lambda1.ˆ2 ...
.*(0.1e1−lambda1.ˆ2.*cos(alpha).ˆ2).ˆ(−0.1e1./0.2e1).*sin(alpha) ...
./0.2e1+(Roo−Rio).*(0.1e1−lambda1.ˆ2.*cos(alpha).ˆ2).ˆ(−0.3e1 ...
./0.2e1).*sin(alpha).*cos(alpha).ˆ2./0.2e1)−0.2e1 ...
.*(sqrt(0.1e1−lambda1.ˆ2.*cos(alpha).ˆ2)./sin(alpha).*(Rio+Roo) ...
./0.2e1−(Roo−Rio)./lambda1.*(0.1e1−lambda1.ˆ2 ...
.*cos(alpha).ˆ2).ˆ(−0.1e1./0.2e1).*sin(alpha)./0.2e1) ...
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.*(−(0.1e1−lambda1.ˆ2.*cos(alpha).ˆ2).ˆ(−0.1e1./0.2e1)./sin(alpha) ...

.*(Rio+Roo).*lambda1.*cos(alpha).ˆ2./0.2e1+(Roo−Rio)./lambda1.ˆ2 ...

.*(0.1e1−lambda1.ˆ2.*cos(alpha).ˆ2).ˆ(−0.1e1./0.2e1).*sin(alpha) ...

./0.2e1−(Roo−Rio).*(0.1e1−lambda1.ˆ2.*cos(alpha).ˆ2).ˆ(−0.3e1 ...

./0.2e1).*sin(alpha).*cos(alpha).ˆ2./0.2e1)))+0.4e1.*m.*(Er ...

.*(lambda1−0.1e1)+nu.*p.*(sqrt(0.1e1−lambda1.ˆ2.*cos(alpha).ˆ2) ...

./sin(alpha).*(Rio+Roo)./0.2e1−(Roo−Rio)./lambda1 ...

.*(0.1e1−lambda1.ˆ2.*cos(alpha).ˆ2).ˆ(−0.1e1./0.2e1).*sin(alpha) ...

./0.2e1)./(Roo−Rio).*lambda1.*sqrt(0.1e1−lambda1.ˆ2 ...

.*cos(alpha).ˆ2)./sin(alpha)−(pi.*p.*(sqrt(0.1e1−lambda1.ˆ2 ...

.*cos(alpha).ˆ2)./sin(alpha).*(Rio+Roo)./0.2e1−(Roo−Rio)./lambda1 ...

.*(0.1e1−lambda1.ˆ2.*cos(alpha).ˆ2).ˆ(−0.1e1./0.2e1).*sin(alpha) ...

./0.2e1).ˆ2+Ftube)./pi./((sqrt(0.1e1−lambda1.ˆ2.*cos(alpha).ˆ2) ...

./sin(alpha).*(Rio+Roo)./0.2e1+(Roo−Rio)./lambda1 ...

.*(0.1e1−lambda1.ˆ2.*cos(alpha).ˆ2).ˆ(−0.1e1./0.2e1).*sin(alpha) ...

./0.2e1).ˆ2−(sqrt(0.1e1−lambda1.ˆ2.*cos(alpha).ˆ2)./sin(alpha) ...

.*(Rio+Roo)./0.2e1−(Roo−Rio)./lambda1.*(0.1e1−lambda1.ˆ2 ...

.*cos(alpha).ˆ2).ˆ(−0.1e1./0.2e1).*sin(alpha)./0.2e1).ˆ2)).ˆ2 ...

.*(sqrt(0.1e1−lambda1.ˆ2.*cos(alpha).ˆ2)./sin(alpha).*(Rio+Roo) ...

./0.2e1+(Roo−Rio)./lambda1.*(0.1e1−lambda1.ˆ2 ...

.*cos(alpha).ˆ2).ˆ(−0.1e1./0.2e1).*sin(alpha)./0.2e1−rf)./delta.ˆ2 ...

.*(−(0.1e1−lambda1.ˆ2.*cos(alpha).ˆ2).ˆ(−0.1e1./0.2e1)./sin(alpha) ...

.*(Rio+Roo).*lambda1.*cos(alpha).ˆ2./0.2e1−(Roo−Rio)./lambda1.ˆ2 ...

.*(0.1e1−lambda1.ˆ2.*cos(alpha).ˆ2).ˆ(−0.1e1./0.2e1).*sin(alpha) ...

./0.2e1+(Roo−Rio).*(0.1e1−lambda1.ˆ2.*cos(alpha).ˆ2).ˆ(−0.3e1 ...

./0.2e1).*sin(alpha).*cos(alpha).ˆ2./0.2e1)./(nu.*m.*tan(alpha) ...

.*(0.1e1−lambda1.ˆ2.*cos(alpha).ˆ2)./(Roo−Rio)./sin(alpha)./pi ...

./Roo./0.2e1−m.*lambda1.*cos(alpha)./pi./((sqrt(0.1e1−lambda1.ˆ2 ...

.*cos(alpha).ˆ2)./sin(alpha).*(Rio+Roo)./0.2e1+(Roo−Rio)./lambda1 ...

.*(0.1e1−lambda1.ˆ2.*cos(alpha).ˆ2).ˆ(−0.1e1./0.2e1).*sin(alpha) ...

./0.2e1).ˆ2−(sqrt(0.1e1−lambda1.ˆ2.*cos(alpha).ˆ2)./sin(alpha) ...

.*(Rio+Roo)./0.2e1−(Roo−Rio)./lambda1.*(0.1e1−lambda1.ˆ2 ...

.*cos(alpha).ˆ2).ˆ(−0.1e1./0.2e1).*sin(alpha)./0.2e1).ˆ2)).ˆ2.*L ...

./cos(alpha)./Ep./pi./ds.ˆ2−0.4e1.*m.*(Er.*(lambda1−0.1e1)+nu.*p ...

.*(sqrt(0.1e1−lambda1.ˆ2.*cos(alpha).ˆ2)./sin(alpha).*(Rio+Roo) ...

./0.2e1−(Roo−Rio)./lambda1.*(0.1e1−lambda1.ˆ2 ...

.*cos(alpha).ˆ2).ˆ(−0.1e1./0.2e1).*sin(alpha)./0.2e1)./(Roo−Rio) ...

.*lambda1.*sqrt(0.1e1−lambda1.ˆ2.*cos(alpha).ˆ2)./sin(alpha)−(pi ...

.*p.*(sqrt(0.1e1−lambda1.ˆ2.*cos(alpha).ˆ2)./sin(alpha).*(Rio+Roo) ...

./0.2e1−(Roo−Rio)./lambda1.*(0.1e1−lambda1.ˆ2 ...

.*cos(alpha).ˆ2).ˆ(−0.1e1./0.2e1).*sin(alpha)./0.2e1).ˆ2+Ftube) ...

./pi./((sqrt(0.1e1−lambda1.ˆ2.*cos(alpha).ˆ2)./sin(alpha).*(Rio ...
+Roo)./0.2e1+(Roo−Rio)./lambda1.*(0.1e1−lambda1.ˆ2 ...
.*cos(alpha).ˆ2).ˆ(−0.1e1./0.2e1).*sin(alpha) ...
./0.2e1).ˆ2−(sqrt(0.1e1−lambda1.ˆ2.*cos(alpha).ˆ2)./sin(alpha) ...
.*(Rio+Roo)./0.2e1−(Roo−Rio)./lambda1.*(0.1e1−lambda1.ˆ2 ...
.*cos(alpha).ˆ2).ˆ(−0.1e1./0.2e1).*sin(alpha)./0.2e1).ˆ2)).ˆ2 ...
.*(0.1e1+(sqrt(0.1e1−lambda1.ˆ2.*cos(alpha).ˆ2)./sin(alpha).*(Rio ...
+Roo)./0.2e1+(Roo−Rio)./lambda1.*(0.1e1−lambda1.ˆ2 ...
.*cos(alpha).ˆ2).ˆ(−0.1e1./0.2e1).*sin(alpha)./0.2e1−rf).ˆ2 ...
./delta.ˆ2)./(nu.*m.*tan(alpha).*(0.1e1−lambda1.ˆ2.*cos(alpha).ˆ2) ...
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./(Roo−Rio)./sin(alpha)./pi./Roo./0.2e1−m.*lambda1.*cos(alpha)./pi ...

./((sqrt(0.1e1−lambda1.ˆ2.*cos(alpha).ˆ2)./sin(alpha).*(Rio+Roo) ...

./0.2e1+(Roo−Rio)./lambda1.*(0.1e1−lambda1.ˆ2 ...

.*cos(alpha).ˆ2).ˆ(−0.1e1./0.2e1).*sin(alpha) ...

./0.2e1).ˆ2−(sqrt(0.1e1−lambda1.ˆ2.*cos(alpha).ˆ2)./sin(alpha) ...

.*(Rio+Roo)./0.2e1−(Roo−Rio)./lambda1.*(0.1e1−lambda1.ˆ2 ...

.*cos(alpha).ˆ2).ˆ(−0.1e1./0.2e1).*sin(alpha)./0.2e1).ˆ2)).ˆ3.*L ...

./cos(alpha)./Ep./pi./ds.ˆ2.*(−nu.*m.*tan(alpha).*lambda1 ...

.*cos(alpha).ˆ2./(Roo−Rio)./sin(alpha)./pi./Roo−m.*cos(alpha)./pi ...

./((sqrt(0.1e1−lambda1.ˆ2.*cos(alpha).ˆ2)./sin(alpha).*(Rio+Roo) ...

./0.2e1+(Roo−Rio)./lambda1.*(0.1e1−lambda1.ˆ2 ...

.*cos(alpha).ˆ2).ˆ(−0.1e1./0.2e1).*sin(alpha) ...

./0.2e1).ˆ2−(sqrt(0.1e1−lambda1.ˆ2.*cos(alpha).ˆ2)./sin(alpha) ...

.*(Rio+Roo)./0.2e1−(Roo−Rio)./lambda1.*(0.1e1−lambda1.ˆ2 ...

.*cos(alpha).ˆ2).ˆ(−0.1e1./0.2e1).*sin(alpha)./0.2e1).ˆ2)+m ...

.*lambda1.*cos(alpha)./pi./((sqrt(0.1e1−lambda1.ˆ2.*cos(alpha).ˆ2) ...

./sin(alpha).*(Rio+Roo)./0.2e1+(Roo−Rio)./lambda1 ...

.*(0.1e1−lambda1.ˆ2.*cos(alpha).ˆ2).ˆ(−0.1e1./0.2e1).*sin(alpha) ...

./0.2e1).ˆ2−(sqrt(0.1e1−lambda1.ˆ2.*cos(alpha).ˆ2)./sin(alpha) ...

.*(Rio+Roo)./0.2e1−(Roo−Rio)./lambda1.*(0.1e1−lambda1.ˆ2 ...

.*cos(alpha).ˆ2).ˆ(−0.1e1./0.2e1).*sin(alpha)./0.2e1).ˆ2).ˆ2 ...

.*(0.2e1.*(sqrt(0.1e1−lambda1.ˆ2.*cos(alpha).ˆ2)./sin(alpha).*(Rio ...
+Roo)./0.2e1+(Roo−Rio)./lambda1.*(0.1e1−lambda1.ˆ2 ...
.*cos(alpha).ˆ2).ˆ(−0.1e1./0.2e1).*sin(alpha)./0.2e1) ...
.*(−(0.1e1−lambda1.ˆ2.*cos(alpha).ˆ2).ˆ(−0.1e1./0.2e1)./sin(alpha) ...
.*(Rio+Roo).*lambda1.*cos(alpha).ˆ2./0.2e1−(Roo−Rio)./lambda1.ˆ2 ...
.*(0.1e1−lambda1.ˆ2.*cos(alpha).ˆ2).ˆ(−0.1e1./0.2e1).*sin(alpha) ...
./0.2e1+(Roo−Rio).*(0.1e1−lambda1.ˆ2.*cos(alpha).ˆ2).ˆ(−0.3e1 ...
./0.2e1).*sin(alpha).*cos(alpha).ˆ2./0.2e1)−0.2e1 ...
.*(sqrt(0.1e1−lambda1.ˆ2.*cos(alpha).ˆ2)./sin(alpha).*(Rio+Roo) ...
./0.2e1−(Roo−Rio)./lambda1.*(0.1e1−lambda1.ˆ2 ...
.*cos(alpha).ˆ2).ˆ(−0.1e1./0.2e1).*sin(alpha)./0.2e1) ...
.*(−(0.1e1−lambda1.ˆ2.*cos(alpha).ˆ2).ˆ(−0.1e1./0.2e1)./sin(alpha) ...
.*(Rio+Roo).*lambda1.*cos(alpha).ˆ2./0.2e1+(Roo−Rio)./lambda1.ˆ2 ...
.*(0.1e1−lambda1.ˆ2.*cos(alpha).ˆ2).ˆ(−0.1e1./0.2e1).*sin(alpha) ...
./0.2e1−(Roo−Rio).*(0.1e1−lambda1.ˆ2.*cos(alpha).ˆ2).ˆ(−0.3e1 ...
./0.2e1).*sin(alpha).*cos(alpha).ˆ2./0.2e1)));



Appendix B
Input-Force-to-Transmitted-Force
Transfer Function Coefficients for
Pitch Links Coupled with Three
Different Fluidic Circuits

Fluidic Circuits I and II: Out-of-Phase Forcing

a1 = A2Im

a2 = A2(coI +mR f )

a3 = A2(coR f + Iko)+m(kd + ko)

a4 = A2koR f + co(kd + ko)

a5 = kdko

b1 = A2Iko

b2 = A2koR f

b3 = kdko
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Fluidic Circuit I: In-Phase Forcing

a1 = A2Cam(I +2Iv)

a2 = A2Ca
[
co(I +2Iv)+m(R f +2Rv)

]

a3 = A2Ca
[
ko(I +2Iv)+ co(R f +2Rv)

]
+Cam(kd + ko)+2A2m

a4 = A2Cako(R f +2Rv)+Caco(kd + ko)+2A2co

a5 = ko(2A2 +Cakd)

b1 = A2Cako(I +2Iv)

b2 = A2Cako(R f +2Rv)

b3 = ko(2A2 +Cakd)
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Fluidic Circuit II: In-Phase Forcing

a1 = A2Ca1Ca2m [I(Iv1 + Iv2)+2Iv1Iv2 ]

a2 = A2Ca1Ca2

[
co [I(Iv1 + Iv2)+2Iv1Iv2]+m

[
I(Rv1 +Rv2)+R f (Iv1 + Iv2)

+2(Iv1Rv2 + Iv2Rv1)]]

a3 = A2mCa1(I+2Iv1)+A2mCa2(I+2Iv2)+Ca1Ca2

[
A2 [co(I(Rv1 +Rv2)+R f (Iv1 + Iv2)

+2(Iv1Rv2 + Iv2Rv1))+ ko(I(Iv1 + Iv2)+2Iv1Iv2)+m(R f (Rv1 +Rv2)+2Rv1Rv2)
]

+m(kd + ko)(Iv1 + Iv2)]

a4 = A2Ca1

[
co(I +2Iv1)+m(R f +2Rv1)

]
+A2Ca2

[
co(I +2Iv2)+m(R f +2Rv2)

]

+Ca1Ca2

[
A2 [co(R f (Rv1 +Rv2)+2Rv1Rv2)+ ko(I(Rv1 +Rv2)+R f (Iv1 + Iv2)

+2(Iv1Rv2 + Iv2Rv1))]+(kd + ko) [co(Iv1 + Iv2)+m(Rv1 +Rv2)]]

a5 = 2A2m+Ca1

[
A2 [co(R f +2Rv1)+ ko(I +2Iv1)

]
+m(kd + ko)

]

+Ca2

[
A2 [co(R f +2Rv2)+ ko(I +2Iv2)

]
+m(kd + ko)

]

+Ca1Ca2

[
A2ko(R f (Rv1 +Rv2)+2Rv1Rv2)+ co(kd + ko)(Rv1 +Rv2)+ kdko(Iv1 + Iv2)

]

a6 = 2A2co+Ca1

[
co(kd + ko)+A2ko(R f +2Rv1)

]
+Ca2

[
co(kd + ko)+A2ko(R f +2Rv2)

]

+Ca1Ca2kdko(Rv1 +Rv2)

a7 = ko
[
2A2 + kd(Ca1 +Ca2)

]
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b1 = A2Ca1Ca2ko [I(Iv1 + Iv2)+2Iv1Iv2]

b2 = A2Ca1Ca2ko
[
I(Rv1 +Rv2)+R f (Iv1 + Iv2)+2(Iv1Rv2 + Iv2Rv1)

]

b3 = ko
[
A2Ca1(I +2Iv1)+A2Ca2(I +2Iv2)

+Ca1Ca2

[
A2(R f (Rv1 +Rv2)+2Rv1Rv2)+ kd(Iv1 + Iv2)

]]

b4 = ko
[
A2Ca1(R f +2Rv1)+A2Ca2(R f +2Rv2)+Ca1Ca2kd(Rv1 +Rv2)

]

b5 = ko
[
2A2 + kd(Ca1 +Ca2)

]

Fluidic Circuit III: Out-of-Phase Forcing

a1 = A2CaII3m

a2 = A2Ca
[
coII3 +m(IR3 + I3R f )

]

a3 = A2 [m(2I + I3)+Ca
[
II3ko + co(IR3 + I3R f )+mR f R3

]]
+CaI3m(kd + ko)

a4 = A2 [m(2R f +R3)+Ca
[
coR f R3 + ko(IR3 + I3R f )

]
+ co(2I + I3)

]

+Ca(kd + ko)(coI3 +mR3)

a5 = A2 [co(2R f +R3)+ ko(2I + I3 +CaR f R3)
]
+Ca [ko(coR3 + I3kd)+ cokdR3]

+2m(kd + ko)

a6 = A2ko(2R f +R3)+CakdkoR3 +2co(kd + ko)

a7 = 2kdko
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b1 = A2CaII3ko

b2 = A2Cako(IR3 + I3R f )

b3 = ko
[
A2(2I + I3 +CaR f R3)+CaI3kd

]

b4 = ko
[
A2(2R f +R3)+CakdR3

]

b5 = 2kdko

Fluidic Circuit III: In-Phase Forcing

a1 = A2CaIm

a2 = A2Ca(coI +mR f )

a3 = A2m+Ca
[
A2(coR f + Iko)+m(kd + ko)

]

a4 = A2co +Ca
[
A2koR f + co(kd + ko)

]

a5 = ko(A2 +Cakd)

b1 = A2CaIko

b2 = A2CakoR f

b3 = ko(A2 +Cakd)



Appendix C
Frequency Responses and Source
Code for Coupled Pitch Links

C.1 Frequency Responses of Both Fluidic Pitch Links
for Fluidic Circuit I

Figure C.1 shows the theoretical and experimental frequency responses, with and with-

out fluid, for two coupled fluidic pitch links with a single vertical fluid track. See Fig. 3.8

for the experimental setup.

C.2 Matlab® Code for Fluidic Circuit I

%Lloyd Scarborough
%Created March 21, 2012
%Last modified November 13, 2013
%Force transfer functions for 2−pitch link case with an accumulator,
%forcing split into odd and even cases, ko added, co and cd added
%Total transmitted force calculated and plotted

clear all
close all
clc
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Figure C.1. Frequency responses of two coupled pitch links with a single vertical fluid track.

load 'IsolatorI empty.lvm'
load 'IsolatorII empty.lvm'
load 'odd total I.lvm'
load 'odd total II.lvm'
load 'even total I.lvm'
load 'even total II.lvm'

f1b=IsolatorI empty(:,1);
f2b=IsolatorII empty(:,1);
H1b=IsolatorI empty(:,2);
H2b=IsolatorII empty(:,2);

fo11=odd total I(:,1);
fo22=odd total II(:,1);
fe11=even total I(:,1);
fe22=even total II(:,1);
Ho11=odd total I(:,2);
Ho22=odd total II(:,2);
He11=even total I(:,2);
He22=even total II(:,2);



102

m=1.13; %mass, kg
ko=100000000*460e3; %baseline stiffness, N/m (rigid)
cd=10; %diaphragm damping (3% of critical), N.s/m
co=0; %baseline damping, N.s/m
kd=2.5e4; %elastomer stiffness, N/m
D=0.044; %pumper diameter, m
d=0.473*0.0254; %fluid−track diameter, m
L=0.19; %horizontal fluid−track half−length, m
rho=1000; %fluid density, kg/mˆ3

%Fluid−track inertance, kg/mˆ4
I=(4*rho*0.018/(pi*0.011ˆ2)+4*rho*0.02/(pi*0.0095ˆ2)...

+4*rho*L/(pi*dˆ2))+4*rho*0.03/(pi*0.017ˆ2);

A=pi/4*Dˆ2; %pumper area, mˆ2
Afp=pi/4*dˆ2; %fluid−port area, mˆ2

Cp=1.7e−11; %pitch−link capacitance, mˆ3/Pa

r=6.0e7; %resistance to flow per length, kg*s/mˆ4/m
R=r*(L+0.07); %resistance to flow, kg*s/mˆ4

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%Accumulator values and calculations
da=0.473*0.0254; %fluid track to accumulator diameter, m
La=0.03; %fluid track to accumulator length, m
Lt=La+0.13; %total length of accumulator and fluid track, m
p atm=101e3; %atmospheric pressure, Pa
p ao=50e3; %accumulator initial pressure, Pa
%Accumulator fluid−track inertance, kg/mˆ4
Ia=4*rho*La/(pi*daˆ2);
%Accumulator capacitance, mˆ4.sˆ2/kg
Ca=(pi/4)*daˆ2*(Lt−La)/(p ao+p atm);
%Resistance to flow of track to accumulator, kg*s/mˆ4
Ra=r*La;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

w=0:0.01:2*pi*50; %frequency vector, rad/s
s=1i*w; %s=jw

%Input−force−to−transmitted−force transfer fnc. for out−of−phase forcing
FtoverFodd=2.*ko.*(I.*s.ˆ3.*Cp.*cd+((R.*cd+I.*kd).*Cp−1./2.*A.*I ...
.*(−2.*A+Afp)).*s.ˆ2+(R.*Cp.*kd−1./2.*A.*(−2.*A+Afp).*R+cd).*s+kd) ...
./(2.*m.*I.*s.ˆ5.*Cp.*cd+(((2.*cd.*co+2.*ko.*m+2.*m.*kd).*I ...
+2.*m.*R.*cd).*Cp+2.*I.*A.ˆ2.*m).*s.ˆ4+((((2.*cd+2.*co).*ko+2.*kd ...
.*co).*I+2.*R.*(ko.*m+m.*kd+cd.*co)).*Cp+2.*I.*A.ˆ2.*co+2.*m.*(R ...
.*A.ˆ2+cd)).*s.ˆ3+((2.*ko.*I.*kd+2.*((cd+co).*ko+kd.*co).*R).*Cp+2 ...
.*m.*kd+2.*cd.*co+2.*ko.*m+2.*ko.*I.*A.ˆ2+2.*R.*A.ˆ2.*co).*s.ˆ2+(2 ...
.*R.*Cp.*kd.*ko+(2.*co+2.*R.*A.ˆ2+2.*cd).*ko+2.*kd.*co).*s+2.*kd.*ko);
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%Input−force−to−transmitted−force transfer fnc. for in−phase forcing
FtoverFeven=2.*ko.*(Cp.*cd.*Ca.*(2.*Ia+I).*s.ˆ3+Ca.*(((2.*Ia+I).*kd ...
+cd.*(R+2.*Ra)).*Cp+(A−1./2.*Afp).*A.*(2.*Ia+I)).*s.ˆ2+((kd.*(R+2 ...
.*Ra).*Cp+cd+(R+2.*Ra).*A.ˆ2+(−Ra.*Afp−1./2.*R.*Afp).*A).*Ca+2.*Cp ...
.*cd).*s+2.*Cp.*kd+2.*A.ˆ2+Ca.*kd)./(2.*Cp.*cd.*m.*Ca.*(2.*Ia+I) ...
.*s.ˆ5+2.*((m.*(2.*Ia+I).*ko+m.*(2.*Ia+I).*kd+((2.*Ia+I).*co+m.*(R ...
+2.*Ra)).*cd).*Cp+A.ˆ2.*m.*(2.*Ia+I)).*Ca.*s.ˆ4+(((((4.*Ia+2.*I) ...
.*cd+(4.*Ia+2.*I).*co+2.*m.*(R+2.*Ra)).*ko+((4.*Ia+2.*I).*co+2.*m ...
.*(R+2.*Ra)).*kd+2.*cd.*co.*(R+2.*Ra)).*Cp+2.*m.*cd+2.*A.ˆ2.*((2 ...
.*Ia+I).*co+m.*(R+2.*Ra))).*Ca+4.*Cp.*cd.*m).*s.ˆ3+(((((4.*Ia+2 ...
.*I).*kd+2.*(cd+co).*(R+2.*Ra)).*ko+2.*kd.*co.*(R+2.*Ra)).*Cp+(2.*m ...
+(4.*Ia+2.*I).*A.ˆ2).*ko+2.*kd.*m+2.*co.*(cd+(R+2.*Ra).*A.ˆ2)).*Ca ...
+(4.*cd.*co+4.*kd.*m+4.*ko.*m).*Cp+4.*A.ˆ2.*m).*s.ˆ2+((2.*kd.*ko ...
.*(R+2.*Ra).*Cp+(2.*co+2.*cd+(4.*Ra+2.*R).*A.ˆ2).*ko+2.*kd.*co).*Ca ...
+((4.*cd+4.*co).*ko+4.*kd.*co).*Cp+4.*A.ˆ2.*co).*s+4.*ko.*(Cp.*kd ...
+1./2.*Ca.*kd+A.ˆ2));

%Baseline input−force−to−transmitted−force transfer function
FtoverF base=(cd*s+kd)./(m*s.ˆ2+cd*s+kd);

figure(1)
subplot(2,2,1)
hold on
plot(w/(2*pi),20*log10(abs(FtoverFodd)),w/(2*pi),...

20*log10(abs(FtoverF base)),fo22,20*log10(Ho22),'−−',...
f2b,20*log10(H2b),'y−−','LineWidth',2,'HandleVisibility','off')

plot(w/(2*pi),w+100,'k',w/(2*pi),w+101,'k−−','LineWidth',2)
axis([0.2 30 −50 27])
set(gca,'FontName','Times New Roman','FontSize',10);
title('∖bf{Left Pitch Link}','FontName','Times New Roman',...

'FontSize',12)
xlabel('∖it∖omega ∖rm(Hz)','FontName','Times New Roman','FontSize',10)
ylabel(' ∣ ∖itH∖rm ∣ (dB)','FontName','Times New Roman','FontSize',10)
legend('Theory','Experiment','location','southeast')
hold off
box on
text(4,−71,'∖bf{(a) Out−of−phase forcing}','FontName',...

'Times New Roman','FontSize',10)
annotation('textarrow',[0.3,0.34],[0.87,0.85],'string','No fluid',...

'FontName','Times New Roman','FontSize',10)
annotation('textarrow',[0.35,0.34],[0.75,0.795],'string',...

'With fluid','FontName','Times New Roman','FontSize',10)

subplot(2,2,2)
hold on
plot(w/(2*pi),20*log10(abs(FtoverFodd)),w/(2*pi),...

20*log10(abs(FtoverF base)),fo11,20*log10(Ho11),'−−',...
f1b,20*log10(H1b),'y−−','LineWidth',2,'HandleVisibility','off')

plot(w/(2*pi),w+100,'k',w/(2*pi),w+101,'k−−','LineWidth',2)
axis([0.2 30 −50 27])
set(gca,'FontName','Times New Roman','FontSize',10);
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title('∖bf{Right Pitch Link}','FontName','Times New Roman',...
'FontSize',12)

xlabel('∖it∖omega ∖rm(Hz)','FontName','Times New Roman','FontSize',10)
legend('Theory','Experiment','location','southeast')
hold off
box on
text(4,−71,'∖bf{(b) Out−of−phase forcing}','FontName',...

'Times New Roman','FontSize',10)
annotation('textarrow',[0.73,0.78],[0.87,0.85],'string','No fluid',...

'FontName','Times New Roman','FontSize',10)
annotation('textarrow',[0.79,0.75],[0.75,0.79],'string',...

'With fluid','FontName','Times New Roman','FontSize',10)

subplot(2,2,3)
hold on
plot(w/(2*pi),20*log10(abs(FtoverFeven)),w/(2*pi),...

20*log10(abs(FtoverF base)),fe22,20*log10(He22),'−−',...
f2b,20*log10(H2b),'y−−','LineWidth',2,'HandleVisibility','off')

plot(w/(2*pi),w+100,'k',w/(2*pi),w+101,'k−−','LineWidth',2)
axis([0.2 30 −50 27])
set(gca,'FontName','Times New Roman','FontSize',10);
xlabel('∖it∖omega ∖rm(Hz)','FontName','Times New Roman','FontSize',10)
ylabel(' ∣ ∖itH∖rm ∣ (dB)','FontName','Times New Roman','FontSize',10)
legend('Theory','Experiment','location','southeast')
hold off
box on
text(5,−71,'∖bf{(c) In−phase forcing}','FontName',...

'Times New Roman','FontSize',10)
annotation('textarrow',[0.3,0.34],[0.41,0.38],'string',...

'No fluid','FontName','Times New Roman','FontSize',10)
annotation('textarrow',[0.36,0.35],[0.27,0.31],'string',...

'With fluid','FontName','Times New Roman','FontSize',10)

subplot(2,2,4)
hold on
plot(w/(2*pi),20*log10(abs(FtoverFeven)),w/(2*pi),...

20*log10(abs(FtoverF base)),fe11,20*log10(He11),'−−',...
f1b,20*log10(H1b),'y−−','LineWidth',2,'HandleVisibility','off')

plot(w/(2*pi),w+100,'k',w/(2*pi),w+101,'k−−','LineWidth',2)
axis([0.2 30 −50 27])
set(gca,'FontName','Times New Roman','FontSize',10);
xlabel('∖it∖omega ∖rm(Hz)','FontName','Times New Roman','FontSize',10)
legend('Theory','Experiment','location','southeast')
hold off
box on
text(5,−71,'∖bf{(d) In−phase forcing}','FontName',...

'Times New Roman','FontSize',10)
annotation('textarrow',[0.73,0.78],[0.41,0.38],'string',...

'No fluid','FontName','Times New Roman','FontSize',10)
annotation('textarrow',[0.8,0.79],[0.27,0.31],'string',...

'With fluid','FontName','Times New Roman','FontSize',10)
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C.3 Frequency Responses of Both Fluidic Pitch Links
for Fluidic Circuit III

Figure C.2 shows the theoretical and experimental frequency responses, with and with-

out fluid, for two coupled fluidic pitch links with a single fluid track with two in-line

accumulators. See Fig. 3.10 for the experimental setup.
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Figure C.2. Frequency responses of two coupled fluidic pitch links with a single fluid track with
two in-line accumulators.
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C.4 Matlab® Code for Fluidic Circuit III

%Lloyd Scarborough
%Created September 11, 2012
%Last modified November 13, 2013
%Force transfer functions for 2−pitch link case with a single fluid
%track with two in−line accumulators − forcing split into odd and
%even cases, ko added, co and cd added

clear all
close all
clc

load 'IsolatorI empty.lvm'
load 'IsolatorII empty.lvm'
load 'tia odd total I ss st insts as synch.lvm'
load 'tia odd total II ss st insts as synch.lvm'
load 'tia even total I ss st insts as synch.lvm'
load 'tia even total II ss st insts as synch.lvm'

f1b=IsolatorI empty(:,1);
f2b=IsolatorII empty(:,1);
H1b=IsolatorI empty(:,2);
H2b=IsolatorII empty(:,2);

fo11ssstinstsassy=tia odd total I ss st insts as synch(:,1);
fe11ssstinstsassy=tia even total I ss st insts as synch(:,1);
fo22ssstinstsassy=tia odd total II ss st insts as synch(:,1);
fe22ssstinstsassy=tia even total II ss st insts as synch(:,1);
Ho11ssstinstsassy=tia odd total I ss st insts as synch(:,2);
He11ssstinstsassy=tia even total I ss st insts as synch(:,2);
Ho22ssstinstsassy=tia odd total II ss st insts as synch(:,2);
He22ssstinstsassy=tia even total II ss st insts as synch(:,2);

m=1.13; %mass, kg
ko=460e3*100000000; %baseline stiffness, N/m (rigid)
cd=10; %diaphragm damping (3% of critical), N.s/m
co=0; %baseline damping, N.s/m
kd=2.5e4; %elastomer stiffness, N/m
D=0.044; %pumper diameter, m
d=0.473*0.0254; %fluid−track diameter, m
L=0.07; %outer fluid−track length, m
rho=1000; %fluid density, kg/mˆ3
Lel=0.8*L; %distance from pitch link to nearest accumulator, m

%Fluid−track inertance, kg/mˆ4
I=4*rho*0.018/(pi*0.011ˆ2)+4*rho*0.019/(pi*0.008ˆ2)...

+4*rho*L/(pi*dˆ2)+4*rho*0.02/(pi*0.017ˆ2);
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A=pi/4*Dˆ2; %pumper area, mˆ2
Afp=pi/4*dˆ2; %fluid−port area, mˆ2

Ca=2.0e−10; %accumulator capacitance, mˆ3/Pa
Cp=1.7e−11; %pitch−link capacitance, mˆ3/Pa

r=1.1e8; %resistance to flow per length, kg*s/mˆ4/m
R=r*(L+0.06); %resistance to flow, kg*s/mˆ4

L3=0.12; %center fluid−track length, m
d3=0.012; %tee diameter, m

%Fluid−track inertance, kg/mˆ4
I3=4*rho*L3/(pi*d3ˆ2)+4*rho*0.02/(pi*0.017ˆ2);

R3=r*(L3+0.02); %resistance to flow, kg*s/mˆ4

w=0:0.01:2*pi*50; %frequency vector, rad/s
s=1i*w; %s=jw

%Input−force−to−transmitted−force transfer fnc. for out−of−phase forcing
FtoverFodd=−ko.*(−cd.*s.ˆ5.*L.*Ca.*I.*I3.*Cp−Ca.*((R3.*I.*cd+I3 ...
.*(R.*cd+I.*kd)).*L.*Cp−A.*I.*I3.*(−L.*A+Lel.*Afp)).*s.ˆ4+((−L ...
.*((R.*cd+I.*kd).*R3+kd.*I3.*R).*Cp+A.*I.*(−L.*A+Lel.*Afp).*R3+I3 ...
.*((−A.ˆ2.*L+A.*Afp.*Lel).*R−cd.*L)).*Ca−L.*cd.*Cp.*(2.*I+I3)) ...
.*s.ˆ3+((−kd.*L.*R3.*Cp.*R+((−A.ˆ2.*L+A.*Afp.*Lel).*R−cd.*L) ...
.*R3−kd.*L.*I3).*Ca−2.*(1./2.*cd.*R3+R.*cd+1./2.*kd.*I3+I.*kd).*L ...
.*Cp−A.ˆ2.*L.*I3+2.*A.*I.*(−L.*A+Lel.*Afp)).*s.ˆ2+(−kd.*L.*Ca ...
.*R3−2.*L.*kd.*(R+1./2.*R3).*Cp−A.ˆ2.*L.*R3+(−2.*A.ˆ2.*L+2.*A.*Afp ...
.*Lel).*R−2.*cd.*L).*s−2.*kd.*L)./L./(I3.*s.ˆ7.*Ca.*I.*Cp.*cd.*m ...
+((R3.*I.*cd.*m+(ko.*I.*m+(cd.*co+kd.*m).*I+R.*cd.*m).*I3).*Cp+I ...
.*I3.*A.ˆ2.*m).*Ca.*s.ˆ6+((((ko.*I.*m+(cd.*co+kd.*m).*I+R.*cd.*m) ...
.*R3+(((cd+co).*I+R.*m).*ko+co.*I.*kd+R.*(cd.*co+kd.*m)).*I3).*Cp ...
+I.*R3.*A.ˆ2.*m+(I.*A.ˆ2.*co+m.*(cd+R.*A.ˆ2)).*I3).*Ca+m.*Cp.*cd ...
.*(2.*I+I3)).*s.ˆ5+((((((cd+co).*I+R.*m).*ko+co.*I.*kd+R.*(cd.*co ...
+kd.*m)).*R3+I3.*((I.*kd+R.*(cd+co)).*ko+R.*co.*kd)).*Cp+(I.*A.ˆ2 ...
.*co+m.*(cd+R.*A.ˆ2)).*R3+((I.*A.ˆ2+m).*ko+kd.*m+R.*A.ˆ2.*co+cd ...
.*co).*I3).*Ca+(R3.*cd.*m+(cd.*co+ko.*m+kd.*m).*I3+2.*ko.*I.*m+(2 ...
.*kd.*m+2.*cd.*co).*I+2.*R.*cd.*m).*Cp+A.ˆ2.*m.*(2.*I+I3)).*s.ˆ4 ...
+(((((I.*kd+R.*(cd+co)).*ko+R.*co.*kd).*R3+I3.*R.*kd.*ko).*Cp+((I ...
.*A.ˆ2+m).*ko+kd.*m+R.*A.ˆ2.*co+cd.*co).*R3+I3.*((co+R.*A.ˆ2+cd) ...
.*ko+kd.*co)).*Ca+((cd.*co+ko.*m+kd.*m).*R3+((cd+co).*ko+kd.*co) ...
.*I3+((2.*cd+2.*co).*I+2.*R.*m).*ko+2.*co.*I.*kd+2.*R.*(cd.*co+kd ...
.*m)).*Cp+R3.*A.ˆ2.*m+I3.*A.ˆ2.*co+2.*I.*A.ˆ2.*co+2.*m.*(cd+R ...
.*A.ˆ2)).*s.ˆ3+((R3.*R.*ko.*Cp.*kd+((co+R.*A.ˆ2+cd).*ko+kd.*co).*R3 ...
+I3.*ko.*kd).*Ca+(((cd+co).*ko+kd.*co).*R3+I3.*ko.*kd+(2.*I.*kd+2 ...
.*R.*(cd+co)).*ko+2.*R.*co.*kd).*Cp+R3.*A.ˆ2.*co+ko.*I3.*A.ˆ2+(2.*m ...
+2.*I.*A.ˆ2).*ko+2.*R.*A.ˆ2.*co+2.*kd.*m+2.*cd.*co).*s.ˆ2+(R3.*ko ...
.*Ca.*kd+2.*(R+1./2.*R3).*kd.*ko.*Cp+ko.*R3.*A.ˆ2+(2.*R.*A.ˆ2+2.*co ...
+2.*cd).*ko+2.*kd.*co).*s+2.*kd.*ko);
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%Input−force−to−transmitted−force transfer fnc. for in−phase forcing
FtoverFeven=−(−cd.*s.ˆ3.*L.*Ca.*Cp.*I+Ca.*(−L.*(R.*cd+kd.*I).*Cp+A ...
.*I.*(−L.*A+Afp.*Lel)).*s.ˆ2+((−kd.*L.*R.*Cp−cd.*L+A.*R.*(−L.*A ...
+Afp.*Lel)).*Ca−Cp.*cd.*L).*s−L.*(Ca.*kd+Cp.*kd+A.ˆ2)).*ko./L./(Ca ...
.*I.*s.ˆ5.*Cp.*cd.*m+((I.*ko.*m+I.*kd.*m+cd.*(R.*m+I.*co)).*Cp+I ...
.*A.ˆ2.*m).*Ca.*s.ˆ4+((((I.*co+R.*m+I.*cd).*ko+(R.*m+I.*co).*kd+R ...
.*cd.*co).*Cp+cd.*m+A.ˆ2.*(R.*m+I.*co)).*Ca+Cp.*cd.*m).*s.ˆ3 ...
+((((kd.*I+R.*(cd+co)).*ko+R.*kd.*co).*Cp+(m+I.*A.ˆ2).*ko+kd.*m+co ...
.*(R.*A.ˆ2+cd)).*Ca+(co.*cd+ko.*m+kd.*m).*Cp+A.ˆ2.*m).*s.ˆ2+((R ...
.*Cp.*kd.*ko+(cd+R.*A.ˆ2+co).*ko+kd.*co).*Ca+((cd+co).*ko+kd.*co) ...
.*Cp+A.ˆ2.*co).*s+ko.*(Ca.*kd+Cp.*kd+A.ˆ2));

%Baseline input−force−to−transmitted−force transfer function
FtoverF base=(cd*s+kd)./(m*s.ˆ2+cd*s+kd);

figure(1)
subplot(2,2,1)
hold on
plot(w/(2*pi),20*log10(abs(FtoverFodd)),w/(2*pi),...

20*log10(abs(FtoverF base)),fo22ssstinstsassy,...
20*log10(Ho22ssstinstsassy),'−−',f2b,20*log10(H2b),...
'y−−','LineWidth',2,'HandleVisibility','off')

plot(w/(2*pi),w+100,'k',w/(2*pi),w+101,'k−−','LineWidth',2)
axis([0.2 30 −15 28])
set(gca,'FontName','Times New Roman','FontSize',10);
title('∖bf{Left Pitch Link}','FontName','Times New Roman',...

'FontSize',12)
xlabel('∖it∖omega ∖rm(Hz)','FontName','Times New Roman','FontSize',10)
ylabel(' ∣ ∖itH∖rm ∣ (dB)','FontName','Times New Roman','FontSize',10)
legend('Theory','Experiment','location','northwest')
hold off
box on
text(4,−26.5,'∖bf{(a) Out−of−phase forcing}','FontName',...

'Times New Roman','FontSize',10)
annotation('textarrow',[0.27,0.33],[0.78,0.78],'string',...

'No fluid','FontName','Times New Roman','FontSize',10)
annotation('textarrow',[0.28,0.34],[0.64,0.68],'string',...

'With fluid','FontName','Times New Roman','FontSize',10)

subplot(2,2,2)
hold on
plot(w/(2*pi),20*log10(abs(FtoverFodd)),w/(2*pi),...

20*log10(abs(FtoverF base)),fo11ssstinstsassy,...
20*log10(Ho11ssstinstsassy),'−−',f1b,20*log10(H1b),...
'y−−','LineWidth',2,'HandleVisibility','off')

plot(w/(2*pi),w+100,'k',w/(2*pi),w+101,'k−−','LineWidth',2)
axis([0.2 30 −15 28])
set(gca,'FontName','Times New Roman','FontSize',10);
title('∖bf{Right Pitch Link}','FontName','Times New Roman',...

'FontSize',12)
xlabel('∖it∖omega ∖rm(Hz)','FontName','Times New Roman','FontSize',10)
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legend('Theory','Experiment','location','northwest')
hold off
box on
text(4,−26.5,'∖bf{(b) Out−of−phase forcing}','FontName',...

'Times New Roman','FontSize',10)
annotation('textarrow',[0.76,0.79],[0.78,0.78],'string',...

'No fluid','FontName','Times New Roman','FontSize',10)
annotation('textarrow',[0.73,0.78],[0.63,0.68],'string',...

'With fluid','FontName','Times New Roman','FontSize',10)

subplot(2,2,3)
hold on
plot(w/(2*pi),20*log10(abs(FtoverFeven)),w/(2*pi),...

20*log10(abs(FtoverF base)),fe22ssstinstsassy,...
20*log10(He22ssstinstsassy),'−−',f2b,20*log10(H2b),...
'y−−','LineWidth',2,'HandleVisibility','off')

plot(w/(2*pi),w+100,'k',w/(2*pi),w+101,'k−−','LineWidth',2)
axis([0.2 30 −15 28])
set(gca,'FontName','Times New Roman','FontSize',10);
xlabel('∖it∖omega ∖rm(Hz)','FontName','Times New Roman','FontSize',10)
ylabel(' ∣ ∖itH∖rm ∣ (dB)','FontName','Times New Roman','FontSize',10)
legend('Theory','Experiment','location','northwest')
hold off
box on
text(5,−26.5,'∖bf{(c) In−phase forcing}','FontName',...

'Times New Roman','FontSize',10)
annotation('textarrow',[0.39,0.41],[0.28,0.33],'string',...

'No fluid','FontName','Times New Roman','FontSize',10)
annotation('textarrow',[0.24,0.29],[0.18,0.21],'string',...

'With fluid','FontName','Times New Roman','FontSize',10)

subplot(2,2,4)
hold on
plot(w/(2*pi),20*log10(abs(FtoverFeven)),w/(2*pi),...

20*log10(abs(FtoverF base)),fe11ssstinstsassy,...
20*log10(He11ssstinstsassy),'−−',f1b,20*log10(H1b),...
'y−−','LineWidth',2,'HandleVisibility','off')

plot(w/(2*pi),w+100,'k',w/(2*pi),w+101,'k−−','LineWidth',2)
axis([0.2 30 −15 28])
set(gca,'FontName','Times New Roman','FontSize',10);
xlabel('∖it∖omega ∖rm(Hz)','FontName','Times New Roman','FontSize',10)
legend('Theory','Experiment','location','northwest')
hold off
box on
text(5,−26.5,'∖bf{(d) In−phase forcing}','FontName',...

'Times New Roman','FontSize',10)
annotation('textarrow',[0.805,0.79],[0.25,0.29],'string',...

'No fluid','FontName','Times New Roman','FontSize',10)
annotation('textarrow',[0.70,0.74],[0.16,0.18],'string',...

'With fluid','FontName','Times New Roman','FontSize',10)



Appendix D
Flow Charts for Aeroelastic
Simulation

Figures D.1-D.9 show how the main subroutines of the aeroelastic simulation of [58]

interact. Each box is a subroutine, and the arrows point to other subroutines that are

called by the originating subroutine. In general, the flow in each figure begins with a

shaded box in the lower left and progresses to the upper right. Shaded boxes at the end

of the flow of each figure indicate that the flow continues onto another figure. The box

to the counterclockwise side of the arrow is a list of variables that are passed to the next

subroutine, and the box to the clockwise side of the arrow is a list of variables that are

returned to the originating subroutine.

Subroutine sol1 calculates the natural frequencies and modes of the blade. Sub-

routine sol2 calculates the response of the blade, using just linear terms initially, then

incorporating nonlinear terms as well. Thus, Figs. D.2 and D.3 (blade response, linear

portion) are similar to Figs. D.4 and D.5 (blade response, nonlinear portion). Subroutine

sol3 calculates the blade and hub loads.
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