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Abstract

Circularly towed cable-body systems can be used to pick-up and deliver payloads, pro-

vide surveillance, and tow aerial and marine vehicles. To provide a stable operating

platform, the body or end mass should have a unique and stable steady state solution

with small diameter so that it travels at a much slower speed than the tow vehicle. In

this thesis, the minimum damping is calculated that ensures the stable single valued

steady state solutions as a function of non-dimensional system parameters including

cable length and end mass. Steady state solutions are found using the numerical contin-

uation and bifurcation analysis and Galerkin’s method provides the linearized vibration

equations that determine stability. Bifurcation analysis is also used to find the minimum

achievable end mass radius. A design algorithm is presented and demonstrated using an

example.
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Chapter 1
Introduction

Circularly towed cable body systems (CTCBS) have been studied for several decades

for their fascinating dynamic behavior and their numerous applications in aerial and

marine environments. In these systems, a cable is towed from a tow vehicle moving in

a constant circular motion in gravitational field with a mass attached at the bottom end

of the cable. For sufficiently high aerodynamic drag and cable length, the attached mass

rotates in a small circle and appears almost stationary with respect to the inertial frame.

If the systems is stable in this configuration, then the payload can be used for delivery

[1] and surveillance [2]. This approach has also been used in marine applications [3]

and the autonomous aerial recovery of unmanned aircraft [4].

The steady state solutions of the CTCBS and their dynamic behavior are studied in

[1, 5, 6]. Russell and Anderson [1] developed a finite element model to study the steady

state solutions and stability of a continuous CTCBS. If the aerodynamic drag is insuf-

ficient then the system exhibits jump phenomena and buckling and flutter instabilities

for certain rotation speed ranges. Zhu and Rahn [5] obtain the steady state solutions

from nonlinear equations of motion and analyze the stability of these solutions using

Galerkin’s method. Multiple steady state solutions are calculated for low cable drag
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and stable single-valued solutions for sufficiently low rotation speed. Limit cycle os-

cillations of whirling cable and their stability are studied by Clark and Fraser [6]. The

whirling cable gain additional loops as the angular velocity increases and instabilities

occur at the turning points and Hopf points on the bifurcation curve. Williams and

Trivalio [2] obtained optimal cable configurations given the performance limitations on

the tow vehicle. A lumped parameter model is used to calculate the achievable end mass

radius for different angular velocities and tow-point velocities. Optimal system param-

eters are determined based on the performance limitations of the towing aircraft.

This thesis extends the work of [2] by focusing on the design of stable CTCBS. A

non-dimensional analysis is used to make the results generally applicable to CTCBS,

irrespective of the scale and environment. Bifurcation analysis is used to determine the

minimum achievable end mass radius. The minimum damping required to prevent flut-

ter and divergence instabilities is determined. A general design procedure is introduced

and applied to a Micro Air Vehicle recovery application.
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Figure 2.1. Schematic of the circularly towed cable-body system
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Mathematical Model

A schematic diagram of a CTCBS is shown in Figure 1. The tow vehicle rotates in a

circle of radius a with constant angular velocity Ω about a vertical axis. A cable with

end mass M is attached to the tow vehicle. The position of each point along the cable is

represented in a rotating reference frame XYZ as a function of the arc length coordinate

S. The Z axis is aligned with the rotation axis and the X axis intersects the steady

state end mass position. The position vector of any point on the cable is denoted by

R(S, T ) where T is the time. Vectors R1 and R2 are the steady state and the perturbed

configurations, respectively. The displacement relative to the steady state configuration

U(S0, T ) = R2 −R1, (2.1)

where S0 is the arc length coordinate of the cable in the unstretched configuration. The

cable has a cross sectional area A0 in the unstretched configuration.

2.1 Governing Equations

Tension, gravity and drag forces act on the cable. The equations of motion are derived

by applying Newton’s law to a small cable element [5]. The cable is assumed to be

extensible and the tangential component of the drag is assumed to be negligibly small.

The non-dimensional equations of motion [5] are given by

∂

∂s

(
pε2
ε1

(
∂r

∂s
+
∂u

∂s

))
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= ρk + ω2

{
k× (k× r) + k× (k× r) + 2k× ∂u

∂t
+
∂2u

∂t2

}
+ dn|vf

n|vf
n, (2.2)

where

r = xi + yj + zk =
R1

a
, s =

S0

a
, u =

U

a
, t = ΩT, (2.3)

ω2 =
aΩ2

g
, ρ =

ρa
ρb
, dn =

Dna

ρaA0

, p =
P1

ρaA0ag
, (2.4)

γ =
E

ρaag
, ε1 =

p

γ
, ε2 = ε1 +

∂r

∂s

∂u

∂s
+

1

2

∂u

∂s

∂u

∂s
, (2.5)

and

vfn =
∂(r + u)

∂s
×
((

∂u

∂t
+ k× (u + r)

)
× ∂(r + u)

∂s

)
. (2.6)

The natural boundary conditions associated with the end mass at s = 0 are

pdε2
ε1

(
∂r

∂s
+
∂ud
∂s

)
= wk +mω2

{
k× (k× r) + k× (k× ud) + 2k× ∂ud

∂t
+
∂2ud
∂t2

}
+dω2

∣∣∣∣∂ud∂t + k× (ud + r)

∣∣∣∣ (∂ud∂t + k× (ud + r)

)
, (2.7)

where pd is the cable tension at s = 0 and

w =
W

ρaaA0g
, m =

M

ρaaA0

, d =
D

ρaA0

, ud =
Ud

a
. (2.8)

The geometric boundary conditions for the model are

x =
Xd

a
= xd, y = z = 0 at s = 0, (2.9)

x2 + y2 = 1, u = 0 at s =
L

a
= l. (2.10)



6

Here, ρa and ρb are the cable densities including the added mass and buoyancy, respec-

tively; ε1 is the strain at steady state configuration; P1 is the steady state cable tension

and W the weight of the end mass; Ud is the perturbation at s = 0; and Dn and D are

the drag coefficients of the cable and the end mass.

2.2 Steady State Equations

The steady state or quasi-stationary solutions appear stationary with respect to the rotat-

ing coordinate frame. The steady state equations are obtained by substituting u = 0 in

the Eq. (2.2). The scalar steady state equations are

px,ss = −p,sx,s + ω2{−x− dn|vin|y − x,s(yx,s − y,sx)}, (2.11)

py,ss = −p,sy,s + ω2{−y + dn|vin|x− y,s(xy,s − x,sy)}, (2.12)

pz,ss = ρ− p,sz,s + ω2dn|vin|z,s(yx,s − y,sx), (2.13)

where (.),s = d(.)/ds and

|vin| = [z2,s(x
2 + y2) + (xx,s + yy,s)

2]1/2. (2.14)

The boundary conditions at s = 0 are

dx

ds
= −ω2mxd

pd
,

dy

ds
= dω2x

2
d

pd
,

dz

ds
=
w

pd
, (2.15)

x = xd, y = z = 0, (2.16)

and at s = l

x(l)2 + y(l)2 − 1 = 0. (2.17)
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The steady state cable tension

p = pd + ρz +
ω2

2
(x2d − x2 − y2). (2.18)

2.3 Vibration Equations

The linearized vibration equations [5] are obtained by cancellation of steady state terms

from Eq. (2.2) and linearization of u(s, t) around the steady state to produce the vibra-

tion equations

∂

∂s

[
γ

(
∂r

∂s
.
∂u

∂s

)
∂r

∂s
+ p

∂u

∂s

]
= ω2

{
k× (k× u) + 2k× ∂u

∂t
+
∂2u

∂t2
+ dnJvn

}
(2.19)

and the natural boundary conditions

γ

(
∂r

∂s
.
∂ud

∂s

)
∂r

∂s
+ pd

∂ud

∂s

= mω2

(
k× (k× ud) + 2k× ∂ud

∂t
+
∂2ud

∂t2

)
+ dω2Jd

(
∂ud

∂t
+ k× ud

)
. (2.20)

Equations (2.19) and (2.20) can be written in matrix form as

 I 0

0 I


 ü

üd

+

 G 0

0 Gd


 u̇

u̇d

+

 K 0

0 Kd


 u

ud

 = 0, (2.21)

where the Jacobians and the matrix operators are defined in Appendix.
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Table 2.1. Non-dimensional parameters

Parameter Symbol Range Type
Angular Velocity ω 0-3 Variable
Density ρ 1 Fixed
Elasticity γ 600 Fixed
End Mass m 3.5-100 Variable
End Weight w 3.5-100 Variable
Cable Drag dn 0-2000 Variable
Drag Ratio f = d

dn
0.1-4 Variable

Cable Length l 1.5-6 Variable

2.4 Non-dimensional Parameter Ranges

The equations of motion include the eight non-dimensional parameters shown in Ta-

ble 1. The non-dimensional angular velocity is limited by the turning radius and the

velocity of the tow vehicle. The non-dimensional angular velocities of the high perfor-

mance military aircraft used in [2] are about 1.5 while the ship maneuvers in [7] have

much smaller angular velocities. Hence, for the analysis angular velocities in the range

0 − 3 are considered. The non-dimensional cable density ρ is fixed for a given fluid

(water or air). Assuming air as the medium, ρ takes the constant value 1 throughout the

analysis. Similarly, the elastic parameter γ is held constant at 600 because the steady

state solutions and their stability are relatively insensitive to this parameter [8]. The

non-dimensional end mass m and weight w have the same numerical values and can

therefore be considered as a single design variable ranging from 3.5− 100.

The drag coefficients of the cable and end mass are related to the standard coefficients

of drag as follows:

d =
1

2

ρairACCD
ρaA0

(2.22)
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dn =
1

2

dcρairCDna

A0ρa
(2.23)

where CD and CDn are the standard drag coefficients of the end mass and the cable,

respectively, ρair is the fluid density, dc is the cable diameter, and Ac is the frontal area

of the end mass. A wide range of cross sectional areas for the cable are acceptable design

values so the drag coefficients dn and d can vary by orders of magnitude compared with

CD andCDn which typically range from 0−1.8. Therefore, the upper limit in the current

analysis is 2000. d = fdn, where f is assumed constant, ranging from 0.1 − 4. The

cable lengths are assumed to lie between 1.5 and 6.



Chapter 3
Design of Single-Valued Steady

State Solutions

3.1 Solution Procedure

The steady states solutions of the boundary value problem represented by ODEs (2.11-

2.13) with the boundary conditions (2.15-2.17) are solved using the numerical continua-

tion and bifurcation software AUTO [9]. AUTO uses an orthogonal collocation method

for solving boundary value problems. An initial guess for the collocation method is

generated using a single shooting method, where a value for xd is assumed at s = 0

and the solution of xd is obtained by minimizing the error x(l)2 + y(l)2 − 1 at s = l

using the optimization routine fmin provided by Scipy in the AUTO python interface.

Based on this initial approximation the steady state solution curves can be generated

using numerical continuation.
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d  = 4.8n

d  = 6.2n

d  = 10n

d  = 2.7n

d  = 2.7n

d  = 2.7n

Multiple 
solutions

Figure 3.1. Steady state end mass radius xd versus angular velocity ω for dn = 2.7, 4.8, 6.2 and
10. (f = 1, l = 3 and m = 50). The dashed line shows the continuation path of the turning
point F2 as dn is varied.

3.2 Design

Figure 3.1 shows the steady state end mass radius for different cable drag coefficients in

a bifurcation diagram. Cable angular velocity is the continuation parameter in AUTO.

The figure shows the existence of multiple solutions, jump phenomena and single valued

solutions for different values of the parameters. For low cable drags (dn = 2.7) there are

multiple steady state solutions for ω > 0.9. As the drag is increased to 4.8, the multiple

isolated solutions become a single continuous curve but multivalued for 0.9 < ω < 1.1.

In practice, if the angular velocity increases from 0 to 1.1 the radius of the end mass

grows slowly and then suddenly jumps from 2.3 to 0.5. For decreasing angular velocity,

however, it jumps from 1.3 to 2.5 at the lower angular velocity. If dn > 6.2 then these

jump phenomena are no longer observed for ω < 3.

Figure 3.2 plots the turning points or the fold points F1 and F2, corresponding to where
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6.2

Figure 3.2. Angular velocity at cusp point versus drag coefficient

the slope of the end mass radius xd with respect to the angular velocity ω becomes

infinite. F1 and F2 move closer to each other and finally coalesce into a single cusp

point C as the cable drag is increased which defines the minimum damping for single

valued solutions.

The locus of the minimum drag coefficients of the cable for the single-valued solutions

for different cable lengths and end masses is shown in Fig. 3.3. As the cable length

increases the minimum drag required for single valued solutions decreases for a given

end mass. With increasing end mass, the required cable drag for single valued solutions

increases. Increasing the end mass drag means that less cable drag is required for single

valued solutions.

Figure 3.4 plots ω and xd versus l at the cusp and minimum xd points for two values

of m. The minimum xd point is a preferable operating point because xd is small. It

is disadvantageous, however, because the required ω is high. The cusp point is not

desirable because xd is high. Increasingm tends to increasew and xd, decreasing system
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dn

l

Figure 3.3. Cable drag dn versus length l boundary for unique solutions with m = 20 (solid),
m = 50 (dashed) and m = 100 (dash dotted) and f = 1 (dark), f = 2 (light)

Minimum

Cusp point

Cusp point

Minimum

l

xdù

Figure 3.4. Angular velocity ω versus Cable length l at the cusp point (light-solid) and first
minimum (dark-solid) and end mass radius xd versus cable length l at the cusp point (dark-
dashed) and first minimum (light-dashed) for f = 1 and m = 50 and 100 (dash-dotted)
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performance.



Chapter 4
Design of Stable Steady State

Solutions

4.1 Solution Procedure

The vibration equations from Eq. (2.21) are discretized using Galerkin’s method. The

displacement is approximated by

ups(s, t) =
N∑
j=1

ηjk(t)θj(s) (k = 1, 2, 3), (4.1)

where the admissible functions are

θj(s) = sin(βj(l − s)/l) (4.2)

and βj are the natural frequencies of a string with one fixed end and other end attached

to a mass. Application of Galerkin’s method gives the discretized equations

Mη̈ + Gη̇ + Kη = 0, (4.3)
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xd

ù

d  = 1.33n

d  = 2n

d  = 3n

d  = 1.33n

d  = 2n

d  = 3n

Figure 4.1. Stable(solid) and flutter unstable (dash-dotted) steady state solutions for dn =
1.33, 2, and 3 ( m = 3.5, l = 3 and f = 0.1)

where η = [η11, η12, η13, η21, ..., ηN3]
T .

The eigenvalues (λ) of

A =

 0 I

−M−1K −M−1G


define stability. If the real parts of all the eigenvalues are negative the system is stable.

4.2 Design

Figure 4.1 shows the stable (solid) and flutter unstable (dash-dotted) steady state solu-

tions for three different drag coefficients. The inset shows an enlarged version of the

stability curves for higher angular velocities. For the dn = 1.33 the solutions are unsta-

ble for 2.8 < ω < 4.0 and 1.8 < ω < 2.2. At dn = 2.0 the unstable region is reduced

to 3.2 < ω < 4 and the solutions are completely stable for dn = 3. In general, the sta-
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ble regions increase with increasing cable drag. There is a minimum cable drag above

which the solution is stable for ω < 3. There is also a minimum for the radius of the

end mass near ω = 2.1. The angular velocity corresponding to this first minimum of the

radius of the end mass is a favorable design point. The minimum drag coefficient of the

cable for which the steady state solution is stable at this minimum defines the desired

design condition for the CTCBS with stable steady state solutions with low end mass

radius.

The locus of minimum dn required for stable steady state solutions is shown in Fig 4.2.

As with minimum drag for single valued solutions, the minimum dn that ensures stable

solutions also decreases with the increasing cable length and decreasing end mass. To

achieve the overall objective of single valued and stable solutions, the maximum of the

minimum values from Figs. 3.3 and 4.2 should be used.
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dn

l

Figure 4.2. Cable drag dn versus length l boundary for stable solutions with m = 20 (solid),
m = 50 (dashed) and m = 100 (dash-dotted) and f = 1 (dark) and and f = 2 (light)



Chapter 5
Design Example

The design of CTCBS is performed in dimensional space based on the results from the

previous sections as outlined in the flowchart in Fig. 5.1. Consider as an example an

aircraft acting as a tow vehicle moving at a constant speed of 50 m/s. The minimum

turning radius of the aircraft is assumed to be 100 m, yielding ω = 1.6. In practice, the

circular motion of the aircraft is only approximate and the aircraft orbit varies about a

mean value. Assuming that a = 100 − 250 m, the corresponding ω = 1.0 − 1.6. A

cable with L = 500 m gives a non-dimensional length l = 2 − 5. The payload for

the application is assumed to be M = 1 kg. Further, the cable is assumed to have a

density of 1100 kg/m3 and a diameter of D = 0.48 mm. Then, the m = 20 − 50. If

the cable and the end mass have drag coefficients CDn = 0.6, CD = 1.6, respectively,

then the associated dn = 85.36 − 213.41 and d = 9.3, respectively. From Fig. 3.4,

ω = 1.6 for a cable with l = 5 is acceptable for the design. For the lower cable length

(l = 2), however, the angular velocity (ω = 1.0) falls short of the cusp point and the

cable length should be increased. A cable length L = 1000 m gives l = 4 which

makes ω = 1.0 which is greater than the angular velocity at the cusp point and is hence

acceptable for the design. The drag coefficient ratio f = 0.1 and 0.04 for a = 100 and
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Choose a as the minimum 

radius of the aircraft {a, ωmax} 

 

asa 

Choose M as the payload 

and guess A0 { a, ωmax,m } 

Choose L                    

{ a, ωmax,m ,l} 

 ω > ωcusp    l < lmax 

         Increase L 

Decrease A0 

Choose CD, f                         

{ a, ωmax,m ,l , dn, f } 

 dn > dn stab 

&  dn  > dn uniq 

 CD< CDMAX 

         Increase CD 

 xd< xdMAX  ω < ωMAX 

         Increase ω 

 

 f < fMAX 

Stop 

        Increase f 

Yes 

Yes 

Yes 

No 

No No 

No 

No 

Yes 

Yes No Yes 

Figure 5.1. Flowchart showing the procedure for the design

250, respectively. The drag coefficients for the given mass and cable length are higher

than the required cable drags in Fig. 3.3 and 4.2 even if the lower f were to shift the

curves slightly upwards. In general, if the cross sectional area is sufficiently low, then

the non-dimensional drag coefficients are higher than the design requirements.

The radius of the end mass remains to be minimized. The radius xd = 0.15 and 8.43×

10−3 at ω = 1.0 and 1.6, respectively. While the latter is close to zero, the former can
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be further reduced by increasing the cable drag. The material is assumed fixed, so the

drag coefficient cannot be varied much but the area of cross section of the cable can be

reduced to increase the non-dimensional drag coefficients. Decreasing the area of cross

section also increases the non-dimensional mass. This results in a small decrease in the

radius of the end mass giving almost the same radius 0.14 for half the cable diameter.

This problem can be circumvented by increasing the the drag on the end mass. Increase

of f = 0.04 to f = 0.1 reduces the radius of the end mass from 0.15 to 0.08. In general,

the radius of the end mass can be reduced by increasing the fraction f while the other

parameters fixed. This can be achieved by changing the geometry and the roughness of

the end mass to increase the drag coefficient by increasing the area or using drag chutes

on the end mass.

Table 5.1 summarizes the system parameters for the optimal design. Figure 5.2 shows

the radius xd of the end mass as a function of the radius of the tow vehicle a. In this

figure, the steady state solutions are stable for all values of a. For lower radius Figure

5.3 shows the same radius of the end mass xd as a function of cable length l as it varies

from 0 to 4 during deployment operation. The steady state solutions are stable for all

values of cable lengths l.
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xd

a

Figure 5.2. Radius of end mass xd versus radius of the tow vehicle a(m) for the design example.
All solutions are stable.

xd

l

Figure 5.3. Radius of the end mass xd as a function of deployment length l. All solutions are
stable.
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Table 5.1. Summary of the design of circularly towed cable body system

Parameter Symbol Value
Aircraft Speed V 50m/s
Turning Radius a 100-250m
Cable Length L 1000m
Payload M 1Kg
Drag Coefficient of the ca-
ble

CDn 0.6

Drag Coefficient of the
End Mass

CD 1.6

Density of the Cable ρa 1100Kg/m3

Diameter of the Cable dc 0.00048m
Frontal area of the end
mass

AC 0.045 m2

Young’s Modulus E 2GPa



Chapter 6
Conclusions

The design of the CTCBS requires that the steady state solutions are stable and sin-

gle valued and have low end mass radius throughout the operating region. In general,

stability increases with increasing damping, decreasing end mass, and increasing cable

length. In practice, other than placing a drag chute on the end mass, it is very difficult

to modify damping. The cable diameter and material are often specified by cost, avail-

ability, and strength. The end mass is also dictated by the application but this analysis

indicates that it should be as small as possible. Cable length varies during deployment

so it may be advisable to deploy the cable prior to initiating a transition to circular orbit.

As the drag coefficient of the cable increases, steady state solutions that exhibit multiple

solutions become single valued solutions and instability regions disappear. The maxi-

mum of the minimum dn required for the uniqueness and stability of the steady state

solutions defines the minimum dn required for the design. The end mass radius is close

to the radius of the tow vehicle for the angular velocities below the cusp point and has a

minimum at higher rotational rates.



Appendix A
A.1 Jacobian Matrix

In equation (2.6), vfn can be expressed as

vfn = vin + vn (A.1)

where vin is obtained by substitutiong u = 0 in equation (2.6) and equation (A.1) defines

vn

Linearization of air drag force produces

dn|vfn|vfn = dn(|vin|vin + Jvn)

where the Jacobian Matrix is

J =
∂(|vfn|vfn)

∂vfn

∣∣∣∣
vn=0

=


J1 J2 J3

J2 J4 J5

J3 J5 J6

 = |vin|I +
1

|vin|


x21 x1x2 x1x3

x1x2 x22 x2x3

xxx3 x2x3 x23


and

x1 = −y + x,s(yx,s − y,sx), x2 = x+ y,s(xy,s − x,sy), x3 = z,s(yx,s − xy,s)

|vin| =
√
x21 + x22 + x23
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and I is the unit matrix. To calculate Jd, one has

vfd = vid + vd

where vid = k× r and vd = ∂u
∂t

+ k× u Hence,

Jd =
∂(|vfd |v

f
d)

∂vfd

∣∣∣∣∣
vd=0

=
√
y2 + x2I +

1√
y2 + x2


y2 −xy 0

−xy x2 0

0 0 0


At s = 0, y = 0 and x = xd, one has

Jd =


xd 0 0

0 2xd 0

0 0 xd





Appendix B
B.1 Matrix Operators

In equation (2.23), G is defined as

G = G0 + dnD

where

G0 =


0 −2 0

2 0 0

0 0 0


D(1, 1) = −J2x,sy,s + J1y

2
,s + J1z

2
,s − J3x,sz,s

D(1, 2) = −J3y,sz,s + J2z
2
,s + J2x

2
,s − J1y,sx,s

D(1, 3) = −J2z,sy,s + J3y
2
,s + J3x

2
,s − J1x,sz,s

D(2, 1) = −J4x,sy,s + J2z
2
,s + J2y

2
,s − J5x,sz,s

D(2, 2) = −J5y,sz,s + J4x
2
,s + J4z

2
,s − J2x,sy,s

D(2, 3) = −J4y,sz,s + J5y
2
,s + J5x

2
,s − J2x,sz,s

D(3, 1) = −J5x,sy,s + J3y
2
,s + J3z

2
,s − J6x,sz,s

D(3, 2) = −J6y,sz,s + J5x
2
,s + J5z

2
,s − J3y,sx,s

D(3, 3) = −J3x,sz,s + J6y
2
,s + J6x

2
,s − J5y,sz,s
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The matrix operator K is

K = K0 + (Ks + dnKs0)
∂

∂s
+ Kss

∂2

∂s∂s

where

K0(1, 1) = −1 + dn(J2x
2
,s + J2z

2
,s − J3y,sz,s − J1y,sx,s)

K0(1, 2) = dn(−J1y2,s − J1z2,s + J2y,sx,s + J3z,sx,s)

K0(2, 1) = dn(J4z
2
,s + J4x

2
,s − J2y,sx,s − J5z,sy,s)

K0(2, 2) = −1 + dn(J5x,sz,s − J2y2,s − J2z2,s + J4y,sx,s)

K0(3, 1) = dn(J5x
2
,s + J5z

2
,s − J6y,sz,s − J3x,sy,s)

K0(3, 2) = dn(−J3z2,s − J3y2,s + J6z,sx,s + J5x,sy,s)

K0(1, 3) = 0, K0(2, 3) = 0, K0(3, 3) = 0,

Ks =
1

ω2


−p,s − 2γx,sx,ss −γ(x,sy,ss + x,ssy,s) −γ(x,sz,ss + x,ssz,s)

−γ(x,sy,ss + x,ssy,s) −p,s − 2γy,sy,ss −γ(y,sz,ss + y,ssz,s)

−γ(x,sz,ss + x,ssz,s) −γ(y,sz,ss + y,ssz,s) −p,s − 2γz,sz,ss


Ks0(1, 1) = 2J2xx,s + J3yz,s − J1y,sx+ J2yy,s

Ks0(1, 2) = −2J1yy,s − J1xx,s + J2x,sy − J3xz,s
Ks0(1, 3) = J3yx,s − 2J1yz,s − J3y,sx+ 2J2xz,s

Ks0(2, 1) = −J2y,sx+ J4yy,s + 2J4xx,s + J5yz,s

Ks0(2, 2) = −J2xx,s + J4yx,s − J5z,sx− 2J2yy,s

Ks0(2, 3) = 2J4xz,s − J5xy,s + J5yx,s − 2J2z,sy

Ks0(3, 1) = −J3xy,s + J5yy,s + 2J5x,sx+ J6yz,s

Ks0(3, 2) = −J3xx,s − J6xz,s − 2J3y,sy + J5yx,s

Ks0(3, 3) = 2J3yz,s + 2J5xz,s − 2J6y,sx+ J6xy,s
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Kss =
1

ω2


−γx2,s − p −γx,sy,s −γx,sz,s
−γx,sy,s −γy2,s − p −γy,sz,s
−γx,sz,s −γy,sz,s −γz2,s − p


Finally, Gd and Kd are given by

Gd =
1

m


dxd −2m 0

2m 2dxd 0

0 0 dxd


Kd = Kd0 + Kds

∂

∂s

where

Kd0 =
1

m


−m −dxd 0

2dxd −m 0

0 0 0



Kds =
1

mω2


−γx2,s − p −γx,sy,s −γx,sz,s
−γx,sy,s −γy2,s − p −γy,sz,s
−γx,sz,s −γy,sz,s −γz2,s − p


∣∣∣∣∣∣∣∣
s=0



Appendix C
C.1 Admissible Functions

Consider the constant tension cable equation

pdu,ss = u,tt (C.1)

subjected to the boundary conditions

u(l, t) = 0 and pdu,s(0, t) = mu,tt(0, t) (C.2)

The assumed solution

u = sin

(
β
l − s
l
eiαt
)

(C.3)

yields a frequency equation

cosβ = m
β

l
sinβ (C.4)

with an infinite number of solutions βi. The admissible functions used are

θj(s) = sin

(
βj
l − s
l

)
(C.5)



Appendix D
D.1 Sensitivity of elastic parameter and drag coefficient

of the cable

The steady state solutions and their stability are relatively insensitive [1] to the elas-

tic parameter except for high rotational frequencies and large radius of the end mass.

Hence, the elastic parameter γ is assumed to be constant throughout the analysis. The

drag coefficient of the end mass is assumed to be a constant fraction f of the cable drag

xd

Figure D.1. Sensitivity of the radius of the end mass xd to the ratio f
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for the previous analysis. In Figs. 3.3 and 4.2, the dark curves represent the minimum

drag coefficient of the cable for the ratio f = 1 and the light curves represent the ratio

f = 2. In general, The minimum cable drag required reduces as f is increased for both

uniqueness and stability curves. The nature of the solutions, however, did not change by

changing f . Figure D.1 shows the radius of the end mass for ω < 3 for different values

of f . As the ratio f is increased, the radius of the end mass decreased for the lower

angular velocities and is a choice for designing for low end mass radius.
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