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Summary

A sequential test technique for on-line fault
diaanosis of sensor signals has been developed and
successfully demonstrated in an operating nuclear reac-
tor. The methodoloqy provides a systematic procedure
for detection and isolation of sensor failures by tak-
ing into account consistencies among all available mea-
surements of a given process variable., Fault diaanosis
is accomplished on the basis of the cumulative informa-
tion derived from the measurement history that includes
the past and current observations.

Introduction

Validity and accuracy of sensor signals are
crucial for the enhancement of safety, reliability, and
performance of complex industrial processes such as
nuclear power plants. Vhen a failure of a critical
measuring device occurs, it is essential to have some
means to generate an alarm with the least possible
delay. 0On the other hand, a false alarm, i.e., detect-
ing a fault when none has really occurred, is very
undesirable because it diminishes the credibility of
the fault diagnosis procedure and it may cause the
removal of a normally functioning device from on-1ine
operation. A trade-off hetween these two reguirements,
i.e., detection speed and occurrence of false alarms
can he achjeved by appropriate processing of sensor
outputs, where the decisions on device failures are
made on the basis of the measurement history that

includes both past and current observations.l-4

If multiply redundant sensors are available for
the measurement of a process variable such as the
safety-related parameters in a nuclear power plant, the
sensor failure(s) can be detected by inconsistencies
among these redundant measurements, except for the
common-mode failures where all sensors fail simulta-
neously and identically. Additional information is
needed to detect the common mode failures and it is
usually available from other sources. Upon detection
of a failure, the problem then is fault isolation,
i.e., determination of which sensor is failed. This
requires a systematic search for the normally function-
ing sensors from a aiven set of redundant sensors,
thereby isolating the abnormal ones.

Recently, NDesai and Ray® have developed an on-
line signal validation methodoloqy that performs fault
detection and isolation (FDI) on the hasis of a concur-
rent checking of the consistencies of subsets of the
total set of redundant measurements of a given process
variable. The goal of this paper is to develop a
sequential test procedure for on-line fault diaanosis
in a set of redundant sensors in the framework of the
aforesaid FDI methodology and to demonstrate its appli-
cability to nuclear power plants. As a proof-of-
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concept, the sequential test procedure has been veri-
fied for on-line detection and isolation of sensor
failures in the 5 MUt nuclear reactor presently in
operation at MIT, Cambridge, Massachusetts.

Background

The fault detection and isolation methodoloqgy
seeks out the largest consistent subset from a set of
redundant sensors. The consistency between two sensors
measuring the same variable implies that their outputs
differ by less than the sum of the allowable errors in
their outputs. Allowable errors or error bounds, spe-
cific to individual sensors, can be obtained from the
information on tolerances due to calibration, nonline-
arities, scale factor errors, etc., that are usually
available from the manufacturer's specifications. As
the number of redundant sensors increases, the checking
of consistency in all possible comhinations and the
attendant task of bookkeeping for all information at
the current and past sampling instants become very
complex., A systematic, unified procedure, appropriate
for a digital processor, that relies on recursive rela-
tions, bhased on the consistencies of each sensor rela-
tive to the remaining ones, has heen developed for
diaqnosing sensor failures. A mathematical backqround
of the test procedure is given in the Appendix where
Section A.l is devoted to the development of the FDI

technique on the hasis of the "parity space" concepth
and the sequential test algorithm that forms an impor-
tant part of the technique is presented in Section A.2.

The FNI technique is adaptahle for on-line appli-
cations with mini- and microcomputers. The memory
requirement is small, and very few multiplicative
arithmetic operations are invalved for fault diagnos-
tics and measurement estimation. In contrast, other
FOI methods’-9 need to solve a number of differential
equations for recursive filters that require relatively
larger computations, and the FDI decisions are more
vulnerable to modelling errors due to changes in the
assumed plant characteristics.

FOI decisions can be made from the observations
derived from either a single sample or a time history
of multiple samples. The decisions based on a sinagle
sample, i.e., decisions which disregard the past per-
formance, are reliable only if the magnitudes of the
errors in the affected sensors are large in comparison
to the measurement noise and uncertainty. In a nuclear
nlant, a moderate degradation of sensors such as cali-
hration errors for long-term operations may not be
reliably detected by single-sample decisions without
incurring unacceptable probabilities of false alarms.
In such cases, FDI decisions should be made on the
hasis of multiple observations that make use of the
cumulative information provided by the measurement
history from the past and current samples rather than
relying solely on the current sample. A sequential
decision-making procedure to achieve this qoal is
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presented in Section A.2 of the Appendix.

In general, the cost function for a decision rule
is made up of two opposing reguirements, namely, mini-
mizing the probhability of false alarms as well as the
time delay in fault detection. For an optimal decision
rule, the cost function is minimized such that the best
trade-off is achieved between the aforementioned re-
quirements. Wald's sequential probability ratio test

(SPRT)l is optimal in the sense that the expected value
of the number of samples required for making a decision
hetween two fixed hypotheses, whether the system is in
the normal or degraded mode, is minimum for specified
probabilities of incorrect decisions. Thus it achieves
the best tradeoff between them to make a decision and
the accuracy of the decision, Wald's test is devised
on the assumption that either one or the other of the
two hypotheses holds while the test is running. This
restriction is removed in the disruption test of
Shiryaeyev2 where the probability of a change in the
hypothesis at any sampling instant is taken into ac-
count, and the decision as to whether a transition has
occurred from the normal to the degraded mode is made
on the basis of a posteriori probability of failure
derived from the past and current observations. In
contrast to Wald's test, Shiryaeyev's test provides a
smaller expected value of delays in fault detection at

the expense of increased computations. Chien et al.3
developed a suboptimal method for on-line fault detec-
tion in navigational system sensors, that is computa-
tionally efficient and preserves the improved features
of Shiryaeyev's test. 1In this paper, a sequential test
procedure has been designed in the framework of Chien's
approach for diagnosis of sensor failures in nuclear
power plants.

— ]

CONTROL BLADES/ROD

1851

Application of the Sequential Test Methodology
In A Nuclear Reactor

System Description

A description of the system configuration and
instrumentation of the 5 MWt fission reactor is given

in the MITR-1I Reactor Systems Manual.l0 The reactor
is heavy-water reflected, light-water moderated and
cooled, and functions as a research and educational
facility. It is a tank-type reactor, similar to a PWR
except that it operates at atmospheric pressure and its
coolant temperature is 55°C or less. A simplified
diagram of the process and instrumentation is given in
Figure 1.

The nuclear instrumentation used for the research
described in this paper consists of three neutron flux
sensors and a gamma-ray sensor that correlates neutron

power with the radioactivity (N16) of the primary
coolant. Four independent measurements of primary
coolant flow are obtained from the pressure differences
across orifices. Primary coolant temperatures are
measured as follows: two sensors for the hot leg, two
sensors for the cold leqg, and one sensor for tempera-
ture difference between the leqs. In effect, three
measurements are available for the temperature differ-
ence. The noise and statistical characteristics of the
MITR-II's flow, temperature, and neutron flux instru-
mentation are similar to those in commercial reactors.
These sensors are hard-wired to a portable LSI-11/23
minicomputer through appropriate isolators, signal
conditioners, and A/D converters. None of the sensors
that form the MITR-II's safety system were used for
this research.

NEUTRON POWER
SENSOR #4 (N-16)

—

N\

H

R il TOWERS
) i
D,0 REFLECTOR 25;‘;32“,,‘;”““
1
f 3 -t—-—————-____{::::i::] Y
NEUTRON POMER _/ \_ PRIMARY COOLANT

SENSOR #1

PRIMARY COOLANT
FLOW SENSOR #3

TEMPERATURE DIFFERENCE SENSOR

& #2

NEUTRON POWER H20
SEN
ENSOR #2 ‘ TANK
PRIMARY
C

|| l OLD LEG TEMPERATURE
SENSORS #1 & #2

FLOW SENSOR #4

‘\/\ e ——\
PRIM
COOLANT
COOLANT FLOW HEAT PUMPS HOT LEG
SENSORS #1 EXCHANGERS TEMPERATURE

SENSORS #1 & #2

| 8
COOLING FANS

SECONDARY COOLANT
PUMPS

Figure 1. Simplified Process and Instrumentation Diagram for MITR-II
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Results and Discussion

The sequential procedure was tested in the MITR-11
for on-line fault diagnosis of sensor signals. The
salient features of the procedure can be summarized as
follows: Given ¢ sensors and their error bounds, the
consistency/inconsistency of the g(2-1)/2 pairs are
determined by the sequential test algorithm presented
in Section A.2 of the Appendix; this information is
used for on-line detection and isolation of sensor
failures by application of the FDI technique described
in Section A.1 of the Appendix.

The machine-executable form of the program on an
LSI-11/23 microcomputer requires a memory of approxi-
mately 20 kilohytes that include the libraries of
FORTRAN and special real-time routines. The execution
time is less than 130 milliseconds per cycle if no
messages are generated. Therefore, sampling frequen-
cies were chosen in the range of 0.2 hz to 5 hz, and
the choices were made depending on the volume of the
message display such that the sampling periods were not
exceeded.

The error bounds for the sensors can be evaluated
either by analyzing the test data or from the informa-
tion on tolerances due to calibration, nonlinearity,
scale factor, etc., available from the instrument manu-
facturers. At different power levels of MITR-11,
steady-state data for all measurements were collected
and analyzed for evaluating the noise statistics; the
results showed that the measurement noise is practi-
cally independent of the reactor power level. The
expected values and covariance matrices of power, flow,
and temperature difference (AT) measurements at full
load are listed in Table [, which shows that the meas-
urements are correlated, indicating the possible
presence of process noise. 0On the basis of the ana-
lyzed data, spatial location, and manufacturer's speci-
fications, the error bounds for all operating condi-
tions were chosen in the range of 0.05 to 0.25 MW, 0.5
to 2.0 ka/s, and 0,3 to 0,5°C for neutron power, pri-
mary coolant flow, and temperature difference measure-
ments, respectively. The error bounds for individual
sensars can he dynamically compensated to account for
process changes. For example, the error bound for the
gamma ray sensor {see the System Description section
and Figure 1) is designed to be relaxed under transient
conditions to prevent possible false alarms by taking
into consideration a half 1ife of 7.4 sec for N6 and
the transport delay due to coolant flow within the core
tank, whereas the remaining three power sensors are
assigned invariant error bounds.

The MITR-IT is started and shut down every week.
A series of tests were conducted during the week days
with different values of mean time hetween false
alarms, rangina from 20 te 100 hours, at sampling fre-
quencies of 5 hz, 2 hz, 1 hz and 0.2 hz, With proper
choices of error hounds for the sensors, fair agree-
ments hetween the actual and desired rates of false
alarms were observed under normal operations. The
alarm rates were found to increase (decrease) with
smaller (larqer) values of error bounds. The reason
for this phenomenon is that the sensor noise statistics
are intermediate between uniform and Gaussian. I[If the
noise associated with each sensor was perfectly
Gaussian, the alarm rates should have been independent
of the error bounds.

Nuring the tenure of the tests for several months,
there were practically no unexpected false alarms. A
natural failure occurred in the hardware of one of the
flow sensors, Since the failure was ahrupt and of
large maqgnitude, it was immediately isolated, and the
flow estimate was obtained from the remaining three
sensors. Jo verify the fault diagnostics capability of

the methodoloaqy, different types of sensor failures in
excess of the error bounds were simulated while the
reactor was in operation (with prior permission from
the reactor safety committee). Typical cases are
reported below.

(1) Faulty Sensor Calibration: Scale factor for
one of the three AT sensors increased on-line such that
the resulting offset exceeded its error bound by a
modest amount. An inconsistency of this sensor with
respect to the remaining sensors (that were mutually
consistent) caused the isolation of the affected sensor
as "high fail" within a few samples. Similar tests
were successfully conducted with the power and flow
Sensors.

(2) Gradual Drift: Drifts were introduced in the
form of ramp functions in individual measurements.
Appropriate alarms were received when the drifts
exceeded the respective error bounds. On the average,
delays in detection decreased with increased drift
rates.

To demonstrate the effect of a common-mode sensor
failure, an identical drift was induced as a hias in
two power sensors. Consequently, a failure was de-
tected as this pair gradually became inconsistent with

Tahle 1. Expected Values and Covariance Matrices

(a) Power Sensors (MW)

# #2 #3 #4
4.90 4.90 4.90 4.90
[ 8.7x107%  3.9x1074 4.9x1074 5.4x10 4
7.2x10°%  3.2x1074 3.8x1074
1.17%%107>  4.8x1074
L 8.3x10™4 J

(b) Primary Coclant Flow Sensors (kg/s)

il # # 44
143. 143. 143. 143.

~ 1.0 0.11 0.05 0.05 )
0.32 0.03 0.03
0.35 -0.04

L 0.45 ~

(e) Temperature Difference Sensors (°C)

B #2 £
8.65 8.65 8.65
1.28x1072 2.92x107> 2.30x107°
5.03x10 2 3.62x10°
5.04x10 "2



the remaining pair of mutually consistent sensors. The
implication is that one of the two pairs was faulty,
possibly due to a common cause. An inspection of all
sensor readings in this case revealed a common-mode
failure of the specific sensors.

(3) Degraded Instrumentation: Random noises with
zero means were added to several measurements. _A1arm
rates increased with larger noise to signal ratio.

(4) Failed Sensors: Sensors were disconnected
one at a time from the data acquisition system, result-
ing in immediate isolation of the affected sensor.

(5) Abnormal Plant Operation: As a means of
extracting radiation for experiments, the MITR-II con-
tains a port through the D20 reflector. When this
port is opened, due to changes in neutron flux distri-
bution, the scale factor for one of the flux detectors
is significantly altered, thus causing an alarm for
faults. In this case, an estimate of neutron power is
obtained as a weighted average of the remaining sensor
outputs. The operator is thus alerted to the possibil-
ity that the port may have inadvertently been opened.

Conclusions

This paper presents the application of an on-line
sequential test procedure for fault diagnostics of
sensor signals in an experimental fission reactor.
Features of the reactor instrumentation are similar to
those found in commercial power reactors, i.e., stan-
dard flow, temperature and neutron flux sensors with
their attendant noise and statistical characteristics.

The concepts of the parity space and sequential
probability ratio test (SPRT) are the essence of the
algorithm. The methodoloqy is suitable for on-line
fault diagnostics in commercial-scale nuclear and
fossil power plants as well as in chemical and process
industries.
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Appendix

A.l Fault Detection and Isolation Technique

The underlying principle of the fault detection

and isolation (FDI) technique5 is briefly described in
this section. The redundant measurements for a scalar
process variable such as reactor power can be modelled
as

mo= Hx+e (A-1)

where m is the (2x1) array of measurements for the
process variable whose true value is x. The array ¢
represents measurement noise such that, for normal
functioning of each measurement, )gi| < by, the speci-

fied error bound with i = 1,2,...,2. For scalar
sensors, the measurement matrix can be chosen as

H=T[11 eae 1]T without loss of generality. Any two
measurements at the sampling instant n are consistent
if they differ by no more than the sum of the allowable
errors for each of them.

S -
[ng0) = m(m)| < bi(m) + () L ‘
J J - 19211'-32

Ly
]

(A-2)

The consistency of each pair of measurements can be
determined solely on the basis of current observations
as defined above or hy sequential tests, described in
Section A.2, that rely on past observations as well.

As occasional inconsistencies are Tikely to occur when
no failures are present, sequential tests are useful in
reducing the probability of false alarms.

Since the consistencies among all pairs of meas-
urements is independent of x, the true value of the
process variable, the measurement vector m is projected
onto the left null space of the measurement matrix,

called the parity space,6 such that the variations in
the underlying variable x are eliminated and only the
effects of the noise vector ¢ are ohserved. The pro-
jection of m onto the parity space of dimension (2-1),
known as the parity vector, is given as
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(A-3)

where V is chosen such that its (g-1) rows form an
orthonormal basis for the parity space, i.e.,

T

VH 0, W =1

2-1°

T

and V'V = -LT

.
I, - H(HH) (A-4)

For normal operations, when no measurements have
failed, the parity vector p is small, reflecting
acceptable errors in all measurements which are mutual-
ly consistent within the allowable error bounds. If a
failure occurs, the parity vector grows in magnitude in
the direction(s) associated with the failed measure-
ment(s). An increase in the magnitude of the parity
vector signifies detection of a failure, and its rela-
tive orientation with respect to the failure directions
can be used to identify the failed measurement(s).
Reference 5 provides a systematic approach to fault
detection and isolation in a set of g measurements by
concurrently checking the consistencies of all g(g-1)/2
pairs of measurements in terms of their error bounds.
For example, consider three measurements mys My,

and my for a process variable. If one of the measure-
ments, say m s is faulty, then only one pair, namely
(mz, m3), will exhibit consistency, and consequently
the measurement m, will be isolated. An estimate X of

the measured variable can be evaluated as a weighted
average of the consistent measurements m, and M. How-

ever, ahsence of any consistent pair signifies failure
of at least two out of the three measurements where a
fault can be detected but not isolated; in that case it
may not be possible to obtain an estimate X. A geomet-
ric interpretation of this methodology, along with
further details, is given in Reference 5.

A.2 Development of the Sequential Test Algorithm

The difference between two measurements in the kth
pair (see equation (A-2)) at the sampling instant n is
defined as

—ts
I

= 1)2!"°:£
§ =" Tdsvunsh
k=1,2,...,2(2-1)/2

(A-5)

Ek(n} = F'-'I_i(n) = mj(ﬂ) s

Assuming that the measurement noise e is §tationary,
the stochastic variables gk(n) are normalized as

’fk(n) = gk{n) / O (A—ﬁ)

where 9 is obtained from the variances and cross-

covariance of m. and m, (see Table I). Thus, at every

sampling instant n, E(yk(n)} = 0 and Var (Tk(n)) =1
for k = 1,2,...,2(2-1)/2. The noise distribution of
Yy is assumed Gaussian on the justification that Y

is a linear combination of m, and m; whose noise
statistics were found (by experimentation) to be inter-

mediate between uniform and Gaussian.

In the sequential tests, a decision is made be-
tween HO’ the no-failure hypothesis, and Hl' the fail-

ure hypothesis, on the basis of the information pro-
cessed at consecutive samples. The hypotheses H0 and
Hl are defined as

HO: The process 1k(n) at the sampling instant n
is Gaussian with zero mean and unit variance.

Hy: The process yk(n) at the sampling instant n
is Gaussian with mean tuk(n) and unit vari-
ance.

The mean in the failure hypothesis H1 can be positive
or negative signifying high or low failures, respec-
tively.

The 1og likelihood ratio at the jth sample is de-
fined as

p(Tk{j] Hl)

- ., k=1,2,...,0(2-1)/2

Ck(j) = =kN
(A-7)

Then, the log likelihood ratio ag(n) for n consecu-
tive (conditionally) independent samples is given by

D(Tk(”s Tk(z)Q se8 '\fk(n)IHl)
Rl A ) B 2 IIETTRRE A O L)

A (n)

(A-8)

which yields the following recursive relations for )
positive (pk) and negative (-uk} values of the mean in

hypothesis HI:

X(m) = af(n-1) + e (n) (w072 = vy ()

(R-9)

Ag(n) A (n=1) + () (n)/2 + vy (n)

Following Chien's sequential test procedure,3 the algo-
rithm is formulated as follows:
e Initialization:

AE(D) = AE(U) = 0, k=1,2,...,2(2-1)/2

e Lower limit setting:

Max [ag(n), 0]

>
=+
—
2
S
[l

for all n > O

e
"

—
3

—
i

Max [AE(H], 0]
e Consistency of kth pair:

Ai{n) < ek(n) and x;(n) < ek(n) for alln> 0



e Inconsistency of kth pair:

xl';{n) > ak(n} or g;(n) > ek(n} for all n > 0

e Upper limit setting:
AE(n) = Min [xf(n), e (n)]
for all n> 0

Ap(n) = Min [ap(n), ¢ (n)]

where ek(n) = zn[N(uk{n]}zfz]] is the detection thresh-

old, N being the mean time, i.e., the number of sam-
ples, between false alarms (N>>1), and the parameter
¢k(n) [greater than or equal to 6, (n)1, for upper limit

setting, allows possible self-recovery of temporarily
degraded sensors that are not failed by the FDI tech-
nique of Section A.l. The recovery takes longer with
larger values of e In this study, q,k(n) was selected

to be equal to ak{n). The lTower limit of A's is set to

include the effects of a priori probabilities of sensor
failures between consecutive samples.

The magnitude My of the mean can be chosen as a

function of the error bounds (of the appropriate pair
of measurements) that can be specified on the basis of
instrument manufacturer's specifications or the actual
measurement noise statistics. For example, By can be

modelled, in view of the equations (A-2), (A-6) and
(A-9), as

where the parameter y is chosen in the vicinity of 1.
Furthermore, if the error bounds are time-independent,
then the means "k(”) =y at all sampling instants.
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The information on consistencies and inconsisten-
cies of all measurement pairs, obtained from the se-
quential tests, is applied in the FDI technique of
Section A.1.
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