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Identification of an Industrial Process by Numerical
Inversion of the Laplace Transform

ASOK RAY

Abstract—A practical application of a novel parameter identification
technique for industrial process control systems is presented. The solu-
tion algorithm is based on numerical inversion of the Laplace Trans-
form, as proposed by Bellman, et al. Its application with the aid of a
minicomputer (or a desk calculator) is fairly easy and fast. Using this
method, process gain and time-constants of an electric furnace with on-
off control are evaluated. Results of an experimental study are pre-
sented to validate the theoretical predictions. This identification tech-
nique is suitable for a wide range of industrial processes, and it can be
applied to direct digital control systems.

NOMENCLATURE
a,a Constant parameters for process.
b,b' Constant parameters for process.
Co, C;  Initial conditions for process differential equations.
F Constant parameter for process.
f Forcing function.
N Order of Legendre-Gauss quadrature formula.
Py Legendre polynomial of order V.
Py* Shifted Legendre polynomial of order V.
s Laplace transform variable.
T,,T," Furnace time-constants.
T, Thermowell and thermocouple time-constant.
t Time.
t; Prescribed instants of time.
w; Christoffel weights.
X; Roots of shifted Legendre polynomials.
B Derivative coefficient.
€ Weighted mean square error.
® Laplace transform of temperature 6.
d Estimated value of ® from experimental data.
0 Temperature.
0. Temperature set point.
Ty Dead time.
2 Amplitude of oscillations of temperature around the
set point.
INTRODUCTION

ATISFACTORY controller design for industrial processes
often requires accurate parameter identification from ex-
perimental data. For multiple capacitance processes, these
parameters are usually process gain, dead time, and dominant
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time-constants. Existingidentification methods [1]-[4] may not
be readily adaptable in many industrial systems because of
computer size and speed requirements. On the other hand,
graphical and other simpler techniques [5] do not provide suf-
ficient accuracy. This paper presents practical applications of
an analytical technique for identifying essential parameters
from experimental data. Although the algorithm is based on
advanced mathematical principles [6], [7], the required com-
putation with the aid of a minicomputer (or a desk calculator)
is fairly easy and fast. This identification technique is also ap-
plicable for on-line computer control for rapidly changing proc-
esses [7].

In the following sections, mathematical description and
experimental verification of the method are presented. Design
of an improved compensator for a simple temperature control
process is given to illustrate how the method is applied.

MATHEMATICAL DESCRIPTION

The algorithm is based on numerical inversion of the
Laplace transform, as formulated by Bellman et al. [6], [7],
and has been extensively reported in literature [8] and applied
in many diverse fields [9]-[11]. However, its application to
industrial process parameter identification has apparently not
been attempted before.

The algorithm applies to finite-dimensional linear time-
invariant systems [6]. The mathematical steps will be derived
for a two-dimensional case for illustrative purposes, and there
is no loss of generality.

Let a process with two capacitances and no dead time be
expressed in differential equation form, following the notation
of Bellman et al. [6], [7] as

g +ab + bo = f(t) (1)
with initial conditons 6(0) = C; assumed known, and é(O) =C

unknown.
Laplace transform of (1) yields

F(S)+ (S +H)C0 +C1

o6) = s2+as+b @)
where
a(s) =/m 0(t)exp (—st)dt, ¢ >0. 3)
0
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Substituting # = — In x, (3) may be expressed as

O(s) =/1 0(—In x)xs—1 dx, 4)
0

The novelty of the method lies in approximating the inte-
gral with Legendre-Gauss quadrature formula of order V. In
the interval [0, 1], it has the form

N
O(s) 2= D) wb(t)x; 1, (5)
i=1

where x; are roots of the shifted Legendre polynomial
Py *(x) = Py(1—2x); w; are corresponding Christoffel weights;
and 0(z;) are observed values of the process output () at in-
stants #; where ¢; = —In x;. The values of x;, w;, and ¢; are
available in tabular form [6] for N =3,4, ..., 15.

Equation (5) allows determination of the approximate
Laplace transform of 6() by observing the process at specified
time intervals. Let this approximate Laplace transform be

—

[ X :
= s(¥(s) - Co)?
s=1

N
— D $(sB(s) — Co)(s)
s=1

2
A
-

S(sP(s) — Cp)
TG 7

2

- E (s2(s) — Co)

s=1

-
(s®(s) — Cp)?

M=

1

8

N N
2, (U= Coppt) B (@)
A= s=1 =
N N
D, (s3(s) — Co) 21 (s)
s=1 8=

fb(S))/S

uMz

N
D, (59(s) = Co)fs

designated by ®(s). It is important to note that ®(s) is not
identically equal to ©(s), the exact Laplace transform of the
process output 8(¢) given by (2).

The main task in modeling the process is to choose param-
eters @ and b that make ©(s) as close to ®(s) as possible. To
accomplish this, mean square error between ©(s) and d(s) is
minimized. However, for computational convenience a
weighted mean square error € is considered.

N
=D [@s) — O@))(s2 +as + b)] 2. (6)
s=1

N N N =
D) (%) — Co)b(s) — ) (sb(s) — Co) — 9, ((s) — Co)/s
s=1 s=1 s=1
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Substituting (2) yields
N
=) [ +as +b)p(s) — (F(s) + Cos + C1 +aCo)] 2
s=1

(™)

The problem is restricted at this stage to step inputs only. Let
the step magnitude be £, an unknown constant. Hence, F(s) =
FYs. € is minimized over the four variables g, b, Cy, and Fonly
if the following relationships are satisfied:

06 0€ 0  0€

S o (®)
da d9b 0oC,; OF

Solution of (8) and (7) yields the following relationship:
V=AU )

where ¥ and U are column vectors, and 4 is a square matrix
defined as

N N
=3 () — 2 @)
s=1 s=1
N
_N —E 1/s
s=1

N N
_2 1/s _E 1/s2
s=1 s=1

The matrix 4 has, in general, an inverse [6]; hence, U can be
found easily from the above equation, yielding values for a, b,
Cy,and F.

MODELING OF AN ELECTRIC FURNACE

The technique described above is used to identify param-
eters of a small electric furnace regulated by an on-off control-
ler. The furnace is resistance-heated and is typical of those
used for heat treatment of metals [12], [13]. To evaluate the
unknown parameters, the temperature transients were ob-
tained experimentally and are given by curves 1 to 8 in Figs. 1
and 2.
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Fig. 2. Time response of furnace temperature in the passive mode.

Uncompensated on-off controlled processes exhibit cyclic
operation. To minimize the amplitude of oscillations around a
set point, a compensator was designed on the basis of time-
constants associated with heating (active) and cooling (passive)
modes. The active time-constant is different (usually smaller)
from the passive time-constant. As the heat source is turned
off, the furnace is cooled by radiation loss from its external

Time response of furnace temperature in the active mode.

surface. In the narrow operating range around a certain set
point, the nonlinear cooling process is approximated by its
locally linearized characteristics. Thus, the passive time-
constant is strongly dependent on initial temperature.

In earlier studies [14]-[16], the temperature transients
have been represented by a single time-constant. If this process
could be described by a single time-constant, the response
would appear as a sawtooth wave, rather than smoothly oscil-
lating as commonly observed. Thus, the presence of at least
one more significant time-constant cannot be ignored.

In the following analysis, the second time-constant is as-
sumed mode-independent. Physically, this time-constant is
related to the time-lag effect of thermowell and thermocouple
and is unaffected by the laws of heating and cooling.

There is practically no dead time associated with cooling
[13], [14]. In active mode, the dead time 74 was evaluated
from experimental response (Fig. 1) and was found to be
negligible because the furnace under consideration has a small
heating chamber. In general, 74 is not negligible and must be
determined separately. Further analytical work is needed to
apply this technique for identification of dead time, which is
beyond the scope of the present discussion.

The differential equations governing the furnace tempera-
ture are

§+ad +bo=F, in the active mode (10)
and
6+a'0+b'0=0, inthe passive mode (11)

where F, a, b, @', b', and initial slope 6(0) = C; are unknown.
F is dependent on the rate of heat input, assumed constant in
the active mode. The process gain and time-constants are
evaluated from F, a, b, @', and b'.

T; and T, are time-constants in the active mode, and T’
and 7y’ in the passive mode. The dominant time-constants T}
and 7' are mode-dependent; the passive time-constant 74 is a
function of initial temperature Cy. The nondominant param-
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eters Ty and Ty’ due to thermowell and thermocouple are very
nearly equal.

Active mode parameters are evaluated from (9) for N = 15.
®(s) were calculated from the experimental data (Fig. 1) using
(5). In the passive mode, the forcing function ' = 0 reduces
the A matrix dimension to three, and in this case (9) was
solved for NV = 9 at several operating points (Fig. 2). The re-
sults are summarized below:

Tl =143 mln, Tzl = T2 = 5.2 min
Co (degC) 920 820 720 620 520 420 320

Ty'(min) 147 150 155 170 200 240 300.
Final steady-state value of the furnace temperature rise above

ambient (if allowed to attain) was determined to be 1064°C.

VERIFICATION OF RESULTS

To verify the accuracy of the parameters estimated, the
process was simulated on an analog computer. The impulse
response of the simulated process is

K
(Ty1s+ 1)(Tys + 1)

in the active mode

Gp(s) = Cy

(Ty's + 1)(Tps + 1)

in the passive mode,

and dead time is assumed to be zero. Transition from one
mode to another was simulated by a comparator and a relay.
Amplitudes of steady-state oscillation at several set points
were measured and compared with those obtained from fur-
nace temperature records. Fig. 3 shows that the oscillation
amplitude £ obtained from simulation results agrees closely
with experimental data at higher values of set point 8, and
gradually diverges at lower values of 6,.. This is explained by
the fact that ¢ increases monotonically with decreasing 6.,
causing relatively larger errors in the linear representation of
the nonlinear cooling process. It is possible to divide the range
of oscillations (at a particular set point 6,) into piecewise
linear zones and obtain a better representation of the non-
linear process. However, in this particular application it is not
necessary because the modeling error is not large (see Fig. 3).

COMPENSATOR DESIGN

Derivative action was selected for compensator design [15].
Intuitively, anticipatory cut-in and cut-off of power would
tend to minimize the amplitude of oscillations around the set
point. On the basis of the simulated process, the amplitude of
oscillations £ is plotted for different values of derivative time
B and set point 0, in Fig. 4. This family of design curves en-
ables selection of f to achieve a specified &. However, any
severe restrictions on £ trade off with possible noise and high
frequency oscillations.

10
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CONCLUSIONS

A practical application of a relatively unfamiliar param-
eter identification technique is presented. The technique has
been used to evaluate process gain and time-constants of an
electric furnace. The results were experimentally verified and
used for the design of an improved compensator.

The method of analysis is particularly suitable for processes
with smooth and monotonic transients and may be used for
parameter identification of a wide range of industrial applica-
tions. Due to its simplicity and speed, this method has poten-
tial for the implementation of control algorithms on small
computers in direct digital applications.
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