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Approximation of Fundamental
Equations for Finite-
Dimensional Modeling of
Thermo-Fluid Processes

A. Ray?

Nomenclature

A = area

C, = specific heat at constant pressure

C, = specific heat at constant volume

¢cs = control surface

cv = control volume

e = sum of specific internal energy, kinetic energy and potential en-
ergy ,

g = acceleration due to gravity

h = specific enthalpy '
= unit normal vector

p = pressure

Q = transferable heat

T = absolute temperature

t =time

u = specific internal energy

V = volume

v = velocity

W = shaft work

z = gravitational head

1 = subscript for inlet conditions

2 = subscript for exit conditions

a = coefficient of thermal expansion [=(1/p)(8p/3T),}

B = isothermal compressibility [(1/p)(3p/3p)T]

§ = arbitrary parameter

€ = arbitrary parameter

¢ = partial derivative (6p/dh),

¢, = partial derivative (8p/dp)s

p = density

Finite-dimensional lumped models of thermo-fluid processes are
usually formulated from fundamental conservation equations. In
dynamié modeling and system simulation, internal energy is often
replaced by enthalpy in the energy conservation equation without
considering the work term (p/p). For compressible fluids, this leads
to a significant dynamic error, although the steady-state results are
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unchanged. A more exact formulation, presented here, can be easily
implemented. A numerical example is given for a typical case.

Introduction

In many industrial systems, modeling and simulation of thermo-
fluid processes are essential for dynamic analysis and controller de-
sign. Generally, these processes are described by nonlinear partial
differential equations with space and time as independent variables.
The finite difference method is one of the several ways of numerically
solving these equations [1-3], in which case, an infinite-dimensional

_distributed process is approximated by a finite-dimensional lumped
- model consisting of a set of ordinary differential equations with time

as the independent variable. These models can be easily arranged in
state-space form for digital simulation and controller design.
Dynamic equations are usually derived from fundamental princi-
ples of mass, momentum and energy conservation [4, 5]. In power
plant modeling and simulation, there are several instances where
internal energy in the energy conservation equation has been replaced

by enthalpy without considering the work term (p/p) [6-9]. For rel- |
atively incompressible fluids, such as subcooled water, this approxi-

mation is justified because the relation Cp, — C, = Ta?/(8p) implies

Cp = C, [10]. But for compressible fluids, such as superheated steam, .

the difference is significant. Transient performance prediction and
controller design of power generation systems [7-9, 11] made on the
basis of this approximation may yield misleading conclusions. This
technical note shows how a significant dynamic error can result.

A more exact representation can be easily implemented for dynamic
modeling and simulation. A numerical example is given for quanti-
tative estimation of dynamic error in the case of steam at throttle
conditions typical of a large generating unit.

Analysis
The fundamental equations for mass and energy conservation in
integral form (using Cartesian tensor notation) [4, 5] are

0=%f£ufpdV+prv;ngdA
Q—W=§J‘J:ufepdv+J:‘f(e+§)pv;n;dA (2)

where Q = dQ/dt, W = dW/dt, and operator d signifies an inexact
differential [10].

Kinetic and gravitational energies are usually small compared to
internal energy. Therefore,

1)

3

v2
e=ut+—+gz=u
2
Assuming uniform flow over any cross-section (i.e., one-dimensional
flow field) and using a lumped parameter approximation, equations
(1), (2), and (3) yield
d .
m (V) = p11A) — p2v242

=F1"F2 (4)
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d
Z(UPV) = pw1Arhy = povaAcha + Q@ — W

=Fihy~Foha + Q- W (5)

where u and p are averaged over the entire control volume. Equation
(5) is truly satisfied only in infinitesimally small control volumes for
thermodynamically simple substances [4, 10]. It is assumed to be an
approximation to the present conditions of averaging within the entire
control volume. For a fixed control volume and no shaft work,

¢

d
;’tl = (Fy - Fp)/V (6)

dii(up) = (Fihy = Fahy + QV @

In some earlier publications [6-9], u in the dynamic term is simply
replaced by h and equation (7) is expressed as

d

7 B#) = (Fuhy = Fohy + Q)Y (7a)
Henceforth, all equations with suffix “a” follow equation (7a). The
purpose of this note is to illustrate the differences between the results
obtained from equations (7) and (7a).

Taking time derivatives of both sides in the thermodynamic state

equation relating h, u and p,

d d dp
— (hp) = — + =
dt he) di @) di

dh dp

d .
=—(up) + ¢p— + ¢, —
2 (up) + ¢ % ¢, at ®

where ¢, £ (3p/oh), and 6, * (3p/3p);.
Substituting equation (8) in equation (7) yields

d(hp) dh dp
= [Fihy = Fohy + Q)/V + ¢p — + ¢, —
dt [Fihy 2he + Q/ n 2 o 2t

which is rearranged with equation (6) as
'&"; = [Fy(hy~ k) — Folhy — h) + (F1—=F3) ¢, + Q)/[V(p — #n)]
" ' ©)

On the other hand, substituting equation (6) in equation (7a)
yields

o [Fy(hy — h) = Fy(hy = h) + Q1/(V)) (9a)

dt
Equations (9)-and (9a) yield the same steady-state results because

where p, h and p are in SI units.
The partial derivatives are

3
on= (—‘3) = 0.23236p = 12.353 kg/m?
3k,

op . )
= (=) =2.23236h - 4.5873 x 105 =
b (ap)h 45873 X 105 = 3.1196 X 105 J/kg

At steady state, equations (6) and (9) or (9a) yield

F[ =annd hl =h
Consider small step disturbances in F' 1and hy of 6 per unit and « per
unit, respectively, from the initial steady state. Thus at the instant
t=0%F,=(1+8)Fyand k) = (1 + ¢)h; and then dp/dt = ¢, dp/dt
+ ¢n dh/dt is evaluated from equations (6), (9) and (9a) as

dp ’ Fy
DAL= 5pg, + (1+ 8)ehan] 22 /(o -
& [80¢, + (1 + 8)ehgy] v /(p @n) (10)
in the present case and
dp F,
Do == [5pg, + (1+5 -2
% [6o¢p + (1 + 8)ch ) v /p (lqa)

in some earlier cases.

The relative error (1 — D,/D) in the initial value of dp/dt is eval-
uated as 1 — D,/D = ¢,,/p = 0.2323, that is the relative error is ap-
proximately 23 percent.

Conclusions

A significant dynamic error is introduced by replacing the internal
energy term in the energy conservation equation by enthalpy without
considering the work term (p/p)—a frequent approximation in
modeling and simulation of power generation systems. Transient
performance prediction and controller design made on the basis of
such models may yield misleading conclusions.

A more exact derivation, obtained from a lumped representation
of the mass and energy conservation equations, can be easily imple-
mented in dynamic modeling and simulation. A numerical example
for a typical case indicates an error at 23 percent.
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Numerical Example

To estimate the difference between equations (9) and (9a), consider
an adiabatic and thermodynamically homogeneous control volume
(ie, @ =0, hz = h and py = p) at typical throttle steam conditions:

P =1.6651 X 107 N/m? (2415 psia) and T = 510°C (950°F)

h =3.3168 X 106 J/kg (1426.4 Btu/lbm)
and p = 53.161e + 01 kg/m3 (3.31 Ibm/ft3)

A The thermodynamic state relationship in this range is obtained from
steam table data [12].

b = 6.6576 X 104 + (0.23236h — 4.5873 X 10) P
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