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Power Plants

A signal validation methodology to improve the reliability of the information
displayed to the operator of a nuclear power plant is presented. The general design

methodology is developed and then applied to the steam generator and Seedwater
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subsystem of a typical pressurized water reactor. Using steady-state and transient
simulations of this subsystem, including realistic additive sensor noise, the
developed algorithm successfully isolates a variety of injected sensor faults and
demonstrates its inherent capability to isolate common-mode sensor failures and

plant component failures.

Introduction

Safety and reliability of complex processes such as those in
a nuclear power plant are largely dependent upon the validity
and accuracy of sensor signals that indicate plant operating
conditions. Although many approaches to signal validation
have been reported (e.g., reference [1]), current practice in
nuclear power plants is restricted to a few rudimentary
techniques such as like-sensor comparisons, limit checking,
and auctioneering [2]. While such techniques generally serve
to improve plant safety, limitations such as the inability to
identify gradual drifts and insensitivity to common-mode
failures® significantly curtail their effectiveness. These
limitations can be circumvented by the application of ad-
vanced computerized diagnostic techniques related to those
developed for aerospace systems. These techniques promise
not only to aid plant operators in making proper and timely
decisions, thereby enhancing plant safety, but also to improve
plant availability.

The signal validation methodology adopted in this study
demonstrates a systematic, unified approach to real-time
detection and isolation of sensor and plant component
failures by exploitation of available redundant information.
Redundancy is classified as direct when two or more sensors
are measuring a given plant variable, and analytic when an
additional evaluation of a plant variable is analytically ob-
tained from the physical relationships among various plant
variables.

Unless three identical collocated sensors of a variable are
available, some form of analytic redundancy, however
elementary, must be employed to isolate the failure of one
sensor of that variable. It is important to note that the
developed approach recognizes the following inherent in-
terrelationships between analytic redundancy and the reliable
isolation of sensor failures and plant component failures: 1)
analytic redundancy either explicitly or implicitly models the
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normal operation of one or more plant components; and 2) if
the possibility of the failure of that component is not
recognized at the outset and incorporated into the design, the
failure of that plant component may be incorrectly interpreted
as a sensor failure, with possibly far-reaching consequences.
In the remainder of the paper, we discuss the basic signal
validation algorithm design methodology and the results of its
application to the simulated steam generator and feedwater
(SG/FW) subsystem of the secondary coolant system of a
pressurized water reactor (PWR) power plant. A salient
feature of the developed algorithm is the use of parity-space
representation [3, 4, 5] to detect and isolate failures via the
relative inconsistencies among all measurements, both direct
and analytic. In contrast to many other approaches (e.g.,
reference [6]), this parity-space technique does not rely on
detailed knowledge of sensor and plant noise statistics and
failure modes, but instead uses readily available information
on unfailed signal error magnitudes to define thresholds that
are assumed to be exceeded only when failures are present. In
addition, the developed methodology does not require banks
of linearized differential equations (e.g., references [6, 7, 8])
that can become computationally burdensome and are par-
ticularly vulnerable to changes in the assumed plant
dynamics, such as those arising from component failures.

Basic Design Methodology

Introduction. The signal validation and fault isolation
philosophy embodied in this paper is that plant safety in
general, and the operator’s control and monitoring tasks in
particular, are enhanced if critical plant component faults are
isolated to the finest resolution practical in the shortest
possible time. As discussed below, this seemingly self-evident
notion forms the basis for a general design procedure that can
be extremely useful in applying advanced fault isolation
techniques, particularly analytic redundancy, to a specific
plant and in tailoring the design to the user’s unique needs.

Signal Validation Flow Diagram. The general structure of a
signal validation algorithm is defined by a flow diagram
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indicating the manner in which sensor output signals are
combined to perform both fault isolation and parameter
estimation. The flow diagram provides a pictorial summary
of the utilization of sensor information, without the need to
specify the details of the algorithm, by employing two generic
building blocks: the analytic measurement calculator and the
decision/estimator (D/E).

Each analytic measurement calculator uses an appropriate
physical relationship, such as a conservation law or the
normal operating characteristics of a hardware element, to
combine signals representing estimates of unlike variables in
such a way as to synthesize an indirect measurement of
another variable. This analytic measurement may represent
the only source of knowledge concerning that variable, or it
may subsequently be compared with direct sensor
measurements of the variable in a D/E to increase the
reliability of the variable estimate and to aid in fault detection
and isolation.

Each D/E has as its inputs all of the direct and analytic
measurements of a single variable of interest. The D/E forms
a ‘‘validated” estimate of the measured variable using a
consistent subset of its input measurements, and it employs
measurement inconsistency information to determine when
one or more of its input measurements has failed. The
transfer of this failed measurement information to the plant
operator is the most important task of the algorithm.

The generic nature of these building blocks affords the
designer a great deal of flexibility. He can choose the physical
relationships used by the analytic measurement calculators as
well as the methods employed to determine measurement
consistency and to calculate variable estimates within the
D/Es. Having recognized the latitude available to the
designer, the general procedure for signal validation flow
diagram design is now introduced with a discussion of the
effect of diagram architecture on fault isolation resolution.

Fault Isolation and Least Plant Units. In order to infer
component failures from measurement inconsistencies
detected by a D/E, it is useful to introduce the concept of a
least plant unit (LPU). When more than two input
measurements are available to a D/E, there is an LPU
associated with each measurement, defined as the aggregate
of all those physical components whose individual failures
could cause that measurement to be inconsistent with the
other input measurements. When there are only two input
measurements to a D/E, there is a single similarly-defined
LPU associated with both input measurements. Thus LPU
size reflects the fault resolution capability of the signal
validation algorithm, and the desire to achieve fine fault-
isolation resolution implies that LPU size must be kept small.

Because the LPU associated with a direct sensor
measurement is the sensor itself, its size is fixed. However, the
size of an analytic measurement’s LPU is strongly affected by
flow diagram architecture. In particular, LPU size will be
smallest when the number of unvalidated estimates (i.e.,
single sensor outputs) used in the analytic relationship is
minimized. Therefore, minimized use of unvalidated
estimates in analytic relationships is a flow diagram design
guideline. Because every analytic measurement calculator
either explicitly or implicitly models the normal operation of
some plant component, each analytic measurement LPU
contains at least one plant component; it is through this
mechanism that plant component failures can be isolated.

Although the LPU represents basic fault isolation
resolution, fault isolation to a level within an LPU is possible
by logical inference when the same physical element belongs
to more than one LPU. To illustrate this, consider the case of
one LPU composed of the elements A, B, and C, and another
LPU composed of the elements C, D, and E. If at nearly the
same time these two LPUs fail, i.e., if their associated analytic
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measurements are found to be inconsistent, then it is likely
that their common element, element C, is faulty. Conversely,
if the first LPU fails but the second LPU does not, it is likely
that their common element is not faulty and that instead

either element A or element B has failed.
It is important to emphasize that the above reasoning for

LPU and sub-LPU fault isolation relies on the assumption
that single element failure is the dominant mode, a good
assumption for a properly designed system. However,
regardless of the particular failure probability assumptions
used by a D/E in declaring element failures, other less likely
explanations for the observed measurement inconsistencies
should also be displayed to the operator.

Flow Diagram Design Procedure. The design of a signal
validation flow diagram is an iterative process. Its natural
starting point is the establishment of the critical functions
within the subsystem of interest to be supported by the design.
These functions could be mathematical functions or operator
tasks, but in either case they require the validated estimates of
certain key variables whose importance dictates that most, if
not all, of them will be measured directly. The design of the
signal validation flow diagram therefore begins with the
provision of a D/E for each key variable, with a validated
estimate as output and every direct measurement as an input.

The next step in the design process involves an assessment
of the adequacy of the direct measurement redundancy for
each critical variable. At least two measurements are required
to allow the formation of a validated estimate, and at least
three measurements are required to allow a valid estimate to
be formed following a single sensor failure. Therefore,
because of the critical nature of these key variables, the design
process continues via addition of either direct measurements
(i.e., more sensors) or analytic measurements as inputs to
those D/Es with fewer than three inputs until the desired level
of redundancy is reached.

Because the addition of more sensor hardware is often not
feasible, analytic measurements may be the only source of
supplemental redundancy. As mentioned above, the guideline
that applies in this case is to minimize the number of un-
validated estimates used for each analytic redundancy
relationship. The benefits of analytic redundancy, i.e., its
ability to isolate common-mode sensor failures and plant
component failures and the supplementary redundancy it
adds to the sensor complement, must be weighed against the
realization that for actual, nonidealized systems the error in
an analytic measurement is often higher than that in a direct
measurement.

Initially, the types of analytic relationships to be used to
generate analytic measurements of a variable should be
limited only by the unavailability of (direct or analytic)
measurements of required variables. It is important to note
that a measurement of any quality (e.g., worst-case error with
unfailed inputs, or noise standard deviation) can be used for
fault detection and variable estimation as long as its D/E
threshold reflects that quality. For example, if every threshold
for a D/E is equally proportional to the standard deviation of
its input measurement noise, then the minimum variance
estimate of the measured variable can be calculated as the
weighted average of the consistent measurements, where the
individual weights are inversely proportional to the square of
the respective thresholds [4].

At this stage, iteration on the design can be prompted by a
variety of reasons including: impracticality of the addition of
sensors to achieve the desired level of redundancy; deficiency
in the number of available independent analytic relationships;
relatively high noise, bias, or modeling complexity for some
available analytic relationships; the desire to isolate suf-
ficiently probable common-mode sensor failures or com-
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Fig.1 Steam generator and feedwater subsystem measurements

ponent failures; the need for additional redundancy suggested
by likely degraded sensor configurations; or the desire to
decrease the size of a particular LPU.

The final signal validation flow diagram resulting from this
iterative process in most cases will represent a compromise
between hardware complexity in the form of sensor redun-
dancy and software complexity in the form of analytic
redundancy and D/E computations. The use of available a
priori component failure probabilities can be useful in
assessing candidate designs in terms of the probability of
erroneous estimates of the critical variables. A reasonable
groundrule in the absence of sufficient a priori statistics is that
no single element failure should result in an erroneous
estimate’s use in critical functions.

Application to the Steam Generator and Feedwater
Subsystem

Introduction. The SG/FW subsystem of a typical PWR was
chosen for study because utility experience has shown that its
improvement can contribute substantially to overall plant
availability [9]. Figure 1 illustrates the layout of the plant
components and sensors of the reference subsystem, with
sensor replication noted in parentheses. The scope of the
study included all the major plant components and sensors
located between the low pressure heaters and the turbine-
generator system, with the developed algorithm performing
signal validation on a total of forty-eight sensors and ten plant
components in two parallel legs.

In order to demonstrate the power of the technique, the
signal validation flow diagram was designed to isolate a failed
sensor to the sensor level wherever possible. This was ac-
complished for all sensors except a failed feedpump speed
sensor, which can only be isolated to the level of feedpump
speed sensor and feedpump, and a failed steam flow sensor,
which can only be isolated to the level of steam flow sensor
and steam generator.
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Figure 2 illustrates the signal validation flow diagram
developed for the reference SG/FW subsystem, with the
symmetric structure for the second leg omitted for clarity.
Each analytic measurement calculator is shown as a logical
““AND”’ gate, suggested by the fact that the validity of its
output requires validity of all its inputs; while each D/E is
shown as a logical ‘“‘OR”’ gate, suggested by the fact that its
output estimate can be good even if some of its input
measurements are faulty. The arrow emerging obliquely from
each D/E is used to indicate the input measurement con-
sistency or failure information being collected. Direct sensor
measurements are enclosed in ovals; the steam generator heat
rate input from the primary coolant loop, assumed validated
elsewhere, is enclosed in a rectangle.

Design Details. In this study, each D/E determines input
measurement consistency using a parity-space algorithm
employing an identical threshold for all direct and analytic
input measurements [10]. (Recall that this algorithm has been
extended to employ a different threshold for each D/E
measurement [4, 5].) Every second the validated output
estimate is formed as the average of the consistent input
measurements, where inconsistent measurements are
determined on the basis of the magnitude and direction of the
parity vector. LPU failures are declared using a multiple-
consecutive-miscomparison (MCM) criterion: if a measure-
ment is found to be inconsistent on N consecutive samples,
that measurement is eliminated from future consideration and
its LPU is declared to be failed. Although suboptimal, the
MCM criterion using an ad hoc choice for N of 3 performed
well in this study.® Therefore, more elaborate fault
declaration techniques, requiring accurate (and usually
scarce) sensor noise models for optimality, were not deemed
necessary.

Five simple explicit models of plant components are used in
the analytic measurement calculators in Fig. 2: the main
feedvalve stroking mechanism; the main feedvalve flow/
pressure-drop characteristics; the high pressure heater
flow/pressure-drop characteristics; the main feedpump
similarity relationship; and the steam generator steam flow as
a function of steam generator liquid level and pressure,
feedwater flow and temperature, and input power. The main
feedvalve stroking mechanism response to demand changes is
modeled as constant speed, with 15 seconds required to move
between fully-opened and fully-closed positions. The main
feedvalve effective area is modeled as a quadratic function of
stem position. From steady-state conservation of momentum,
feedwater flow is modeled proportional to the effective valve
area times the square root of the pressure drop across the
valve, and the pressure drop through the two high pressure
heaters is modeled as a constant times the square of the total
feedwater flow. The main feedpump is modeled as a piecewise
quadratic function relating (head =+ pump speed?) to
(feedwater flow + pump speed). The steam generator steam
flow model, using conservation of mass and energy, contains
no differential equations except for first-order filters on
feedwater flow and steam generator drum pressure; it requires
only thirty-four multiplications and thirty-two additions.

Fault Isolation Examples. As mentioned above, the flow
diagram shown in Figure 2 was designed primarily to isolate
the first failure of any sensor. To illustrate how this isolation
is done, the technique will be described for feedwater flow
and steam generator pressure measurements.

A validated estimate of the feedwater flow into each steam

3 A better choice of N can be obtained by optimizing the tradeoff between
false alarms and detection delay for assumed measurement noise probability
densities [10].
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Fig.2 Signal validation flow diagram

generator is obtained by a D/E with two direct and two
analytic measurement inputs. Each analytic measurement
calculator uses the same main feedvalve flow model and
differential pressure sensor, with one utilizing the direct
feedvalve stem position measurement and the other using an
analytic measurement calculated using the demand signal
through the constant-speed stroking mechanism model.
Assuming that the feedvalve position demand signal is always
accurately known, the four LPUs associated with this D/E
are: 1) feedwater flow sensor 1; 2) feedwater flow sensor 2; 3)
feedvalve position sensor, feedvalve differential pressure
sensor, and feedvalve; and 4) feedvalve stroking mechanism,
feedvalve differential pressure sensor, and feedvalve.

The failure of either feedwater flow sensor is easily isolated
when one direct measurement is inconsistent with the other
three measurements. The persistent inconsistency of one
analytic measurement with the other three measurements is
interpreted as the failure of that element within its LPU not
common to the LPU for the other analytic measurement, i.e.,
either the feedvalve position sensor in the case of the in-
consistency of LPU3 or the feedvalve stroking mechanism in
the case of the inconsistency of LPU4. Assuming that single
element failures are more probable than common-mode
failures, either the quickly successive failure of the two
analytic measurements or the simultaneous pairwise grouping
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Table 1 Bias failure summary

100% POWER 60% POWER
NORMAL
EAROR | ERROR | NOMINAL BIAS NOMINAL BIAS
SENSOR TYPE UNITS (NOISE) [THRESHOLD| VALUE FAILURE VALUE | FAILURE
FEEDPUMP SUCTION PRESSURE |  kPa +35 1 3965 1414 5102 138
(Ps1) (15) (575) (:60) (740) (120)
FEEDPUMP OUTLET PNESSURE Pa +75 83 7122 1207 6895 +207
(Psi) (11 12 _ nz0) (£30) (1000) (£30)
FEEDPUMP FLOW ks 4126 50 79 3 360 ]
(LB/MR) | (+100,000) | (400.000) (6320.000) | (+900,000) | (2.880,000) | (+1,000,000)
FEEDWATER TEMPERATURE Sc a 1 229 33 191 133
(°F) (:2) (2 (445) (+8) (378) (+8)
FEEDPUMP SPEED pm 140 T 3900 150 B30 120
STEAM GENERATOR PRESSURE | WP 62 € 6205 1172 €400 1172
(s} (+9) (10) oo | 2 (926) (£25)
STEAM GENERATOR LEVEL % 125 25 70 7 70 7
FEEDWATER CONTROL -
VALVE DEMAND * 2 1 74 +8 43 Eal)
FEEDWATER CONTROL * 2 T T 9 a3 +10
VALVE POSITION R . [
FEEDWATER CONTROL VALVE Pa 114 ' 241 155 17 155
PRESSURE DROP (Psi) (:2) (35) (:8) an (:8)
FEEDWATER FLOW K/t 1126 2 R 169 | 360 69
(LB/HR) | (+100,000) | (220,000) [16,320,000) | (¢550,000) | (2.680,000) | (+550,000)
STEAM FLOW *a/s 126 315 7% 175 380 75
(LB/HA) | (+100,000 | (250,000) |(6,320,000] | (+600,000) | (2,880,000) | (:600,000)
HIGH PRESSURE HEATER kPa 176 T G450 EE 6516 318
OUTLET PRESSURE (st (11 (15) (935) (145) (945) (245)

! NOPARITY SPACE TEST IS PENFORMED ON THIS SENSOR IT IS USED ONLY AS AN INPUT TO AN ANALYTIC MODEL

of the two direct and two analytic measurements is interpreted
as the failure of one of the elements common to both analytic
measurement LPUs (LPU3 and LPU4), i.e., the differential
pressure sensor or the feedvalve itself. Also note in Fig. 2 that
a sufficiently large failure of the differential pressure sensor
will result in the miscomparison of its associated analytic
heater outlet pressure measurement with the other four
measurements.
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Fig. 3 Common-mode failure of two steam generator pressure sen-
sors

Steam generator drum pressure represents the one variable
in Fig. 2 where sufficient redundancy exists to reliably isolate
the common-mode failure of two of the four sensors in ad-
dition to single sensor failures. Whenever pairwise grouping
of the four pressure sensor readings is observed, it is assumed
that a common-mode failure has occurred. The difference
between the unfailed feedvalve differential pressure
measurement and the validated heater outlet pressure estimate
is used as a supplemental analytic measurement to break the
tie. This tie-breaker signal is shown in dotted lines in Fig. 2; it
is not normally used because its noise is high relative to un-
failed drum pressure sensor noise. It is important to note that
the effect of steam generator input nozzle pressure drop could
easily be incorporated using the validated estimate of feed-
water flow.

Simulation Results. The Combustion Engineering, Inc., (C-
E) ZAMBO3 feedwater system analytical design code was
used to calculate accurate test cases [10]. The characteristics
of Arkansas Nuclear One Unit 2 were chosen as the reference,
and test cases for this reference plant were chosen so as to be
representative of the SG/FW subsystem’s behavior during
steady-state and transient conditions, including step changes
in turbine power, ramped loss of feedwater, and ramped
increase in feedwater. During the evaluation of the signal
validation technique, the SG/FW subsystem variables were
corrupted with typical uniformly distributed sensor noise to
simulate sensor outputs.
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Fig.4 Failure of main feedvalve differential pressure sensor

A variety of computer runs were made to verify and
evaluate the signal validation program. All steady-state and
transient ZAMBO3 test cases were run without simulated
failures to verify that no false alarms occurred for the error
thresholds used. Then positive and negative biases were
systematically introduced into every sensor type at steady-
state power levels. Table 1 shows the bias failure levels that
were consistently identified at 100 and 50 percent steady-state
power levels, together with the simulated uniformly
distributed sensor error bounds and the D/E thresholds used.
In each case identification was made within ten seconds of the
failure onset. In general, the error size that could be identified
was two to three times the threshold. It should also be noted
that because the fault isolation techniques used in this study
rely on robust modeling of plant processes, equivalent per-
formance of the fault detection and identification algorithms
is expected following introduction of failures during tran-
sients. This peformance was observed in several test runs
using available ZAMBO3 transient data.

As described above and illustrated in Fig. 3, sufficient
redundancy exists to isolate the common-mode failure of two
drum pressure sensors in one steam generator. The first frame
depicts the four steam generator drum pressure measurements
and the drum pressure estimate. The second and third frames
depict the high pressure heater outlet pressure estimate and
the feedvalve differential pressure measurement, respectively.
The fourth frame depicts the MCM counters, denoting the
number of consecutive miscomparisons, for each of the steam
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generator pressure measurements. The reactor is initially
operating normally at 100 percent power. At 10 seconds
pressure sensors 1 and 2 fail low. The failed pair is isolated by
comparison with the outlet pressure estimate minus the
differential pressure measurement. As a result, the only MCM
counters that are incremented are those of the failed sensors,
under conditions in which the parity-space algorithm based on
only four measurements would have to count all sensors as
failed. The figure also illustrates the fact that the estimate uses
only the unsuspected sensor information during the period
before the failed sensors are declared to be bad.

As previously discussed, a multiple-measurement failure
can occur to the signal validation algorithm when one un-
validated sensor output is used as an input to more than one
analytic measurement. Figure 4 illustrates the failure of the
single differential pressure sensor for the feedwater control
valve, which is used with two different measurements of valve
position to create two analytic measurements of feedwater
flow. The first frame depicts the two direct measurements of
feedwater flow, the two analytic measurements of feedwater
flow, and the feedwater flow estimate. The second frame
depicts the differential pressure measurement. The third
frame depicts the direct feedvalve stem position measurement,
the feedvalve stem position demand signal, and the analytic
feedvalve stem position measurement computed from the
demand signal. The fourth frame depicts the MCM counters
for the two direct and two analytic feedwater flow
measurements.

At 10 seconds a bias failure of the differential pressure
sensor occurs. The parity-space algorithm alone cannot
determine the failed feedwater flow measurements since there
are only four measurements, with two pairs of measurements
agreeing internally. However, recognizing that the only single-
point failure producing this situation affects the analytic flow
calculations, the logic employed in this case deletes the two
analytic measurements of feedwater flow from the final
estimate if they differ from the two direct measurements in a
similar way, i.e., both high or both low. This process occurs
at 10, 12, and 13 seconds. The presence of noise causes
recognition of failure of the two analytic measurements to
occur at different times, at 14 and 18 seconds. The close time
proximity of the failures of two LPUs involving common
elements makes it easy to conclude that one of the common
elements, the differential pressure sensor or the feedvalve
itself, has in fact failed. Note that a similar pattern of LPU
failures would have resulted if the feedvalve stem
position/effective area relationship had changed.

Conclusions and Recommendations

The signal validation algorithm isolated relatively small
sensor failures in steady-state and transient simulations in the
presence of realistic additive sensor noise. Where more than
three direct measurements were available, a sensor failure
three times the magnitude of the uniform sensor noise was
consistently isolated. Performance in identifying sensor
failures via analytic redundancy varied from the ability to
isolate a failure 3 percent of the nominal value of the feed-
pump suction pressure sensor to the inability to isolate a
failure smaller than 47 percent of the nominal value of the
feedvalve differential pressure sensor, both at 50 percent plant
power. (It is anticipated that the use of the multiple-threshold
parity test, with the possibility of varying analytic
measurement thresholds with plant state, would significantly

Journal of Dynamic Systems, Measurement, and Control

improve the latter performance.) Additionally, the test results
demonstrated the algorithm’s ability to isolate common-mode
sensor failures and plant component failures.

The nature of the signal validation methodology is to form
validated variable estimates from redundant measurements,
including analytic measurements formed using validated
estimates wherever possible. The methodology allows the use
of low dimension* nonlinear models, which are robust over a
wide range of operating conditions. This basic structure lends
itself to a distributed processor implementation with a
relatively small shared data base. Therefore the extensions of
the methodology to the real-time monitoring of the complete
PWR system or of other complex processes, such as fossil
power plants and chemical plants, appears feasible.

Because this study has achieved the objective of demon-
strating the potential for improved reliability of the in-
formation displayed to the operator of a nuclear power plant
through the use of advanced fault isolation techniques, the
recommended next step is a proof-of-principle demonstration
using actual plant sensor data to include factors such as sensor
dynamics, calibration errors, and physical separation;
transport delays; and equipment variability. Although it is felt
that these factors present no significant challenges to the
developed signal validation approach, such a demonstration is
mandatory in order for the approach to merit nuclear industry
acceptance.
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