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Fault Detection and Isolation in a Nuclear Reactor

Asok Ray,* Mukund Desai, and John Deyst}
The Charles Stark Draper Laboratory, Inc., Cambridge, Massachusetts

A fault detection and identification methodology has been developed for sensor and plant component
validation, with special emphasis on applications to nuclear powerplants. The methodology is particularly
suitable for on-line fault diagnostics and does not rely on detailed knowledge of sensor and plant noise statistics.
The algorithm has been computer coded for real-time applications and validated by on-line demonstration in an

operating nuclear reactor.

Introduction

VARIOUS methods for fault detection and identification
(FDI) of sensors have been reported in the literature.!
However, current practice in the nuclear industry is restricted
to a few rather rudimentary techniques such as like-sensor
comparisons, limit checking, auctioneering, etc. Although
these techniques generally serve to improve system safety,
availability, and operability, some limitations, such as the
inability to identify gradual drifts and to detect common
mode failures, significantly curtail their effectiveness. (If two
or more elements fail identically, due to a common cause, the
failure is called common mode.)

The above limitations can often be circumvented with the
aid of advanced computer-aided diagnostic techniques that
have been developed for aerospace systems. In addition to
improvement of plant availability and operability, these
techniques promise to aid plant operators in making valid and
timely decisions, thereby enhancing plant safety.

The FDI methodology reported in this paper is developed
on the basis of the *‘parity space’’ concept,® which takes into
account inconsistencies among all data sources. Any
malfunctioning sensors are isolated by sequential checking
until a relative consistency among the remaining (normal)
sensors is achieved. This methodology does not require a
detailed knowledge of sensor and plant noise statistics. Error
bounds that are allowed for normal operation of the sensors
are sufficient for making decisions.

Real-time computer codes have been developed for
detection and identification of failed sensors and plant
components. As a proof of concept, these codes were verified
by demonstration of on-line detection and identification of
sensor failures in the 5 MW(t) nuclear reactor presently in
operation at MIT, Cambridge, Mass.

Background of the Fault Detection
and Isolation Methodology

Various FDI methods in dyhamical systems'* exploit
several forms of available redundant data. Redundancy can
be broadly classified into two groups:

1) Directly redundant data when two or more Sensors
measure the same variable.

2) Analytically redundant data when additional evaluation
of the variable is indirectly available from the physical
relationships among other directly or indirectly measured
variables.

Received Aug. 20, 1981; revision received Dec. 22, 1981. Copyright
© American Institute of Aeronautics and Astronautics, Inc., 1981.
All rights reserved.

*Staff Member.

1Staff Member. Member AIAA.

tDivision Leader. Member AIAA.

For example, two sensors may be available for
measurement of coolant temperature in a nuclear reactor, and
a mathematical model of the thermal-hydraulic process in the
reactor may be formulated to obtain analytically redundant
data. Thus installation of an additional temperature sensor
solely for the purpose of fault isolation may be avoided.

Most of the reported FDI methods* are formulated on the
basis of certain statistical assumptions, such as Gaussian
distribution of noise, and may not be suitable for many in-
dustrial applications where the statistical characteristics of
sensor and plant component noise may not follow any specific
pattern and are known only to the extent of the manufac-
turer’s specifications. Usually the available information on
tolerances due to calibration, nonlinearity, scale factors, etc.,
is sufficient to quantify a symmetric error bound; i.e., if the
sensor output error does not exceed the bound, the device is
assumed to be functioning normally.

The FDI methodology reported in this paper systematically
seeks the largest consistent subset from a set of
measurements. The estimate of the measured variable is
obtained from the consistent subset and the inconsistent
measurements, if any, are isolated. For example, consistency
between the outputs of two sensors measuring the same
variable implies that the outputs differ by less than the sum of
their error bounds and conversely. However, as the number of
measurements increases, the checking of consistency in all
possible combinations [equal to {(f- 1)/2 for all { measure-
ments] and the attendant task of bookkeeping for the con-
sistent and inconsistent measurements for the purpose of fault
isolation becomes cumbersome. An alternative method,
which is systematic and computationally more efficient for
the great majority of situations, has been developed on the
basis of the “‘parity-space’’ concept.’ A preliminary version
of this methodology was also applied to the simulation of
signal validation in powerplants.?

The development of the FDI methodology, formulation of
a real-time algorithm, and its limitations are described in
Appendix A, along with a simple geometric representation.

Application of the FDI Methodology
to a Nuclear Reactor

On-line verification of the FDI methodology was
demonstrated in the 5 MW(t) nuclear reactor, MITR-II,
presently in operation at MIT. A detailed description of the
reactor configuration and instrumentation is given in the
MITR-II manual.® For illustration of the FDI methodology
as limited to the primary coolant system, a simplified diagram
of the process and instrumentation is given in Fig. 1.

The MITR-II6 is heavy-water reflected and light-water
cooled and moderated and functions as a research and
educational facility at MIT. The reactor power level is con-
trolled by one regulating rod and a shim blade assembly that



3

80 RAY, DESAI, AND DEYST

can be moved up and down separately by electrical motors.
The shim blade assembly consists of six boron-impregnated
stainless steel plates. Under scram conditions, both the rod
and shim blade assembly can be dropped within a fraction of
a second.

Heat generated by the fission of U is removed from the
core by the primary light-water cooling system. The heated
water leaving the reactor core is force-circulated by elec-
trically driven pumps through a bank of heat exchangers and
back to the reactor inlet plenum. The heat exchangers transfer
heat from the primary coolant to the secondary light-water
coolant which; in turn, dissipates heat to the atmosphere by
means of two forced-air-circulated cooling towers that
operate in parallel.

The nuclear instrumentation under consideration consists
of three neutron flux sensors and a gamma-ray sensor that
measures neutron power from radioactivity of the primary
coolant water. All four sensors are linear over the power
range. Four measurements of primary coolant flow are ob-
tained from the pressure differences across orifices and
restrictions. The primary coolant flow in this reactor is
practically constant under all operating conditions. Primary
coolant temperatures are measured as follows: one sensor for
hot-leg temperature, one sensor for cold-leg temperature, and
one sensor for temperature difference between the legs. In
effect, two sources of information for temperature difference
are available from direct measurements. These 11 sensors are
hard-wired to a MINC-11 minicomputer through analog-
digital (A/D) converters and appropriate signal conditioners.
To eliminate the effects of any malfunctioning in the fault
diagnostic equipment on the reactor operation, the crucial
sensors are buffered by signal isolators.

Figure 1 shows that sufficient direct redundancies exist for
fault isolation and measurement validation for neutron power
and primary coolant flow, but there is dual redundancy only
for the hot-leg to cold-leg temperature difference, which is
inadequate for isolation of a fault. Therefore, a third
measurement for temperature difference was analytically
obtained from a thermal-hydraulic model of the primary
coolant system. Failure of one of the two temperature dif-
ference sensors can thus be isolated from the consistency
between the good sensor and the analytic measurement. On
the other hand, an inconsistency of the analytic measurement
with two mutually consistent sensors implies possible
malfunctioning of some plant components. The actual cause
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of inconsistency can usually be resolved with the aid of other
additional information.

The thermal-hydraulic model of the primary coolant system
is formulated from the analytic relationship among different
process variables that include validated measurements of
neutron power and primary coolant flow obtained from the
direct measurements. Other variables used in the model are
secondary coolant and ambient temperatures which are
presently not hard-wired to the computer but entered as input
data. The analytic measurement for temperature difference
was validated with appropriate sensor outputs for transient
conditions following movements of the shim blade assembly,
as well as for various steady-state levels within the normal
operating range. The accuracy of the analytical measurement
was found to be comparable to that of the sensors, thus
justifying its use together with two direct measurements for
the purpose of fault isolation and measurement validation.

Tests for verifying the FDI methodology were conducted
for both steady-state and transient conditions. Symmetric
error bounds for the measurements where chosen on the basis
of process noise, spatial location of sensors, and tolerances
due to scale factor, nonlinearities, calibration, etc. These
error bounds were relaxed to some extent under transient
operations to account for possible dynamic errors in the
measurements. Nominal values and error bounds for neutron
power, primary coolant flow, and temperature difference
measurements are listed in Table 1.

Figure 2 shows a simplified diagram illustrating the
execution of the FDI methodology in the MITR-II. Inputs to
the computer program are the error bounds and the process
variables such as secondary coolant and ambient temperatures
which are not sensed at every sampling period. The error
bounds need not be fixed. If necessary, they can be
dynamically adjusted in the computer algorithm.

No false alarms were reported for continuous operation
during the weekdays, extended over a period of several
months. (MITR-II is started and shut down every week.) To
demonstrate the fault isolation capabilities of this
methodology, failures corresponding to errors in excess of the
specified error were simulated while the reactor was in
operation (with prior permission from the reactor safety
committee). Typical cases are reported below.

1) Faulty sensor calibration. In a given measurement, bias
was introduced in the conversion process from volts to
engineering units. The alarm signal was received for the
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Fig. 1 Simplified schematic diagram for the nuclear reactor.
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Table 1 Nominal values and error bounds of the process variables

Nominal Error bound
Process variable value Steady-state Transient
Neutron power, MW 4.8 0.25 0.5
Primary coolant 143.0 10.0 10.0
flow, kg/s . . .
Hot-leg to cold- 7.8 0.5 0.8

leg temperature
difference, °C

specific measurement and the validated estimate was
automatically obtained from the remaining measurements.

2) Gradual drift. Drift was introduced in a given sensor
output in the form of a ramp function. The alarm signal was
received when the drift exceeded the permissible error bounds.

3) Degraded instrumentation. Instead of injecting random
noise into the sensor outputs, the error bounds for the
respective process variables were appropriately reduced. This
action resulted in alarms signifying the simulation of
erroneous instrumentation.

4) Failed sensor. Some of the sensors were disconnected
from the data acquisition system. Immediately the respective
sensors were identified as faulty.

5) Abnormal operation. As a means of extracting radiation
for experiments, the MITR-II contains a port through the
D, O reflector. When this port is opened, due to changes in
neutron distribution, scale factor for one of the neutron flux
sensors was significantly altered, thus causing an alarm for
faults. In this case, a validated estimate of neutron power was
calculated as an average of the remaining three sensor out-
puts. The operator is thus alerted to the possibility that the
port may have inadvertently been left open.

Summary and Conclusions

This paper presents a novel methodology for on-line fault
detection and isolation (FDI) using all available information
for direct and analytic sources. The methodology provides a
fast and versatile algorithm that can be implemented in real
time by a minicomputer. Only a minimal knowledge of sensor
and plant noise statistics is required for application to
physical processes.

T

INPUT PARAMETERS SUCH
AS ERROR BOUNDS

The algorithm has been computer coded and verified by on-
line demonstration in an operating nuclear reactor. A
preliminary version of this algorithm was used for simulation
of signal validation in powerplants. This FDI technique can
be applied to fossil powerplants and chemical industries as
well.

Appendix A
Develepment of the FDI Methodology

The redundant data can be modeled by the measurement
equation

m=Hx+e (Al)
where m is the £x 1 measurement vector whose elements are
obtained from either direct or analytic sources, f the fxn
measurement matrix of rank n, x the nx 1 true value of the
measured variable, € the £X 1 noise or measurement error
vector, and b the given symmetric error bound for all
measurements, such that le;| =b fori=1,2,...,0.
The measurements m can be combined to yield a set of
linearly independent parity equations?® given by
p=Vm (A2)
where p is the (f—n)-dimensional parity vector and the
projection matrix ¥ has the following properties?:

VH=0 (A3)
VvT=1,_,,i.e., therows of Vare orthonormal (A4d)

and, from above, it follows that
VTVv=I,-H(HTH)-'HT (A5)

Combining Egs. (A1-A3) yields
p=Ve (A6)

i.e., the parity equations are independent of the true value x
and contain the effect of measurement errors, including those
that may result from a failure. In effect, the matrix V projects
m on the ({— n)-dimensional subspace which is orthogonal to
H. Thus, variations in the underlying measured variable x
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which may obscure the failures are eliminated and only the
inconsistencies among the measurements appear in the parity
vector. Moreover, in the parity space, the columns of ¥ define
the ¢.distinct failure directions associated with each of the
measurements. For example, if the ith measurement fails, the
ith element of the e vector grows. Then the ith column of V
determines the direction along which p lies if e=¢;, where ¢; is
a column vector of zeros except for its ith element,

It can further be shown, using Eqs. (A4) and (AS), that
an f(-dimensional residual vector p=m--HX where £
= (HTH) ~!H"m is the least-squares-fit estimate of x and is
related to paritv vector p as

7=VTp (A7)

and
7Ty=pTp (A8)

For powerplant applications, the measured variables are not
vector quantities. Rather the scalar process variables such as
power, flow, temperature, pressure, etc., are of interest, i.e.,
n=1 and x is a scalar in Eq. (Al). Therefore, only scalar
measurements will be considered in this paper. The
measurement matrix can then be expressed, without loss of
generality, as H=[1,1,...,1]7. Thus, using Egs. (A2) and
(A35-A7), the residuals can be derived as

1y 1y
ni=mie Em‘j=e,~—7 Lo

j=1 Jj=1

i=1,2,..,0  (A9)

i.e., the residual 7; is the difference between the ith
measurement and the average of all the redundant
measurements. Further, the component p; of the parity vector
p along the ith failure direction in the parity space is the scalar
product of p and the unit vector v;/ lv;|, where v; is the ith
column of the matrix V. Thus,

pi= (vp)/ vl =n,/ v,

by Eq. (A7). From Eq. (AS), v]v,= (¢-1)/¢for the given H.
Therefore, a simple relationship exists between the parity
vector and the residual vector

p=NU (=D,

Equation (A10) will be a useful relationship in deriving a
computationally efficient method of identifying failures.

For normal operations, when no sensors have failed, the
parity vector is small, which reflects the acceptable errors in
all measurements that are mutually consistent within
allowable error bounds. Following the corollary to the
theorem in Appendix B, a set of ¢ measurements is defined to
be consistent if the inequality

i=1,2,..,0 (A10)

b? if £is even

(Al1)

Ipl? <6t = -
(" )bz if ¢is odd

is satisfied; otherwise, the set is defined to be inconsistent.
The definition can be modified for unequal error bounds for
individual measurements. In that case, evaluation of 8, in Eq.
(A1l) requires larger computations, as is evident from the
theorem in Appendix B.

If a failure occurs, the set of measurements exhibits in-
consistency and the parity vector grows in magnitude in a
direction unique to the failed measurement. The increase in
magnitude signifies detection of a failure, and the failed
measurement may be identified from the direction of growth
of the parity vector. Daly et al.* have shown that an FDI
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decision can be made on the twin basis of relative orientation
and magnitude of the projection of the parity vector with
respect to various subspaces spanned by one or more failure
directions. An alternative approach is to make a decision
solely on the basis of magnitudes of the projections of the
parity vector on the ¢ distinct subspaces, each orthogonal to
one of the ¢ failure directions. This approach proves to be less
complex and computationally more efficient for scalar
measurements, as seen below.

Let S= {m,;,m,,...,m;} be the set of measurements and S’
be a subset of (f— 1) measurements such that n11,€S'. Let p’ be
the projection of the (¢— 1)-dimensional parity vector on the
(f—2)-dimensional subspace orthogonal to the failure
direction corresponding to m;. Then, Egs. (A7), (A8), and
(A10) can be combined to yield

4
. 4
= —_

Let ' be the (f— 1)-dimensional residual vector and §' the
corresponding (f—2)-dimensional parity vector generated
from all measurements in S’ where m;¢S’. Then,

4
1512= Y (702 (AD3)
~
yor
where ;¢
fl=e;— —— Y ¢ foreveryj#i
co=1E
ki

Using Eqgs. (A8), (A9), (A12), and (A13), it can be shown that
1Pl = Ipil, i.e., the magnitude of the parity vector generated
from all (£~ 1) measurements in §' is identically equal to the
magnitude of the projection of the parity vector generated
from all ¢ measurements in S on the subspace orthogonal to
the ith failure direction. Therefore, for any ¢ measurements
where £>2, |57 can be obtained from the residuals 4 using
Eq. (A12) without recalculating #' for the subsets S,
i=1,2,...,0. Following the definition in Eq. (All), if
Ip'12<6*~/, then the subset S’ is consistent; i.e., none of the
(f—1) measurements in S’ have exceeded the error bound
b—otherwise, at least one of these (/- 1) measurements is not
functioning normally.

Formulation of the FDI Algorithm

The FDI algorithm is formulated on the basis of relative
consistencies of appropriate subsets of the full set of
measurements. The consistency of any subset is determined by
checking the magnitude of the respective parity vector which
is identically equal to the magnitude of the residual vector.
The largest consistent subset (if it exists) provides a validated
estimate of the measured variable and the remaining
measurements (if any) are isolated on the basis of large
residuals. Figure Al shows a flow chart of the algorithm. The
basis and the computations involved in the algorithm are
described below.

If the full set of ¢ measurements is consistent, all
measurements are valid and estimate X is the average of all
measurements; otherwise detection of failure(s) is implied and
further computation is necessary for failure identification.
The number N of inconsistent subsets S/, i=1, 2,..., provides
information for failure identification where S’ contains all
measurements except m;,, as defined earlier.

1) If N<(¢-1), no measurement is identified as failed and
the estimate X isobtained as the average of the N
measurements m; corresponding to the N inconsistent subsets
Si ,

2) If N={—1, the estimate X is obtained in the same way,
but the measurement m; not contained in the only one con-
sistent subset S’ may be identified as failed; the failure is high
if m;>xand low if m, < %.
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Fig. A1 Fiow chart for the FDI algorithm.

3) If N=¢, i.e., all subsets are inconsistent, more than one
failure has occurred. In that case, the measurement m;
corresponding to the least inconsistent subset S', i.e., for
which Ip| is the minimum or the residual |9, is the largest,
is most likely to have failed. Therefore the aforesaid
measurement m; is discarded and the subset S’ that does not
contain m; is considered. The steps are repeated until either
the subset under consideration contains two measurements or
any consistent subset has been located.

If no consistent subset exists, the measurements are
mutually inconsistent and £ cannot be obtained. On the other
hand, if a consistent subset exists, the number of measure-
ments in this subset is identically equal to (- M), where M is
the total number of measurements discarded in the previous
steps. If (—M)>M, i.e., M= [((-1)/2], implying that the
consistent subset contains more than half of all £ measure-
ments, then £ is computed and the M discarded measurements
are isolated. If ((—M)=M, ie., M> [(¢-1)/2], the con-
sistency of any subset of (¢— M) measurements of the set of M
discarded measurements implies a common-mode failure and
# cannot be computed; otherwise, % is computed and the M
discarded measurements are isolated. As a typical example,
consider a set of four measurements, (=4. If two
measurements fail identically, the failure can be detected as a
common mode and X cannot be computed. On the other hand,
if two measurements fail nonidentically, identification is
possible even though the number of failures exceeds [(f
—1)/2] =1. Thus if the number M of discarded measure-
ments exceeds [({—1)72] and this set of all discarded mea-
surements contains one or more consistent subsets of ({—M)
measurements, then there are two or more consistent subsets
of ((—M) measurements in S that are mutually inconsistent,
which implies a common-mode failure; otherwise, the failed
measurements can be isolated.

A preliminary version of the algorithm, limited to five
measurements, was applied to simulation of signal validation
in powerplants.’ The algorithm presented above is more
efficient, compact, and versatile than its earlier version and is
applicable to any number of measurements.

Limitations
The limitations of the algorithm, in its present form, are:
1) Sufficient information on tolerances, calibration,

nonlinearities, etc., for the measurements must be available
for determination of error bounds. (Such information is
usually available from the specifications of instrument
manufacturers.)

2) For a given process variable, all measurements are
constrained to have equal error bounds. (The algorithm can
be modified to eliminate this limitation.)

3) Since the algorithm seeks out the largest consistent
subset of measurements, the FDI decision could be invalid if
more than half of the total measurements fail identically.

Geometric Representation of the FDI Methodology

A simple geometric representation of the FDI methodology
for a set of three scalar measurements m;, m,, and m; with
respective errors €,, €, and €; is given in Fig. A2 for
illustration. The allowable error regions for three subsets,
each containing two measurements, are shown in Fig. A2a.
Each region is an infinite prism of a square cross section with
its axis along the direction of the measurement which is not
contained in the respective subset, and is seen to be divided
into three regions. The region centered around the origin is a
cube of side 2b representing the allowable error region for
measurements m,, m,, and m; and is shared by all three
prisms. The other two semi-infinite regions in a prism on
either side of the cube represent the failure region for the third

. measurement not included in the pair associated with the

prism.

Figure A2b shows the projection of the allowable error
regions of different sets of measurements on the parity space
which is a plane orthogonal to the direction [1, 1, 117 in the
three-dimensional measurement space. Projection in this
plane is chosen because changes in x, the measured variable,
do not appear in the plane. The three infinite prisms are
projected as three infinite strips centered along the three
failure directions. The parity space is then divided into several
regions, each of which is associated with the decisions of the
FDI algorithm. The hexagonal region, surrounding the origin,
is the intersection of the three infinite strips and is also the
projection of the error cube. The two corners (b, b, b) and
(—-b, —b, —b) of the cube are projected on the origin, and the
remaining six corners of the cube correspond to the six
corners of the hexagon. Within the hexagon, all three
measurements are considered to be valid and the estimate is
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Fig. A2 a) Allowable error regions in the measurement space. b) Allowable error and decision regions in the parity space.

X=(m,;+m,+m;)/3. The six triangles on the six sides of the where
hexagon represent the regions of intersection of any two strips
that lie outside the remaining third strip and represent the C=I,—H(HTH) 'HT
cases of one inconsistent and two consistent subsets; the and
measurement not contained in the inconsistent subset is the HT =1 1., 1]
best choice for obtaining the estimate. For example, in the -
region marked “m, and m; inconsistent,” lm,—m;1>2b Then
and X=m,. The six semi-infinite regions in the strips adjacent ] 0 R
to the hexagon indicate the failure of one specific Maxf(x) = E b?— —Min ( £ ib,)
measurement. For example, if the parity vector is confined in et i=1 £ 3 i=1
the region marked ““m, fails high,” the subsets {m,, m, } and .
{m,, m;} are mconsnstent and the subset {m,, m;} is con- where £; can be either 1 or — L.
sistent; therefore, x= (m, + m;)/2 and m, > % indicates a high Proof: Since
failure. The remaining part of the parity space not covered by ¢ . ,
the three infinite strips consists of six squ-mfmxte_ fon_'ks. If F(x) =xTCx= Exg (170 (Ex)
all three subsets are inconsistent, the parity vector lies in any ~ ! ~ '
one of these forks and failure of more than one measurement
is implied; thus, no estimate can be obtained. ! { 2

=% (- um L)

i=1

P
N

— Appendix B everywhere in EY, C is positive semidefinite. Therefore, fis a
Theorem: Let the mapping from R’ to R’ be defined as continuous convex mapping.” Furthermore, since E' is

compact, maximum of f occurs on the boundary of E'.

f(x)=xTCx for xeE'={x;Ix;|=<b;] Continuing in this way, it can be argued that maximum occurs
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at one of the corners, {x,, . . ., X;: X;= =b;} of E*. Proof is

thus complete.
Corollary: 1f b, = b for every i, then

th? for feven

Maxf(x) ={
[—(170) 157 for Lodd

Proof: Noting that f(x) is invariant under permutation of
X,
Maxf(x) = (£~ (1/8) [n— (€=n)1?)b?
=40(n/0) [1— (n/0) ]2

where

b fori=1l2,...,n
X; =
—b fori=n+1,...,¢0

A function ¢ () =6(1 —8) attains the maximum at =" in
the domain 9€{0,1]. However, (n/0€[0,1] can have only
¢+ 1) discrete values. Therefore, f(x) attains a maximum at

¢/2 if feven
"1 (=1y/20r(+1)/2if todd

The proof follows immediately.
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