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An adaptive filter has been developed for calibration and estimation in multiply
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redundant measurement systems. The filter is structured in the framework of a fault

detection and isolation (FDI) methodology where the decisions are made on the
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basis of consistencies among all redundant measurements.
measurements are calibrated on-line to compensate for their errors. An estimate of
the measured variable is obtained as a weighted average of the calibrated

The consistent

measurements where the individual weights are adaptively updated on-line on the
basis of the respective a posteriori probabilities of failure instead of being a priori
fixed. The calibration and estimation algorithm is suitable for real-time ap-
plications using commercially available microcomputer systems, and has been
verified by on-line demonstrations in an operating nuclear reactor.

Introduction

Reliability and performance of complex processes such as
spacecraft and nuclear power plants depend upon the validity
and accuracy of sensor signals that measure plant operating
conditions for information display and control. To enhance
safety and plant performance, multiply redundant sensors are
often installed for measuring the key variables. In this con-
text, the task of signal validation can be classified into two
broad categories: (1) fault detection and isolation (FDI), and
(2) measurement calibration and estimation. The objective of
this paper is to develop and demonstrate a unified procedure
for both aspects of signal validation in multiply redundant
measurement systems.

Various methods for fault detection and isolation (FDI)
with diverse applications have been reported [1-9]. In this
study, an experimentally validated FDI technique [7, 8] has
been adopted where the decisions are made on-line from the
relative consistencies among all redundant measurements
under both steady-state and transient operations; the major
assumption is that a measurement is normal if it does not
exceed the true value by a specified error bound that can
usually be evaluated from the instrument manufacturer’s
specifications or plant data. The FDI decisions can be made
either solely on the basis of current observations or by
sequential tests that rely on the past observations as well. The
single sample approach is applicable only if the failures to be
detected are large in comparison to the measurement noise
and uncertainties. A moderate degradation of sensors can be
reliably detected and isolated by sequential tests that make use
of the cumulative information provided by the measurement
history. An on-line calibration and estimation technique has
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been developed in the framework of the aforesaid FDI
methodology via a sequential approach.

For a time-dependent process variable, if the redundant
sensors are installed in different spatial locations such as
neutron flux detectors in a nuclear reactor, the measurements
may exhibit deviations from each other after a length of time
even though the sensors are functioning normally. These
differences could be caused by time-varying plant parameters,
reaction kinetics, transport delay, etc. Consequently, some of
the sensors may be erroneously deleted as faulty if they are
not periodically recalibrated. On the other hand, failure to
isolate a degraded sensor could cause an inaccurate estimate
of the measured variable, and the plant performance may be
adversely affected if that estimate is used as an input to the
controller. For multiply redundant measurements, these
problems can be resolved as follows:

(1) All consistent measurements are simultaneously
calibrated on-line to compensate for their errors.

(2) The weights of individual measurements for com-
putation of the estimate are adaptively updated on-line
on the basis of their respective a posteriori probabilities
of failure instead of being a priori fixed.

In the event of abrupt disruptions in some sensor(s) in
excess of the specified error bound(s), the respective sensor(s)
are isolated by the FDI logic, and only the remaining
measurements are calibrated and provide an estimate. If a
gradual degradation occurs, the faulty sensor may not be
immediately isolated but its influence on the estimate and the
calibration of the remaining sensors is diminished as a func-
tion of its degradation because its weight decreases with an
increase in the a posteriori probability of failure. Thus, if the
error bounds of the measurements are appropriately increased
to reduce the probability of false alarms, the resulting delay in
detecting a gradual degradation could be tolerated because an
undetected fault, as a result of the reduced weight, has a little
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bearing on the accuracy of calibration and estimation.
Moreover, since the weight of a gradually degrading
measurment for computing the estimate is smoothly reduced,
the eventual isolation of the fault does not cause any abrupt
change in the estimate. This feature is very desirable in
feedback control systems.

Recently, Stanley [9] has demonstrated the application of a
fault detection and measurement estimation technique for
closed loop control of a chemical plant. This technique relies
on both redundant data and a process model to isolate faults
and to compensate for bias errors in measurements. It also
adaptively updates the variance of measurement noise to
obtain weighted least square estimates of plant variables.
However, a detailed mathematical treatment of this technique
[9] was not presented. The calibration and estimation
technique presented in this paper incorporates the
aforementioned properties and has the following distinct
features:

(1) No model of the physical process is required if suf-
ficient sensor redundancy is available.

(2) Both fault isolation and sensor calibration algorithms
are designed using a posteriori probability of failure of
individual (redundant) measurements. The com-
putations are made recursively on the basis of the past
observations.

A recursive filter has been designed for fault diagnostics,
sensor calibration, and measurement estimation, and verified
by on-line demonstrations in an operating nuclear reactor.
The development of the filter structure, performance con-
siderations, and the experimental results form the main body
of the paper. Brief mathematical descriptions of some im-
portant concepts are provided in Appendices A and B.

Algorithm Development

Sensor Calibration. A set of / sensors measuring a plant
variable is modelled at the kth sample as

m(k) =[H*(k) +H(k)]x(k) +b(k) +e(k) (D
where

m is (/X 1) array of sensor outputs

H*is (I X n) a priori determined scale factor matrix of rank #;
I>n,

H is (I X n) matrix representing scale factor errors,

is (n X 1) true value of the measured variable,

is (/x 1) array of bias errors, and

is (/X 1) array of measurement noise such that E(e) = 0

and E(ee”) =R

The measurement noise covariance matrix R (k) plays an
important role in the design of the adaptive filter for both
calibration and estimation. Later, it will be shown how R (k)
is dynamically evaluated from the past history of calibrated
measurements.

For sensor calibration, /(n+ 1) parameters in scale .factor
errors H (k) and bias errors (k) may be estimated along
with the estimation of the measured variable x(k) [10]. In
many industrial applications such as chemical plants and
electric power plants, process disturbances and sensor
degradations often take place quasi-statically over a long
period. In that situation, variations in scale factors and bias
are not distinguishable; an additive correction which com-
pensates the combined effect of scale factor and bias errors is
sufficient for sensor calibration, i.e., we want to obtain an
estimate ¢ (k) where

c(k) A H(k)x(k) +b(k) @

On the other hand, if the process variables change rapidly, as
in the case of orientation of input axes in navigational sen-
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sors, individual compensations of scale factors and bias in the
sensors are desirable. Therefore, the sensor calibration filter
could be designed for (1) computation of the /-dimensional
¢(k) under steady state and quasi-steady-state operations,
and (2) appropriate distribution of ¢é(k) into /(n+1)
parameters of A (k) and b (k) under transient conditions, as
an alternative to the use of an /(n + 1)-dimensional filter. (The
decision whether to estimate H (k) and b(k) from ¢(k) or
not may be based on an appropriate criterion.) We have
designed a calibration filter which is particularly suitable for
steady-state and quasi-steady-state operations when the
process variables change rather slowly; for extension to
transient operations, a procedure for obtaining H (k) and
b(k) from (k) is outlined in Appendix A. The rest of this
section is devoted to the computation of ¢ (k)

The problem of bias estimation has been addressed by
several investigators [1, 2, 11]. Friedland [11] treated the bias
as an unknown constant parameter and simultaneously
obtained the estimates of bias and physical state variables
from the state and measurement equations. Willsky and Jones
[2] devised an adaptive filtering system for detection and
estimation of abrupt changes in bias (that may occur at an
unknown time) using the generalized likelihood ratio (GLR)
approach. The adaptive filtering technique, presented in this
paper, takes advantage of redundant measurements of a
physical variable, and takes into account both gradual and
abrupt changes in measurements for calibration and fault
detection. As discussed in the previous section, an abrupt
disruption in a measurement in excess of a specified bound is
isolated by the FDI logic and consequently, the calibration
filter is driven by the remaining redundant measurements. In
this approach, the additive correction ¢ (k) in (2) is treated as
a stochastic process (with assumed noise statistics), not as an
unknown constant parameter [11]. Furthermore, due to
availability of redundant measurements, the computation of
¢(k) is independent of that of X(k), the estimate of the
physical variable, thereby eliminating the need for a dynamic
process model involving x (k). Thus, the scale factor and bia.
errors in (2) are modelled together as a discrete-time Markov
process.

clk+1)=F(k)c(k)+v(k) 3)

where F(k) is the state transition matrix, and v (k) is the
noise associated with modelling uncertainties such that
Elv(k)] = 0and E[v(k) v(k)T] = Q(k). In the absence of a
priori information on bias and scale factor errors of in-
dividual measurements in (1), each component of ¢ (k) in (3)
are assumed to have identical dynamics, i.e., the state
transition matrix F (k) = ¢ (k)I, (for a scalar ¢). The criteria
for selection of the parameters Q(K) and ¢ (k) are presented
later.

Upon evaluation of ¢(k), the estimate for combined effect
of bias and scale factor errors, the measurements are
simultaneously calibrated at every sample as

y(k) B m(k)—ék) @)

A sensor is assumed to be functioning normally if its
calibrated output does not exceed a specified error bound. In
this structure, FDI decisions [7, 8] are made on the basis of
mutual consistencies among the calibrated measurements with
respect to their individual error bounds such that occurrence
of false alarms due to scale factor and bias errors are reduced.
In the event of a gradual degradation, the calibration
correction ¢(k) may tend to track the failure. Therefore, the
FDI system must be designed to guard against such a
situation. This feature is addressed later.

An estimate X (k) of the measured variable is obtained as a
weighted average of those measurements which are deter-
mined to be mutually consistent by the FDI logic. We will first
obtain X(k) as a weighted average of the uncalibrated
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measurements and later show that this estimate is identically
equal to that obtained from the calibrated measurements
using the same weighting matrix. Normalizing (1) with respect
to R (k) ~'/? and denoting @ (k) = R (k) ~"? @ (k) yield

(k) =H*(k)x(k) +¢E(k) +é(k) 5)

such that E[é(k) é(k)T] = I,. A least-square estimate of the
measured variable is generated from (5) as

X (k) =[H* (k) TH* (k)] " H* (k) " (k)
=[H* (k) "R (k) ""H* (k)] 'H*(k) "R (k) ~'m (k)
(6)
It is important to note that R (k) is adaptively updated, as
shown later, so that a degraded measurement, not isolated as
faulty, bears a relatively less weight on X (k).

The residuals of the uncalibrated measurements, defined as
B(k) A m(k) — H*(k) X(k), can be treated as
measurements for the additive correction c(k) which we want
to estimate for calibration. From (5) and (6), it follows that
k) =1L = H* (k) (H* (k) TH* (k) H* (k) TI(E (k) +E(K))

@)
Since the objective is to calibrate each measurement with
respect to the remaining redundant measurements, thereby
making the calibration process independent of x(k), it ap-
pears that the residuals (k) can be used to drive the
calibration filter. However, it follows from (7) that only (/—
n) components of the vector fi(k) are linearly independent;
the use of a subset of (/—n) independent components or any
linear combinations thereof as the input to calibration filter
will yield only partial observability, not complete ob-
servability [12, 13], of the state variables c (k) in (3) for F (k)
= ¢(k)I,. Therefore, the filter must be constructed in an
appropriate (/— n)-dimensional subspace of R’ such that the
projection of ¢(k) onto that subspace is observable from that
of (k). The projection of (k) onto the left null space of
H*(k), known as the parity space [14], is given as

p(k)=V(k)p(k) ®
and forms a set of (/—n) independent measurements. The (/—
n) X! _projection matrix V(k) satisfies the property
V(k)H* (k) = 0. Additionally, V' (k) is chosen such that its
(/—n) rows from an orthonormal basis for the parity space,
i.e.,

Vkyvk)y"=1,_, ©
With the above choice, it follows that
V(k)TV(k)=I,—H* (k) [H* (k) TH* (k)1 H* (k)T
(10

and, therefore, the residuals f:(k) in (7) may be expressed as
(k) =V (k)TV (k) (k) a1n
Using the proper—ty (9) and the relationship (11), the projection
pin (8), also known as the parity vector, may be expressed as
p (k) =V(k)m (k) =B(k) +e(k) (12)

where B(k) 2 V(k)é(k) and e(k) = V(k)é(k). Therefore,
it follows from (5) that E(e(k)) = 0 and E[e(k)e(k)T] =
Il—n'

To design the calibration filter, (3) is normalized w.r.t.
R(k) "% and, by projection onto the parity space, the
combined effect of scale factor and bias errors is expressed as

B(k+1)=(k)B (k) +r(k) (13)

where ® (k) éd)(k)],_,,, and »(k) A V(k)R (k) ~V2v(k),
i, E(v(k))=0and©(k) B E(k)r(k)T] = V(k)
R (k) ~"2Q(k)R (k) "2V (k)T.

Combining the state equation (13) with the associated
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measurement equation (12), and assuming that the noises e
and » are white and mutually uncorrelated, the standard
recursive relations for a Kalman filter [12, 13] are

B(k+1)=¢(k)[B(k) +T (k) (p(k) —B(k))] (14)
where ﬁ(k) is the predicted estimator of §(k) and the filter
gain matrix is obtained as

T(k) =I1(k)[TI(k) +1;_,]""

I(k+1)=(¢(k))*[L;—, =T (k)]IL(k) + O (k) (15)
From the (/—n)-dimensional vector §(k) , an /-dimensional
correction vector ¢(k) can be obtained by minimization of a
weighted norm Ié(k) Iy, with the relationship B(k) =
V(k) c(k) as a constraint [13]. The result, for a positive
definite W (k), is
gz(k) =W(k) "V (k)TIV(k)W(k) " V(k)T17'B(k) (16)
Selection of the time-dependent weighting matrix W (k) is a
subject of further research and has not been addressed in this

paper. Setting W (k) = I, for all k and using (9), (16) reduces
to

ék) =V (k)TB(k) a7

Minimization of I¢(k)Ill implies that corrections of least
magnitude are applied to calibrate the sensors at every
sampling instant although ¢(k) may not be an unbiased
estimate of ¢ (k).

It follows from (17) and (9) that

IG(k) Il =B (k) for all k (18)
and the filter equation (14) can be expressed as
Blk+1)=¢ (k) [B(k) +T (k) V (k) (171 (k) — (k)] (19)

An important feature of the calibration filter is that the
estimate xX(k) in (6) using the uncalibrated measurements
m(k) is identically equal to that obtained from the calibrated
measurements y(k) = m (k) — ¢(k) in (4). (It can be readily
verified using the property V (k) H* (k) = 0.)

In view of (11), defining the residuals of the calibrated
measurements as y (k) A V(k)TV (k) y(k) and noting that
V(k)TV(k) é(k) = é(k), the calibration filter in (19) may
also be expressed as

Blk+1)=o (k) [B(k) +T (k) V(k)7(k)] (20)

in terms of the residuals of the calibrated measurements. The
additive corrections required in (4) may now be obtained as

E(k) =R (k)2 V(k)TB(k).

Degradation Monitoring and Adjustment of Filter
Parameters. The measurement noise covariance matrix R (k)
influences both calibration and estimation. Since the accuracy
of a measurement is directly related to its variance, R (k) is
adaptively updated on the basis of relative performances of
the calibrated measurements (that are determined to be
consistent by the FDI logic) as

R (k+1)=Diag[f(m; (k))] @1

where 7; (k) is the a posteriori probability of failure of the ith
measurement and f(*) is an appropriate monotonically in-
creasing function such that f(*) — o as * — 1. The selection
of the function f(*) is a design feature; a typical choice, used
in the reported experimentation, is f(*) = 1/(1 — *).

The calibrated residuals (k) represent a measure of
relative degradation of individual measurements. For
example, under normal operations, lly(k) Il = 0 but this may
not be true for the uncalibrated residuals p(k). Whereas
abrupt disruptions in excess of the allowable bounds are
isolated by the FDI logic, the smaller errors that are not
detected by the FDI logic can usually be realized from the a
posteriori probability of failure ; (k). Therefore, m; (k) is
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recursively computed from the history of the residual v; of the
ith calibrated measurement on the basis of the following
trinary hypotheses:

°H;: Normal behavior with density function °p; ()

'H;: High (positive) failure with density function ! p; (=)

2H;:
The three density functions for each residual are determined a
priori from experimental data and the instrument
manufacturers’ specifications. Only one test is needed for
each residual in the trinary hypotheses approach as compared
to the usual binary hypotheses that require two tests to ac-
commodate for positive and negative failures.

Following the recursive relations derived in Appendix B, 7,
is obtained as

Low (negative failure with density function 2p; ()

_ Yilk)
i (k) = —l+l//,(k) (22)
where
Pi+ i (k=177 'pi(vi (k) +2p; (i (k)
.k p—
Vi (k) [ 2(1-p;) ][ Opi(vi(k)) ]

and p; is the a priori probability of failure of the ith sensor
between any two consecutive samples. Therefore, the lower
limit of #; can be set to p;. On the other hand, solution of (22)
shows that, for a gradual degradation of the ith sensor, ;
may asumptotically approach 1 and consequently its variance
r; approaches infinity, i.e., its weight r;”! approaches 0. To
allow a restoration of the sensor following a recovery, the
lower limit of the weight r;! is set to a small positive value,
i.e., the upper limit of 7; isset to 1 — «; where 0 < o; < < 1
is a design parameter. Therefore, from (22), ¥; is constrained
to have the lower and upper limits of p;/ (1 — p;) and (I —
«;) /«;, respectively.

It follows from (13) and (15) that R (k) ~">Q (k)R (k) ~'/?
is a critical filter parameter, not Q(k), the covariance matrix
for modeling uncertainties in (3). In the absence of ap-
propriate a priori information, the choice of Q(k) with
respect to R (k) is a design feature. The steady-state filter gain
increases with a larger choice of Q and vice versa. Typically,
Q(k) can be selected as a constant matrix equal to the normal
steady-state value of R(k) when all measurements are properly
calibrated, i.e., 17 (k) I =0.

The parameter ¢ (k) in the state transition matrix in (3) and
(13) influences the dynamic response of the calibration filter
(see (15) and (20)). Typically, ¢(k) = 1 if c(k) in (3) are
treated as random walk variables. Alternatively, ¢ (k) can be
chosen in the interval (0,1) to adapt the calibration filter to
time-dependent disturbances. On the other hand, it follows
from (11), (12), (14), and (17) that when E[¢ (k)] is a constant,
the steady-state error E[(z — ¢)] = 0 for ¢ = 1 because the
calibration filter operates on a ““Type 1°’ system. For ¢¢(0,1),
the filter operates on a ““Type 0’ system and the steady-state
error is a monotonically increasing function of (1 — ¢).

Modification of the FDI System

The calibration filter is designed for on-line operations over
a prolonged period in conjunction with a FDI system which is
capable of detecting abrupt disruptions in excess of specified
bounds. Since all (consistent) measurements are
simultaneously calibrated at each sample for small errors, and
if a continuous degradation, such as a monotonic drift, occurs
sufficiently slowly relative to the filter dynamics, the
calibration of the good measurements could be influenced by
the degraded sensor (which is also corrected), and thus the
fault may be disguised. This problem is resolved by
augmenting the FDI system (designed earlier for abrupt
disruptions) with one or both of the following procedures:

1. Limit Check on Corrections ¢(k) by the Calibration
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Filter. 1f the undetected error in a sensor causes simultaneous
errors in the calibration of all measurements, the filter will
generate a correction for each sensor where the magnitude of
the correction for the degraded sensor will be the largest.
Therefore, a limit check on the magnitude of the correction
for each sensor will detect the aforesaid degraded sensor. The
bound for the limit check is selected by a tradeoff between the
probability of false alrams and the allowable error in the
computation of the estimate of the measured variable.

2. Analytic Measurement Supplementing the Sensors. A
mathematical model, formulated on the basis of physical
relationships among several process variables, may provide an
analytically redundant measurement [15] which is in-
dependent of the sensor outputs and, therefore, could be used
for testing the calibration filter. If the analytic measurement
disagrees with the estimate X (obtained from the calibration
filter) in excess of a given bound, then the implication is either
the analytic measurement or the estimate X is faulty. Upon
detecting such a fault, the actual cause of the failure can be
resolved with the aid of other information that are usually
available. This procedure not only detects a possible
malfunctioning of the calibration filter but also guards
against simultaneous and identical faults of all sensors
possibly due to a common cause, known as a common-mode
failure.

Application of the Signal Validation Methodology to a
Nuclear Reactor

On-line verification of the signal validation methodology
was demonstrated in the 5 MWt nuclear reactor, MITR-II,
which is operated by the Massachusetts Institute of
Technology [16]. MITR-II is heavy-water reflected, light-
water moderated and cooled, and its operating principle is
similar to that of a PWR plant. The instrumentation used in
this research consists of four power sensors, four primary
coolant flow sensors, and three measurements of hot leg to
cold leg temperature difference. The noise and statistical
characteristics of the MITR-II’s instrumentation are similar
to those in commercial reactors.

The multiply redundant sensors for power, flow, and
temperature measurements are validated on-line with the aid
of the FDI methodology [7, 8]. In MITR-II, the flow and
temperature sensors are stable and do not need on-line
calibrations. To compensate for process disturbances that
affect the power measurements, and since the reactor power is
presently under computer control that uses the feedback of
the power estimate at each sample [17], the power sensors are
calibrated on-line.

A flow chart for the signal validation scheme of the power
sensors is given in Fig. 1 which can be updated to provide for
scale factor and bias compensation under transient
operations. At each sample, the power measurements are
calibrated and an estimate is obtained as a weighted average
of the valid measurements. To guard against any possible
drifts of the calibration filter, its outputs are tested using an
analytic redundancy and via limit checks as discussed earlier.
A mathematical model of the primary coolant system that
accepts the validated measurements of power and coolant
flow estimates as inputs is used to generate an analytic
redundancy A7" for the hot leg to cold leg temperature
difference [15]. (Please note that the dynamics of reactor
power were not represented in the model.) ATY is compared
with the estimate A7 of temperature difference, obtained
from the sensor outputs, at every sample. Inconsistency of A7’
and AT implies possible errors in the power estimate, and an
alarm message is generated to notify the reactor operator.
This procedure also guards against a common-mode failure
that cannot usually be detected from the power or AT sensors
alone. The other protection against a drift in the calibration
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Fig.2 Uncalibrated and calibrated measurements

filter output is provided by testing the additive correction of
each measurement. If a specified limit is exceeded, the
respective sensor is isolated, and the estimate is obtained from
the remaining valid sensors.

The machine executable form of the FDI and calibration
code on an LSI-11/23 microcomputer system requires a
memory of about 25 kilobytes that include the libraries of
FORTRAN and special-purpose real-time routines. The total
execution time is less than 150 milliseconds per cycle when no
messages are displayed. Therefore, the sampling frequency
was selected in the range of 2 hz to 5 hz depending on the
volume of messages being displayed. The program has been
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Fig.3 Weights of calibrated measurements

tested on-line for continuous operations during the last twelve
months (except for the weekends when MITR-II is shutdown).
During this period, no false alarms were reported when the
FDI logic was exercised using the calibrated power
measurements. To verify the fault diagnostic capability of the
method, different types of sensor failures were simulated
while the reactor was in operation. An interesting case is
reported below.

To simulate the failure of an electronic component, the
scale factor for one of the power sensors was abruptly in-
creased on-line such that it became inconsistent with the
remaining three sensors. Thus, the affected sensor was im-
mediately rejected by the calibration filter. Consequently,
only the three remaining good measurements were calibrated,
and the estimate of power was obtained from these
measurements. However, the weight of the affected sensor
was reduced to a very small value (because it had a large
residual) before it was deleted by the FDI logic. To simulate
recovery to the original status following a repair or
replacement, the scale factor of the deleted sensor was
brought back to its correct value, and the sensor was reac-
tivated on-line by the operator. The reactivated sensor had a
correct reading and, therefore, was consistent with the
remaining sensors. Initially, this sensor had a small weight,
i.e., alarge variance in the memory but it gradually recovered
to the original status because of a small residual. During the
experiment, the estimate of power was unaffected.

A case of sensor calibration in real operations is illustrated
in Figs. 2 to 4. As a means of extracting radiation for ex-
periments, MITR-II contains a port of H,O through the
shield. When this port is opened, due to changes in neutron
flux profile, the output of power sensor #1 is significantly
changed. Since this disturbance occurs slowly (within 18
seconds in contrast to a sampling period of a fraction of a
second), the calibration filter generates the correction ¢ (see
Fig. 1) such that all residuals are reduced at each sample. The
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behavior of all four power sensors are illustrated by a series of
curves in Fig. 2. Prior to opening the port at approximately 20
seconds, the uncalibrated measurements had mutual
deviations within 120 kW, and the calibrated measurements
were clustered together; consequently, the residuals (that are
computed on the basis of calibrated measurements) were close
to zero, and the relative weights for computing the estimate
were identical for all four sensors. On initiation of the
disturbance due to opening the port, at the time instant of
about 20 seconds, the uncalibrated measurement of sensor #1
gradually decreased from about 4550 kw to 4100 kw within a
period of approximately 25 seconds. About 40 seconds later,
when the disturbance was removed by closing the port, the
uncalibrated measurement reached its original status. During
the disturbance, the calibration filter generated the correction
¢ such that the deviation of sensor #1 from the remaining
sensors did not exceed 125 kw as displayed in the profiles of
calibrated measurements and their residuals in Fig. 2.

As the residuals of all measurements increased upon
initiation of the disturbance, their relative weights were af-
fected as shown in the last series of cruves in Fig. 2 and in the
expanded view of weights during a short period in Fig. 3.
Since the residual of sensor #1 remained large for a long
period and the remaining sensors recovered rather quickly,
only the weight of sensor #1 (that depends upon the time
history of its residuals as shown in (21), (22) and Appendix B)
was driven to approximately zero. Therefore, the estimated
power was practically independent of sensor #1 until the
resumption of its normal state. The consistency of the
calibrated outputs of sensors #2, #3, and #4 in Fig. 2 shows
that the estimated power, obtained as their weighted average,
was steady within 50 kw. The small oscillations in power were
not the effects of sensor calibration; they resulted from the
characteristics of the disturbed process as seen from the
identical responses of the uncalibrated outputs of the #2, #3,
and #4 sensors in Fig. 2. From Fig. 4, the accuracy of the
estimated power can be judged by the close agreement of
direct measurement A7 and analytic measurement A7 of hot
leg to cold leg temperature difference, that are indicators of
true thermal power and the estimated power, respectively.

For FDI purposes, the error bound of each power sensor
was chosen to be 100 kw. Sensor #1 in the uncalibrated system
would have been falsely isolated as faulty due to its low value
during the disturbance. In the calibrated system, no false
alarms occurred becasuse the deviation of sensor #1 relative to
any other measurement never exceeded 200 kw, the sum of the
specified error bounds of any two measurements under
consideration.

Conclusions

For multiply redundant systems, a unified procedure for
fault detection and isolation (FDI), sensor calibration, and
measurement estimation has been developed and verified by
on-line demonstrations in the feedback control of an
operating nuclear reactor under both steady-state and
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transient operations. The FDI decisions are made on the basis
of relative consistencies among the calibrated measurements
and therefore, are less prone to false alarms. The weights of
individual measurements for computing the estimate are not a
priori fixed but are updated as an inversely related function of
the respective a posteriori probabilities of failure. If the
thresholds for individual measurements are increased to
reduce the probability of false alarms, the resulting delay in
detecting gradual degradations can be tolerated because an
undetected fault (within the permissible threshold) does not
significantly influence the accuracy of calibration and
estimation as the weight of the affected measurement
diminishes with its degradation. Moreover, since the weight of
a gradually degrading measurement is smoothly reduced, the
eventual isolation of the fault does not cause any abrupt
change in the estimate; this feature is important for feedback
control.

The signal validation methodology can be implemented
with the aid of commercially available microcomputers for
real-time applications in diverse industrial processes. It is
particularly useful for on-line fault diagnosis and calibration
of redundant sensors that are installed in different spatial
locations such as neutron flux detectors in a nuclear reactor.
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APPENDIX A

Scale Factor and Bias Compensation

Under transient conditions, to obtain the estimates of scale
factor correction H (k) and bias b(k) separately from that of
their combined effect ¢(k), a procedure (which has not yet
been experimentally verified) is suggested.

¢é(k+1) and X(k) are available at the kth sample. This
information, along with previously known H(k) and b(k),
can be used to predict H(k+1)and b(k +1). The distribution
of ¢ among H and b is achieved using the concept of multiple
models [18]. For each sensor, n models are constructed such
that only one out of n scale factors is changed in each model
to accommodate the correction, and the (7 + 1)st model treats
the correction entirely as a bias. For / sensors, the residuals
for the /(n + 1) models are derived as follows:
vi(k+ DA (k+1)=hi(k)¥ (k)  j=1,2,...,nand

(A-1)
YO (k+1) B¢, (k+1) = b; (k) i=1,2, ...,
where subscripts and superscripts indicate row and column
numbers, respectively. The recursive relations for
distributions of weights on scale factor components and bias
are obtained on a probabilistic basis:

wi (k+1)=w/ (k) p; (v} (k+1))

n+1

/[ X w1

s=1

(A-2)

with the constraint that

n+1

Y witk) =1

=

for every i and every k, where p/ () is the a priori density
function for the residual of the jth model of the ith sensor.
The initial conditions for the weights are set such that w/(0) =
0 and

+

wi(0) = 1
1

J

for every i, and if the initial calibration of the sensors is
correct, then b = 0 and hf = 0 for everyiandj.
The bias and scale factor corrections are predicted as:

bi(k+1)=wnV(k+1)é(k+1)

(A-3)
N wi (k+1)¢(k+1)/x (k) if X/ (k) #0
hi(k+1)=< _ )
i (k) if ¥/ (k) =0
The above relations are equivalent to
é(k)=H(k)%(k—1)+Db(k) (A-4)

which is an approximation of (2). However, if the sampling
frequency is sufficiently large with respect to the process
dynamics, X (k) should be close to X (k — 1). Another potential
source of inaccuracy in the estimation of H(k) is the
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dynamics of calibration filter. Unless the filter response is
properly adjusted, changes in ¢(k) may be damped, thereby
making H (k) inaccurate.

APPENDIX B

Recursive Relations for a Posteriori Probabilities in Multiple
Hypotheses

Let z(1), z(2),..., z(k),... be (conditionally) in-
dependent measurements of a variable at consecutive sam-
pling instants. The (N+1) distinct possible modes of
operation are designated as (N+ 1) mutually exclusive and
exhaustive hypotheses.

9H(k) : normal operation at the kth sample
iH(k): abnormal operation at the Ath sample,
i=12,...,N

such that each hypothesis can be treated as a Markov state.
The problem is to derive a recursive relation for the a
posteriori probability of any abnormal operation

N
(k) =P[U"H(k) 1z(1), 22), . . - ,z(k)]
i=1

based on the measurement history.
Let the probability of transition from one state to another
be denoted as a;; (k) = PH (k) |"H (k — 1)] such that

N

Y a;k) =1
j=0

for every i and every k.

Let the joint probability &; (k) AP[ H(k),Z(k)]
Z(k) denotes the ensemble {z(1), 22), ..., z(k)}.
¢ (k) = PVH(k),z(k), Z(k—-1)]
= Plz(k) VH(k)IPVH (k), Z(k—1)].

Since

where
Then

N

PUH (k),Z(k—1)]= ), PUH(k),
i=0

N

iH(k—1),Z(k—-1)]= EP[Z(k— DIH(k-1)]

i=0
PUH (k) |'H(k—1)]P['H (k—-1)]
.

= Y PUH (k) ' H (k= DIP['H (k= 1),Z (k= 1),

i=0

it follows that

N
g (k) =p; (k) ) a;(k)§ (k=1) (B-1)
i=0

where a priori conditional probability is denoted as p; (k)

= P[z(k) |H, (k)] for every j. The a posteriori probability is
defined as

w; (k) =PUVH (k)1 Z(k)]=PVH(k),Z(k)]

OLCGEDD)
i=0

N
(0 /(o (k) + X (5, (K))
=il

N

SRCUEINAG) (B-2)
i=1
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where

¥ (k) B¢, (k) 7£0 (k)

N
ag (k) + Y a; (k) ¥ (k—1)
=1

p;(k)
= B-3
Do (k) N (B-3)
a0 (k) + Y aip (k) i (k—1)
i=1
Then,
N ‘ N ¥ (k)
=P|\J/H(k)1Z(k) | = (k)=——— (B4
(k) [H (12| ;lw,() 9
where
N
V(k)A Y vi(k) (B-5)
i=1

The above expression for ¥ (k) can be expressed by a
simple recurrence relation under the following assumptions:

1. No transition from any abnormal mode to the normal
mode, i.e., once a measurement has failed, it does not
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recover unless repaired, i.e., a;, (k) = 0 foreveryi # 0
and every k.

Transition from the normal mode to any abnormal
mode is equally likely. If p is the probability of failure
during any sampling period, then ay; (k) = p/N and
ay (k) =1 — pforeveryi # 0andevery k.

Transition from one abnormal mode to any other
abnormal mode is equally likely, i.e., a failed
measurement may assume any one of the possible N
abnormal modes with equal probability, i.e., a; (k) =
1/N for every i # 0andeveryj # 0.

Using the above assumptions and (B-5) in (B-3),

N
p+ Q2 vi(k—1)
ig:l . Pj(k)

N(1-p) Po (k)

v, (k) =

_pH¥k=1  pi(k)

(B-6)
N(1-p)  po(k)

Therefore, combining (B-5) with (B-6) yields the relationship

pHY (k=1 v pi(k)

(B-7)
N(-p) = po(k)

Y (k)=
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