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ABSTRACT

A nonlinear dynamic model of a relief valve is for-
mulated in state-gpace form from fundamental princi-
ples of rigid-body motion and fluid dynamics. Model
parameters are calculated from steady-state character-
tstics and the physical dimensions of the valve.

The transient response of the nonlinear model (as well
as system eigemvalues and the frequency response of a
linearized model) is obtained by digital simulation.
Results indicate that the opening time of the valve

is linearly related to the dimensionless parameter
given by the ratio of orifice length to its radius.

The analysis provides design information and perform-
ance evaluation for fluid systems incorporating relief
valves. It is particularly suitable for relief

valves for liquids and it can be adapted for other
applications.

INTRODUCTION

A relief valve protects equipment against excessively
high pressure.!»3 It opens when vessel or pipeline
pressure exceeds the allowable maximum value, releasing
fluid to maintain pressure within design limits.

Hydraulic transients in relief valves are important in
fluid system design. If the initial delay in opening
the valve is comparable to the response time for fluid
flow, system dynamics will be influenced by the loca-
tion and characteristics of the valve. For example,
tube rupture in a heat exchanger (containing liquid on
the low-pressure side) may cause a pressure surge
lasting a few milliseconds, whereas the opening time
of the relief valve, on the low-pressure side, may be
tens of milliseconds.!? On the other hand, if the
frequency of excursions in the inlet pressure of the
valve matches its natural frequency, the valve may
oscillate and chatter excessively.

Although fluid systems are often designed on the
basis of steady-state valve performance,l:3 some in-
vestigators have recognized the influence of relief-
valve dynamics on the performance of high-pressure
fluid systems.®’12 To simulate relief-valve dynamics,
Fowler et al.® considered only. the mass-spring effect
in studying pressure surges in a heat exchanger. In
a similar study, Sumaria et al.!? included fluid in-
ertia effects in the valve orifice but did not arrive
at an explicit model of the valve.

In this paper, a nonlinear time-invariant deterministic
model of a relief valve is formulated in state-space
form. Dynamic equations are derived from fundamental
principles of rigid-body motion and fluid dynamics.6:10
A semiempirical steady-state model is developed; it
produces results that match the manufacturer's

data.3 Despite the empirical element in its design,
the model uses the basic principles of fluid

mechanics 2210

Although the model is formulated for a relief valve
for liquids, the approach can be adapted to other
fluids. For example, Liao's® steady-state model of a
relief-valve for vapor can be modified to incorporate
dynamic effects.
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The set of equations which form the mathematical
model is given in the Appendix. Numerical results
for the transient response of selected system vari-
ables were obtained from the nonlinear model using
CSMP-II17 on an IBM 370/158 computer. Eigenvalues
and frequency response of linearized system models
were generated from a FORTRAN version of the CSMP-
IIT model used as a subroutine in general-purpose
analytical programs.“>1l Using a load module, the
typical computer execution time for simulating the
transients for a period of 1 second was about 5 CPU
seconds on an IBM 370/158 (loading time excluded).

NOMENCLATURE
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Al:Effectlve valve dlSC area exposed to f1u1d
iqpressure PZ _‘ ; : 5

A% Max1mum value of effect1ve valve dlsc area

~Ao.0r1f1ce area

BlfBOdY force“j

as~Contr01 surface

ev Control volume

‘Cd'Dlscharge coeff1c1ent of valve

vfl*CoefflClent for v1scous damplng for mov1ng parts,

F Force. actlng on the entlre control surface excep

DESCRIPTION AND OPERATING PRINCIPLE

The relief valve considered in this analysis (see
Figure 1) is typical of those used in process and
power industries for liquid service. It is a con-
tinuous-action device which functions as a spring-
loaded pressure regulator. As the driving force
(fluid pressure) overcomes the spring force, the
valve starts to allow the liquid to escape. Further
increases in system pressure lift the valve disc
from its seat, and the flow rate increases. The flow
is diverted downwards by the cup-shaped disc, and its
direction is reversed. This creates reaction forces
that lift the disc further. The valve discharges to
atmospheric pressure.

ASSUMPTIONS

This study assumes that the infinite-dimensional
distributed-parameter process can be represented by
a finite-dimensional lumped-parameter model. This
approach has been experimentally verified in dynamic
modeling of electro-hydraulic servovalves.® Other
pertinent assumptions are as follows:

(1) The pressure drop in the vertical portion of the
valve orifice is caused by fluid inertia alone.

(2) The valve spring is 11near

(3) Coulomb friction in the mov1ng parts is
negligible.

(4) Changes in fluid density are negligible.

(5) The pressure difference between valve opening
and closing (hysteresis) is not significant.

The following parameters were evaluated and found to
be negligible:

(1) Pressure-drop caused by gravity inside the valve

(2) Frictional pressure drop in the vertical portion
of the valve orifice

(3) Fluid mass. inside the valve compared to the mass
of the moving parts.

DEVELOPMENT OF MODEL EQUATIONS

A valve schematic showing the fluid control volume
and moving parts is given in Figure 1. Conservation
of linear momentum®’!0 in Cartesian tensor notation
yields

5; % J’J’f(BiJi"i)pdV IJ‘J’ wgpd? + JJ u; g LdA
cv cSs (1)

On a lumped average basis, the z-components in (1)
for a homogeneous incompressible fluid can be
approximated as

) d
S, - (g+5)4 2 0= a—t—[w(zo +3)]

2 (uy +udW (2)
where mass flow rate W = pAl“l = pA2u2 The surface
forces 5, in the z-direction can be split into two
parts: the force exerted by the valve disc on the
fluid, and the z-component F, of the forces acting on
the entire control surface except the valve disc.

S, = -Mg+E) - fz - K (2 +2) + F, (3)

Substituting (3) in (2), and neglecting the term
Aozap (because Aozop << M) yields

LW v) ] = -M(g+5) - Fh- K (3 4a) +F, + (uyru)W (4)
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Steady-state model
The steady-state form of (4) is

Fz = Mg + Ks(zs+z) - (u1+ uz)W (5)

The left-hand part of the above equation depends on
line pressure Py and flow ¥, and an explicit analyti-
cal relationship is difficult to obtain. This problem
is circumvented by constructing a semiempirical rela-
tionship in which parameters are adjusted so that the
steady-state model results match the manufacturer's
data.3 This approach simplifies the model structure
and thus facilitates simulation of the overall fluid
system. It proceeds as follows:

Define a variable 4 (call it the effective area of
the valve disc) such that

PlA = Fz + (u1 +u3)W (6)
When the valve is about to open at the set value P*
of line pressure Pl’ Equation 5 reduces to

* =
P AO Kszs + Mg (7)
For steady-state conditions with valve 1lift z
(0 £ z < 3,) and normalized overpressure a (i.e.,
Py = (1+a)P*), Equations 5, 6, and 7 yield
= [4, +k 2/P*]/ (1+0a) (8)
At zero overpressure (a=0), the valve is closed
(i.e., 2=0) and 4 = 4,. A is a strictly monotonical-
VALVE
SPRING

ly increasing function of z, i.e., the effective area
of the valve disc increases as the valve rises. At
maximum overpressure a,, the valve is fully open
(z=2,) and the annular opening area for fluid flow
is equal to the orifice area,2 i.e., ZWPOZ = ﬂroz,
i.e., 2, =1r /2 In this state, 4 also attains its
maximum value and can be evaluated as

=, +xz /P*]/ (1+a) 9

Using (9) in (8), 4 is obtained in terms of normalized
valve lift (g = z/zm) and overpressure a.
(10)

= [(1+a))/(1+ra)]ed + [(1-8)/(1+a)]4,

For incompressible flow, the mass flow rate W is
approximated by the orifice equation®,”

W=y A E [2P*( Sk

q (11)

neglecting the gravity head of fluid since z,gp <<

P*(1+a). For the fully open condition (g = 1),
the maximum flow rate is
1
= * 2 2
. CdAO[ZP (l+am)p] (12)

The overpressure factor X 1,3 can be found from (11)
and (12): p

X
p

The manufacturer provides steady-state data (Table I)
in the form of the overpressure factor Kp as a func-

(13)

= e[(1+a)/(1+a)]?
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Figure 1 - Simplified valve schematic.

VELOCITY U,
AREA A,
The numbers 1,

2, 3

refer to the pipe carrying the fluid, the valve disc, and
the relief outlet to atmospheric pressure, respectively.
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Table 1

Steady-state valve characteristics

tion of normalized overpressure a.® Using these data
in Equation 13, £ is obtained as a single-valued
function of o, which is substituted in (10) to obtain
effective valve area 4 as a function of normalized
valve lift. A (&) is approximated by a third-order
polynomial in the range of interest.

3
A= 1
=0

Z
a, & (14)

The coefficients a., a,, a,, and a, should be evaluat-

ed from the manufacturér's data. ,5

Dynamic equations

The dynamics of the valve is given by

Mz+g) + fa + K (2 +2) = P)A (15)
Equation 15 is combined with Equation 7 to give

. s e

z (PZA P AO Iz Ksz),/M (16)

The pressure drop from location '1' to location '3'
in Figure 1 is primarily caused by flow resistance
and inertia. The stagnation pressures at locations
'1' and '2' are almost equal in the steady state but
may differ significantly under transient conditions
because of fluid inertia in the orifice. Then, the
pPressure drop from location '2' to location '3' can
be treated as the effect of flow resistance only
and, in a form similar to (11), can be expressed as
- %
W = CdAo g(ZPzp) (17)
The distributed fluid-flow process has been approxi-
mated by a lumped model in which the pressure drop
from '1' to '3' has been split into two parts: the
transient component between 'l' and '2' and the
steady-state component between '2' and '3'.

Combining (6) and (15) with (4), and setting
P1 = (1+a)P* yields

d

ez, +2)] = [P*(1+a) - P, 1A (18)
Substituting (17) in (18), setting & = 2/3 , and
rearranging yields m
dap, [P*(1+0) - Pz]Azm
5 = 2 - - (=2 +22)Pzz/[z(z +2)]

(20/P,)%C A © o

© (19)

Equations 16 and 19 can be arranged in state-space

form with z, z, and P, as the state variables. The
model equations and physical constraints are given

in the appendix.
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SIMULATION RESULTS AND DISCUSSION

The physical dimensions and operating conditions for
the relief valve are given in Table 2. The simula-
tion results are presented in Figures 2 to 4. The
transient responses of the model were observed for a
10-percent step increase in valve inlet pressure from
a steady-state condition P* = 100 psig (0.6894 x
108N/m?g) . Initial (state variable) conditions were
2(0) =0 ;

2(0) =0 P2(O) = p*

The nonlinear model was linearized at eQuilibrium
condition corresponding to 10-percent overpressure.
Frequency responses were obtained for this linear
model.

Figure 2 shows the dynamics of valve lift caused by
a 10-percent step increase in overpressure in the
fluid line. After an initial delay, the position of
the valve stem approaches a steady-state value asymp-
totically. The dynamic response of the valve depends
on physical dimensions. Figure 3 shows the (almost)
linear dependence of the opening time of the valve
on the dimensionless number zo/ro, the ratio of
orifice length to orifice radius; the opening time is
defined as the time required for the valve to reach
95 percent of its final steady-state position follow-
ing a step disturbance of the pressure in the fluid
line. Hence, it is possible to estimate the opening
time of a valve from the known data for another valve
of similar type.

Table 2

Valve parameters and physical dimensions
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Figure 2 - Dynamic response of valve lift

The system matrix and eigenvalues for the linearized
model are given in Table 3. The real negative eigen-
value (which is approximately 11 second™!) causes the
sluggish valve response (see Figure 2). The pair of
complex eigenvalues indicates the possibility of
high-frequency oscillations. The frequency response
of normalized valve 1ift with respect to normalized
overpressure is shown in Figure 4. The corner fre-
quency in the vicinity of 10 radians per second is
related to fluid inertia in the orifice, and the pair
of corner frequencies at approximately 800 radians
per second results from the mass-spring combination.
Following a pressure surge, acoustic waves and
periodic pressure variations are expected at the valve
inlet. If the frequency of pressure waves is close
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Time to reach 95% full open position (seconds)

0.00 i FE . :
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Figure 3 -~ Parametric evaluation of relief
valve response
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Figure 4 - Frequency response for normalized valve
1ift versus normalized overpressure

Table 3

System matrix and eigenvalues
(model linearized at equilibrium point
with 10-percent overpressure)

System matrix

B ' ;’; e : Za‘ ’
L@ [oo 10 00 ]
& [-4439x10% 0.0 13.03
 §%{32)5";_2.74;x 100 -4.537x10% -1.681x10%|

( ‘Sy§tém;eigenva1ues (second™!y

 Real part

Imagiﬁafy part

. -11.675 : 0.0

~78.230 793.8
-78.230 -793.8

to the natural frequency of the valve, the valve may
experience excessive oscillations and prolonged
chattering.

CONCLUSIONS

A nonlinear dynamic model of a relief valve has been
formulated in state-space form from fundamental prin-
ciples of rigid-body motion and fluid dynamics. The
model provides useful information for transient
analysis and design of fluid systems incorporating
relief valves.

Simulation results indicate that fluid inertia in the
valve orifice produces a damping effect on valve
motion resulting in an initial delay. The opening
time of the valve is approximately proportional to
the ratio of orifice length to radius. The mass-
spring combination of moving parts may generate
oscillations and chattering as a result of high-
frequency pressure variations at the inlet of the
valve.
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The analytical technique presented here is particular-

ly suited for dynamic modeling of relief valves for
liquids, and it can be adapted for other applica-
tions as well.
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Appendix

Summary of model equations

The differential equations for the selected state
variables z, z, and PZ’ are:

d = -
F7(8) = (A-1)
é%{é) = (PA - P - fz - Kz) /M (A-2)
[P*(1+a)-P Jaz
2 2T (5 +22)P)3
g (20/P)) "Cy 4y i
F2(85) (A-3)
[(z, +2r]

where T = max(ézm,z) and § is a parameter chosen by
the user (a typical value of 6 is 0.001).

Equation A-3 is a modified form of (21), where the T
factor is introduced to avoid division by zero when
the valve 1lift is zero. Physically, an infinitely
large pressure derivative is only possible for a
truly incompressible fluid. No real fluid is abso-
lutely incompressible, and the I' factor circumvents
the numerical difficulties.

Supporting algebraic equations are:

A =Kz 441/ (1va) (A-4)

a, =r/2 (A-5)

4, = ﬂr; (A-6)
3 )

4 = jio aj(z/zm)J (A-7)

The coefficients aj were evaluated from manufacturers'
data.3

4 = Ao
a, = 1.197924 - 1.102884
1 m 0
a, = 0.084114 + 0.060534
2 m o
az = -0.282084 + 0.049764
m o

Physical constraints are
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