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A Redundancy Management
Procedure for Fault Detection and
Isolation

This paper presents the theoretical basis of a novel redundancy management pro-
cedure developed for fault detection and isolation (FDI) in strategic processes such
as spacecraft, aircraft, and nuclear plants where multiply-redundant measurements
are available for individual variables. The set of redundant measurements may com-
prise both direct sensor outputs and analytically derived measurements. The redun-
dancy management procedure presented in this paper is essentially independent of
the fault detection strategy and measurement noise statistics, and builds upon the
concept of partitioning the set of measurements into “‘consistent’’ and ‘‘inconsis-
tent’’ subsets for purposes of estimation and fault isolation, respectively. The pro-
posed procedure is suitable for real-time applications using commercially available
microcomputers and its efficacy has been verified on-line in operating nuclear

reactors.

1 Introduction

Safety, reliability, and performance of complex processes
such as spacecraft, aircraft, and nuclear plants can be im-
proved by utilizing systematic failure detection procedures
[1-13]. The redundant measurements that are usually
available for individual critical process variables comprise sen-
sor outputs (possibly of different accuracies) in conjunction
with analytically derived measurement(s) of the given variable.
The analytic measurements are synthesized from physical rela-
tionships between measurements of other process variables as
well as from known characteristics of the process itself [3, 9
10, 11]. In contrast to the state variable-based models of
physical processes that are often employed to construct filters
for fault detection [7, 8], analytic redundancy could be
primarily used to resolve common-mode failures as well as to
detect (non-sensor-related) plant component failures [9-11].
In that case, modelling errors and uncertainties incurred in
analytic measurements have a relatively less significant bear-
ing on the efficacy of accurate fault detection. This approach
serves as a failure detection recourse where development of
process models that are of appropriate accuracy and complexi-
ty for filter construction is not feasible.

Some of the better known existing fault detection pro-
cedures discussed in [1, 2, 7, 8, 9] are based on assumptions
such as knowledge of the probability density function (or its
characteristics) for both nominal and failed conditions, and
existence of a well-defined process model that can be used for
constructing a filter. For many industrial applications,
measurement noise statistics are not completely known nor do
they follow a specific pattern such as having a Gaussian
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distribution, and the available process models may be too
complex or have insufficient accuracy to be used in the con-
struction of a filter. In the absence of relevant statistical infor-
mation, the noise model may be approximated as being
amplitude-limited [10, 11, 14]. In that case, the maximum
noise amplitude that does not exceed a specified error bound is
interpreted to be acceptable under nominal operating condi-
tions. The information on sensor and plant equipment that is
routinely available from the manufacturers is usually suffi-
cient to quantify such error bounds. However, if appropriate
information on noise statistics is available, the aforemen-
tioned restriction can be lifted by assigning fixed probabilities
for the noise amplitude being within the error bound for
nominal and failed conditions, respectively. This can be ac-
complished by applying established procedures such as se-
quential tests of Wald [15], Shiryayev [16], and Chien [17] (for
example see [18, 19]).

We propose a fault detection technique based on the
aforementioned approach of requiring multiply-redundant
measurements of a process variable along with a priori
specified error bounds for each measurement. The latter re-
quirement pertains to the assumption of having amplitude-
limited noise and may be modified to accommodate additional
noise statistics if they become available. The goal of this paper
is to present the theory and application of a novel redundancy
management procedure from both an algebraic and a
geometric point of view, so that it can be used in the develop-
ment of a fault detection and isolation methodology. The pro-
posed redundancy management procedure makes use of all
available measurements — sensor outputs and analytic redun-
dancy —and is essentially independent of the failure detection
strategy, the measurement noise statistics, and the associated
assumptions such as amplitude-limited noise. An outline of
the redundancy management procedure is provided below.
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Failure decisions should be made by concurrent checking of
the “‘consistency’”’ or ‘‘inconsistency’’ of the redundant
measurements at each sample time. (Precise definitions of the
terms in quotations and their physical interpretation are pro-
vided in Section 2.) Checking the consistency or inconsistency
of each redundant measurement can be carried out by one of
the following two options: (1) use of allowable error bounds
associated with each measurement, where such bounds are
specified a priori and may be time-varying; (2) use of the noise
statistics of individual measurements provided that the
available information is adequate for the development of a
decision algorithm such as generalized likelihood ratio test [1,
2]. These options can be implemented either using single sam-
ple tests or via sequential tests based on the time history of
both current and past observations. Use of both fixed and
variable sample approaches may be appropriate for the above
option #2 as reported earlier in [11, 18]. The variable sample
approach could provide an optimal decision rule by minimiz-
ing a composite cost function consisting of the weighted sum
of two opposing requirements such as the probability of false
alarm adjoined with the time delay incurred in detecting the
fault [15-17]. The fixed sample approach is usually computa-
tionally simpler although not necessarily optimal.

The redundancy management procedure presented in this
paper can be used in conjunction with a fixed sample ap-
proach or a variable sample approach and is applicable to
multiply-redundant systems where the measurements may be
vector quantities (such as the velocity or acceleration of an ob-
ject in space) or scalar quantities (such as the thermal power or
coolant temperature of a nuclear reactor). For scalar
measurements in particular, the redundancy management
algorithm outlined in the paper does not require any
multiplications and is, therefore, computationally fast and ap-
parently suitable for real-time applications using commercially
available microcomputers.

The paper is organized in several sections and Appendices.
Section 2 discusses the theoretical development of the redun-
dancy management procedure, its physical interpretation, and
how to apply this procedure. Section 3 addresses the real-time
aspects in applying this approach and experimental verifica-
tion of this procedure to nuclear power plants while Section 4
contains the summary and conclusions. The supporting
theorems, the geometric interpretation, and a sketch of a real-
time algorithm (applicable for scalar measurements only) are
given as Appendices A, B, and C, respectively.

'Theory of the Redundancy Management Procedure

The (possibly time-varying) redundant measurements of a
plant variable are modelled at the sample time  as

2(f) = [H(t) + AH(0))x(?) + B(1) + e(?) (6]

where

zis an (I X 1) vector of available known sensor or analytic
measurements,

His an (! X n) a priori known measurement matrix of rank
n;l>n,

AH is an (/ X n) matrix representing unknown scale factor
errors,

x is the (n x 1) unknown vector variable that is to be
estimated,

Bisan (/ X 1) unknown vector of bias errors, and

eisan (/ X 1) vector of measurement noises with E(e) =0.

It is important to note that the dimension / of the measure-
ment vector z must exceed the dimension n of the unknown
vector variable x in order to be able to apply this technique.

In a recent publication [20] we have reported the develop-
ment of a calibration and estimation filter where the combined
effect of (nonlinear) scale factor and bias errors are
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represented as c(f) = AH(#)x(f) + B(¢) and can then be estimated
along with the usual objective of estimating x(#). This is done
for calibration of the measurements z(f) in the unfailed situa-
tion. The calibrated measurements are defined as

m(t) = z(t)— ()
H(t)x(t) + e(r)

(2)

where

¢(¢) is the estimate of c(#) and
e(t) = (c(f)— E(f)) + e(f) is the additive noise and remaining
error associated with the calibrated measurements.

The calibration technique [20] is particularly suitable when
scale factor errors evolve slowly in time as compared to the
sampling frequency, which may frequently be the case for in-
dustrial processes. However, if this situation is not true as it is
for inertial navigation systems, the calibration process may re-
quire scale factor and bias errors to be separately estimated us-
ing nonlinear filtering techniques (for example, see [21]).

If failure decisions are made as a consequence of observing
the calibrated measurements, then the occurrence of alarms
due to gradual degradation should be significantly reduced
and abrupt failures that are large in comparison to the
allowable bounds should be easily detected. However, the
calibration correction ¢(#) may track the failure in the event of
a gradual degradation. Therefore, additional steps must be
taken in the failure detection system design to guard against
misrepresentation in such an unfavorable situation. This
aspect has already been addressed, possible solutions have
been experimentally verified in our earlier work [20] and will
not be repeated here. In the rest of this section, we present the
theoretical development of a novel redundancy management
procedure.

For simplicity in notation, we are dropping the indicated
time dependence in subsequent mathematical equations by
suppressing the underlying 7. Thus, equation (2) can be rewrit-
ten as

3

A measure of relative consistency between redundant
measurements is given by the projection of the measurement
vector m onto the left null space of the measurement matrix A
such that the variations in the underlying component Hx in (3)
are eliminated and only the remaining effects of the noise vec-
tor € can be observed. An ((/—n) X /) matrix V is chosen such
that its (/— n) rows form an orthonormal basis for the left null
space of H,i.e.,

m=Hx+e

VH=0 and VVT=I, , 0]

The column space of V is referred to as the ‘‘parity space’’ of
H and the projection of m onto the parity space as the ‘‘parity
vector’’ [12] which is represented as

p=Vm=Ve 5)

From (4), it follows that

VIV=I—-HH"H]|"'HT 6)
Because of the idempotent property of ¥V, the norm of the
projection ¥7¥Vm of m onto the left null space of H is iden-
tically equal to the norm of p.

The columns, vy, v,, . . . . ,v;, of V that are projections of
the measurement directions (in R’) onto the parity space are
called failure directions since the failure of the ith measure-
ment m; implies the growth of the parity vector p in (5) in the
direction of v;. For nominally unfailed operations, lipll re-
mains small. If a failure occurs, p may (in time) grow in
magnitude along the failure subspace, i.e, the subspace
spanned by the specific column vectors associated with the
failed measurements. If the fault is time-varying, then the
failure directions (and hence the failure subspace) may also be
time-varying. The increase in the magnitude of the parity vec-
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tor signifies abnormality in one or more of the simultaneous
redundant measurements and its direction can be used for
identification of abnormal measurement(s).

Daly et al. [4] have shown how to make a failure decision
using both relative angular orientation and magnitude of pro-
jection of the parity vector p with respect to various failure
subspaces. In our previous publication [5], computation of
angular orientation was specifically avoided by making failure
decisions solely dependent on the magnitudes of the projec-
tions of p onto distinct subspaces, each orthogonal to one of
the failure directions. On this basis, the set of redundant
measurements was segregated into ‘‘consistent’’ and ‘‘incon-
sistent’’ subsets. Although the redundancy management pro-
cedure described in [5] has been successfully demonstrated for
on-line fault diagnostics in a nuclear reactor, it is only ap-
plicable in restrictive situations such as having scalar
measurements, using identical error bounds for all redundant
measurements, relying on a bilevel fail/no fail characteriza-
tion, and recursive computation of residuals that require some
multiplicative operations. An alternative approach which
removes the aforementioned restrictions has been adopted in
the current procedure and is explained below.

For S={m,, my,...,m;}, the set of all redundant
measurements of an n-dimensional process variable, let S; be
a proper subset of S consisting of & measurements such that
I<k<n, and let S, é(S—S,). Let the projection matrix ¥ in
(5) be compatibly partitioned as V'=[V,V,]. Let p, be the
projection of the parity vector peR'~" in (5) onto the failure
subspace as defined for the measurements in S, (i.e., the col-
umn space of V). The corresponding orthogonal component
P, is the projection of p onto the left null space of V, and
can be represented as

prpy =p"P—pip; ™
In the context of failure detection, p,, is more meaningful
than p, because while p, manifests the effects of measurement
errors in both S, and S,, it is p,, that is influenced solely by
the failures in measurements that belong to S,. This observa-
tion follows from Theorem 1 of Appendix A where the norm
of the orthogonal component p,, is shown to be identical to
the norm of the parity vector directly generated from the k
measurements in S,. This implies that the relative proximity
(as gauged by an appropriate norm lp, , Il) of the parity vector
p to the failure subspace of the (/— k) measurements in S, can
be determined either by computing both lipll and lp,ll as
shown in (7) or by directly computing llp,, II which is iden-
tically equal to the norm of the parity vector generated from
the k measurements in S, As- S,). Therefore, if all abnormal
measurements are contained in S,, i.e., S; contains only the
normal measurements, then lp,, Il should be small implying
that the parity vector p is close to the failure subspace of S,.
In view of the above characterization, the task of fault
detection can be recast as determining the largest subset of un-
failed measurements or alternatively as determining the failure
subspace of smallest dimension such that the projection of the
parity vector onto the orthogonal complement of that failure
subspace does not indicate the presence of a failure. The
uniqueness of a failure subspace of minimum dimension
depends upon the number of failed measurements as com-
pared to the total number of redundant measurements.
Theorem 2 in Appendix A states that the number of failures
occurring at a given sample time that can be uniquely isolated,
is less than or equal to [(/—n)/2], i.e., the integral portion of
(I—n)/2. However, if the number of failures is greater than
[(/—n)/2] but less than or equal to (/—n—1), the likely
nonuniqueness incurred in this situation needs to be addressed
explicitly so that a consistent subset of unfailed measurements
may possibly be identified. (The upper bound of (/—n—1)
arises because at least (n+ 1) measurements are required to
ascertain consistency between the remaining unfailed
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measurements at a given sample time.) For example, given
seven measurements of a scalar (i.e., n=1) variable, three or
fewer failures occurring at a sample time can be uniquely
isolated; otherwise, for five or fewer nonidentical failures at a
sample time the consistent subset of two or more
measurements could be identified.

A comprehensive procedure is adopted for identifying an
appropriate failure subspace where relative orientation of the
parity vector is determined with respect to all possible failure
subspaces of dimension (/—n—1) (which is one less than the
dimension of the parity space). Equivalently, such informa-
tion can be generated by checking the internal consistency of
individual (n+ 1)—tuplets of measurements. This procedure
involves only the computation of magnitudes of associated
one-dimensional parity vectors. The basis of this procedure
for evaluating internal consistencies of (s + 1) — tuplets can be
explained from the geometry of the bounded region in the
(I—n)—dimensional parity space, where the parity vector
would lie if the set of measurements were in fact consistent.
This region in the parity space is the projection of an error cell
in R! where the error vector e should be entirely contained in
the absence of any malfunctions, and shall hereinafter be
referred to as the consistency region. As illustrated in the ex-
ample in Appendix B, the consistency region is a polyhedron
in the parity space bounded on all sides by hyperplanes com-
prising the failure subspaces of dimension (/—n—1). Each
such hyperplane is the projection of a boundary of the error
cell in R!. The presence of a malfunction can be tested by
checking proximity of the parity vector to each of the
hyperplanes bounding the polyhedral consistency region. The
task of checking proximity involves determining the com-
ponents of the parity vector orthogonal to the bounding
hyperplanes or equivalently testing consistency of each
(n+ 1) —tuplet.

We now introduce several definitions to facilitate formal
delineation of the proposed concepts of ‘‘consistency’’ and
“inconsistency’’ of any set S of / measurements (/>n)
associated with an n-dimensional vector variable relative to all
(n+ 1)-tuplets, i.e., distinct subsets of cardinality (n+1)
denoted as s, 55, . . . . ,5, Where ris given as

—(! A &
=) =S D= ®
The magnitude of the parity vector p; of dimension one,
generated from (n+ 1) measurements in the (n+1)-tuplet s;,
i=1, 2,...r, is a measure of inconsistency of the (n+1)
measurements that belong to s;.

Definition 1: The inconsistency index £(f)[s;] of the
(n+1)-tuplet s; at sample time ¢ is a real number directly
related to the magnitude of its parity vector p;(f). Thus, after
dropping the time dependence notation for brevity, the incon-
sistency index can now be expressed as

£5;—[0,0),i=1,2, . .. ... s 9)

The exact structure of ¢ is dependent on the specific noise
statisics as well as on the detection algorithm which may be
recursively implemented. Furthermore, £ is appropriately
scaled such that under nominal conditions £[s;] = 1 for every i.
For example, ¢ could be the (scaled) generalized log-likelihood
ratio in sequential probability ratio test [18]. Another example

is the single sample test of amplitude-limited noise where
Elsil=1p;1/0; (10

and

and v/ is the jth element of the 1 X (n+ 1) projection matrix V;
associated with s;, and b 4 is the specified error bound of the
Jth measurement in s;.

Transactions of the ASME



Definition 2: An (n+ 1)-tuplets;, i=1,2 .. ... ris defin-
ed to be internally consistent if its inconsistency index is less
than or equal to unity, i.e., £[s;] <.

Definition 3: A set of measurements is defined to be con-
sistent if each of its (n+ 1)-tuplets is internally consistent.

Definition 4: Two disjoint subsets S, and S, of a measure-
ment set S are defined to be relatively inconsistent if there
exists no internally consistent (n + 1)-tuplet having at least one
element from each of S, and S,.

Remark: The concept of relative inconsistency of the dis-
joint subsets S, and S,, where further (S,US,)=S, is ex-
emplified as follows in terms of the internal consistencies of its
(n+1)-tuplets, s,, s,, . . . . ,S,, where r is as in equation (8).

Let Cbe the r X / consistency matrix defined as

1 if mjes; and £[s;] = 1
C;= , (12)
0 otherwise
Then, s,, s,, . . . ,s, can be reordered in a manner that allows

the partitioning of C as

c o
. .

c=|o0!c (13)
=il
0'!0

where the first and second sets of columns correspond to S,
and S, respectively, and C;, and C, are the only nonzero
submatrices.

Definition 5: A set of measurements that is not consistent
is defined to be inconsistent [moderately consistent] if the set
can [cannot] be split into two or more relatively inconsistent
subsets.

Remark: The concept of moderate consistency is germane
to the situation when errors in some of the measurements are
in the vicinity of their respective error bounds such that the
measurements are contiguously dispersed and no measure-
ment appears to be clearly malfunctioning (i.e., in the words
of classical statistics their are no obvious outliers). The notion
of moderate consistency can also be explained with the aid of
the consistency matrix C if it is impossible to partition C into
submatrices in the manner illustrated in (13) to demonstrate
relative inconsistency.

The above definitions and the associated separation
schemes for decomposing all measurements obtained accord-
ing to these rules serve primarily in the isolation of inconsis-
tent measurements. From the subset of any remaining
measurements which are either consistent or moderately con-
sistent, it is possible to extract a consistent subset. Identifica-
tion of such a consistent subset is achieved by determining the
direction of the parity vector and not by its magnitude. To this
end, we introduce three additional definitions.

Definition 6: Degree of inconsistency D(S) of a measure-
ment set S is the largest of the inconsistency indices associated
with each of its (7 + 1)-tuplets, i.e., D(S) = Max£[s;].

Remark: S is consistent iff D(S) = 1.

Remark: The degree of inconsistency is a single scalar
measure of the consistency of the entire measurement set and
can be geometrically interpreted as the inverse of the amount
by which the parity vector should be multiplied so that it lies
on the surface of the polyhedral consistency region.

Definition 7: Given a nonempty subset 7 of S, the relative
degree of inconsistency, D(T73;S), of T with respect to S is
defined to be the largest inconsistency index of all
(n+1)-tuplets of S, that contains at least ¢ elements of 7T
where ¢g=Min (#7, n) and #7 denotes the cardinality of 7.
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Remark: D(T;S) is a measure of relative consistency be-
tween the subsets 7 and S— 7 and D(7;S)>1if Tand S— T
are relatively inconsistent. The inconsistency indices of the
(n+ 1)-tuplets, if any, of 7 are taken into account in determin-
ing D(T;S) whereas the inconsistency indices of the
(n+ 1)-tuplets of S— 7 have no direct bearing on the evalua-
tion of D(T;S).

Definition 8: A nonempty subset 7" of S is defined to be a
most relatively consistent subset of S if 7" has the least relative
degree of inconsistency amongst all subsets of S.

Remark: Theorem 3 in Appendix A states that there exists
an n-tuplet which is a most relatively consistent subset of S.
Determination of a most relatively consistent n-tuplet is
equivalent to the midvalue selection process in the
thresholdless redundancy management procedure proposed by
Potter and Suman [12, 13].

3 On-Line Application to Nuclear Reactors

The redundancy management procedure was experimentally
verified by demonstration of on-line failure detection and
isolation in the 5 MWt nuclear reactor MITR-II [22] operated
by Massachusetts Institute of Technology as well as in the 62.5
MWt liquid metal fast breeder reactor EBR-II [23] operated
by Argonne National Laboratory. Since scalar process
variables are routinely encountered in nuclear reactors, the
real-time failure detection computer program used in our ex-
perimentation was limited to scalar variables only to match the
application. In line with the rationale and definitions
presented in the previous section, a real-time computer code
has been developed for concurrent checking of consistencies
between all redundant measurements of a given variable at
each sample time; the algorithm of the implementation is
outlined in Appendix C. Two alternative sequential test pro-
cedure implementations, each of which utilizes the algorithm
of Appendix C, were devised for failure detection under both
steady-state and transient operations. Built-in tests such as
limit checks and rate checks for each redundant measurement
were routinely incorporated within these test procedures. The
first alternative implementation used a fixed sample approach
but no assumptions were invoked regarding the measurement
noise statistics except that the noise being amplitude-limited
with known error bounds. In the second alternative implemen-
tation we used Chien’s sequential test algorithm [17] where the
number of test samples were not fixed a priori. However, the
measurement noise distribution was assumed to be Gaussian.
We adopted the first alternative for actual use because,
although not optimal, it is computationally more efficient
than the second and is expected to be more robust since the ac-
tual noise distribution is anticipated to be non-Gaussian. The
a priori fixed number of samples and the error bounds needed
for the first alternative should be selected to limit the prob-
ability of false alarms to a low value (typically 1.0E-06). The
consequent delay in detecting a gradually degrading measure-
ment was still tolerable because the fault detection procedure
was carried out in conjunction with the calibration filter [20]
(its possible use being mentioned in Section 2 following equa-
tion (2)). The filter adaptively reduces the weight ascribed to
the degraded measurement for estimation of the measured
variable until a fault is detected. This issue is discussed in
detail in [20].

For MITR-II, the fault detection procedure was similar to
that reported in our earlier paper [5] except that the algorithm
for checking consistency of redundant measurements was
replaced by that described in Appendix C. The experimentally
deduced results were similar to those reported earlier [5] and
are not repeated here. The experimentation of EBR-II was
conducted for validating the sensor signals and for detecting
malfunctions of plant components in the primary coolant
(sodium) loop. The experimentation was conducted over a
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wide range of steady-state operations as well as for transient
conditions related to reactor shutdown. A detailed description
of the experiments and further discussion of significant results
are presented in [24].

The failure detection procedure proposed in this paper has
also been applied to the simulation of boiling water reactor
(BWR) suppression pool temperature monitoring [25] and is
currently being implemented for real-time signal validation of
a commercial pressurized water reactor (PWR) plant. Further
applications of this failure detection technique have occurred
outside the United States [26].

Summary and Conclusions

The paper presents the theory from a geometric and an
algebraic view-point and application of a redundancy manage-
ment procedure for fault detection and isolation in time-
dependent processes, where the measured variables may be
vector or scalar quantities. In order to apply this procedure
there should be redundant measurements of the process
variable under consideration, which could be direct sensor
outputs and/or indirect analytically derived measurements.
The resulting redundancy management procedure reported in
this paper is essentially independent of the fault detection
strategy and measurement noise statistics, and builds upon the
concept of partitioning the measurement set into so-
designated ‘‘consistent” and ‘‘inconsistent”’ subsets for
estimation and fault isolation, respectively. This operation is
performed in a systematic way by checking for consistency
within all subsets of (n+1) measurements where n is the
dimension of the underlying measured variable.

The procedure has been verified by both simulation and
prototype implementation in nuclear reactors and has been
found to be acceptable for real-time detection and isolation of
faulty sensors and plant equipment using commercially
available microcomputers. Since the procedure does not re-
quire any arithmetic multiplications (at least for scalar
variables) for fault detection and isolation, it is computa-
tionally fast and appears to be suitable for on-line applications
in other industrial processes.
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APPENDIX A

Theorem 1: Let v,, v, . . . ,v; represent the failure direc-
tions in the parity space corresponding to the set of redundant
measurements {m,, My, ...,m;} of an n-dimensional
variable. The norm of the projection of the (/— n)-dimensional
parity vector (generated by all / measurements) onto the
(k-n)-dimensional subspace that is orthogonal to the subspace
spanned by vy, |, Uksas - - - » U, is identically equal to the
norm of the (k — n)-dimensional parity vector that is generated
by the set of k measurements {m,, m,, ..., m;} where
n<k<l.

Proof: The measurement vector m, measurement matrix
H, and projection matrix ¥ in (3) and (4) are compatibly parti-
tioned as follows:

mT=[ulipf], H = [H'HY), and V=[ViV,]  (A.1-1)
where p, is the (k X 1) vector comprising & measurements and

u, is the ((/—k) x 1) vector comprising the remaining
measurements. From (3) it follows that

(A.1-2)
where the (k x n) matrix H, is of rank n. The
(k — n)-dimensional parity vector p for the set of &k
measurements is given by (5) as

D= I./V'l
where 7 has the properties given by (4) and (6) that:

p=H,x + ¢

(A.1-3)
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VH,=0, VV'=I,_,, and V'V=I,—H,(H,"H,)"'H]
(A.1-4)
Since (HTH,)"'=(HTH—-HIH,)~", application of the
matrix inversion lemma [27] yields
(HTH,)"'=B+BHI(,_,— H,BHY)"'H,B (A.1-5)
where BA(HTH) . Substituting (A.1-5) in (A.1-4) results
VTV=(,~HBHT)— H,BH}(I,_, — H,BHY)~'H,BHA.1-6)
Using the relationship V7V =1,— HBH" expressed in parti-
tioned form, (A.1-6) can be further simplified as

VTV=VvIU,_,— V,(VIV,)~" VD)V, (A.1-7)

Let G be a (k—n) x (/—n) matrix such that the rows of G
form an orthonormal basis for the left null space of V,, i.e.,
the subspace orthogonal to the failure directions v, ,

Ugsas - -+ » U Therefore, G has the properties given by (4)
and (6):
GV,=0,GG"=1I,_,,

and GTG=1,_,— V,(VIV,)~ 'V (A.1-8)

The projection matrix ¥ in (A.1-3) can be chosen to be iden-
tical to GV, because GV, satisfies the properties in (A.1-4).
Then, the projection of the parity vector p onto the column
space of G is

GP=GV'"=G[V1:V2]{#|J =GVipy =V, =p

23]
(A.1-9)

The proof is completed by arguing that the norm of the pro-
jection of p onto the left null space of ¥ is identically equal to
IGpll.

Corollary to Theorem 1: The residual vector nA VTp for
the measurement set {m,, my, ..., m;} is related to the
residual vector n2 VTp for all measurements as qj=n,—- VI
V,(VIV,)~'n,, where n7=[y]in]] is an appropriate
partitioning.

Proof:

i= Vip=VIGp=VIGTGp
Vip—=VIivV,(Vivy Vi,

=
Il

(A.1-10)

The proof follows by substituting 3, = ¥7p, and 9, = VIpin
(A.1-10). u

Theorem 2: Given / redundant measurements of an n-
dimensional variable at a sample time, the number ¢ of failed
measurements that can be uniquely isolated is given as
2¢ = (I-n), i.e., ¢ < [(I—n)/2] where [*] indicates the integral
part of *.

Proof: For unique isolation of g failures in a set of /
redundant measurements, one and only one subset of car-
dinality (/— g) that contains the unfailed measurements must
exhibit consistency. However, only (/—qg—n) failure direc-
tions are needed to span the (/—qg—n)-dimensional parity
space that is generated from a subset of (/— g) measurements.
Therefore, situations may arise where a subset of cardinality
(/- gq) containing more than (/—qg—n) failed measurements
may thlbl[ consistency, i.e., if ¢>(/—q—n). This implies
that g < (/—g—n) or 2= (- n) for unique isolation. ]

Theorem 3: Given a set S of / measurements of an n-
dimensional variable such that /> n, there exists an n-tuplet
which is a most relatively consistent subset of S. (See Defini-
tion 8.)

Proof: Let a j-tuplet (1 = /=) be denoted as S/ CS. With
respect to a given S/, let an i- tuplet be denoted as St if S{C S or
as S' if S'C (S—S/). From Definitions 1, 6, and 7, it follows
that
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D(§;S) = Max Maxé[skUSp+!-4] (A.3-1)

Sy Spri-kc(S—s¥)
where k= Min(j,n).
By Definition 8, a most relatively consistent subset O
satisfies the following condition
D(0)= Min MmD(S’ S)
15/
To show that there ex1sts an n-tuplet which satisfies (A.3-2),
we consider two cases.
Case 1: For 1 =j = n, i.e., k=min(j,n) = in Definition 8.
Let X(§) be the collection of all (n+ 1)-tuplets U S"+!~/
generated from a given j-tuplet §/. Substituting j for k in
(A.3-1), it follows that
D(§;8) = Max)£[<p]

ceX(§

(A.3-2)

(A.3-3)

By use of Lemma 1 in (A.3-3), it follows that

D(S'*Y;8) S D(S/;S)if S S+ and 1 S j<n (A.3-4)
From (A.3-4), it suffices to observe that

Mm D(S";8) = Mm D(§/;S) for 1 = j<n (A.3-5)

Case 2: n Sjisiie., k mm(/ n)=nin Definition 8. _
Let Y(S) be the collection of all (n+ 1)-tuplets S"US,‘,.
(Note that S! is a set of cardinality 1 and is given as

Slc(s—- S1.) Substituting n for kin (A.3-1), it follows that
D(§;8) = Max &[¢] (A.3-6)
eeV(§)
By use of Lemma 2 in (A.3-6), it follows that
D(§;8) S DS+;8)if S cS¥*andn S <l (A3-7)
From (A.3-7), it suffices to observe that
Min D(S";S) = Min D(S/;S) forn = j 1. (A.3-8)
S" SJ
Combining (A.3-5) and (A.3-8), it follows that
Min D(S";8) = Min D(S/;S) for 1 Sj=1. (A.3-9)
S s
Thus, there exists an n-tuplet which satisfies (A.3-2). ]

Lemma 1 [of Theorem 3]:
XS /tHcx(Ss).

Proof: Let g¢§ and S/*'=S/U{q}. This implies that
qe(S—S7*1) and (S—S/)=(S—S/*")U{q}. For every
S j+1C(S—S7*1), there exists an § "+!~/ C (S-S /) such that
Sn+i-ij= S’I';{ Uf{g}). Thus, every (n+ 1)-tuplet
(Si+u 5}';{)EX(S J*1) is contained in X(S ). =

Lemma 2 [of Theorem 3]: If ¥ CS/*! and n<j</, then

scveth.,
Proof: Since ¥ CS*!, for every Sj there exists an S7,,
such that S}, , =S7. Thus, every (n+ 1)-tuplet (S"US eY(S)

is contained in Y(S"‘ 1, u

IfS/CcS/+*'and 1= j<n, then

APPENDIX B

Geometric Interpretation of the Redundancy Concept

A geometric representation of the redundancy management
concept that is the cornerstone in this paper is illustrated in
Figs. B-1 and B-2 for a set of three redundant measurements
of a scalar variable (e.g., n=1and H=[1 1 1]7) with the noise
amplitudes in the measurements m,, m,, and m; being as-
sumed to be limited by error bounds, b,, b,, and b5, respec-
tively. However, the concept is not restricted to the assump-
tion of amplitude-limited noise. For example, in more flexible
situations as discussed in [18], the error bounds should be
replaced by appropriate thresholds if a sequential fault detec-
tion strategy is used along with this redundancy management
procedure.
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Fig. B2 Division regions in the parity space

Figures B-1 and B-2 show the parity space projections of the
consistency regions for the distinct pairs of measurements
within which measurement errors are assumed to be contained
for normally functioning measurements. Each consistency
region is an infinite prism of rectangular cross section with the
axis along the direction of measurement not included in the
respective pair, and is seen to be divided into three regions of
interest. The region centered around the origin in Fig. B-1is a
3-cell of sides 2b,, 2b,, and 2b; representing consistency
region for the measurements m,, m,, and mjy and is shared by
all three prisms. The other two semi-infinite regions within a
prism on either side of the 3-cell represent the inconsistency
region for the measurement that is not included in the pair
associated with the prism.

Figure B-2 shows the projections of the consistency regions
of different sets of measurements on the parity space which, in
this particular case, is the plane orthogonal to the direction [1
1 117 in the 3-dimensional measurement space. In this plane,
the projection is unaffected by changes in the measured
variable x. Three infinite strips centered along the three failure
directions are the projections of the three infinite prisms and
are seen to divide the parity space into several regions. The
hexagonal region, surrounding the origin, is formed by the in-
tersection of the three infinite strips. This hexagon is also the
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projection of the error 3-cell and is the region of validity for
all three measurements. The six triangular regions on the six
sides of the hexagon, that are formed by the intersection of
only two of the three strips, represent the regions of moderate
consistency where a measurement, say m,, exhibits consisten-
cy with respect to the remaining two measurements, /1, and
my, which themselves are relatively inconsistent. Each of the
remaining semi-infinite regions of the strips corresponds to the
failure of a specific measurement. The remaining part of the
parity space, not covered by the three infinite strips, that con-
sists of six semi-infinite forks implies failure of more than one
measurement with no possibility of unique failure isolation.

APPENDIX C

Redundancy Management Algorithm for Scalar

Measurements

In many industrial applications such as aircraft tur-
boengines, power plants, and chemical processes, the
measured variables are scalar quantities such as pressure,
temperature, and power, i.e., n=1 and x is scalar in (1). The
measurement matrix in (3) can be expressed, without loss of
generality, as H=[1 11 ... 1]7. In the context of the defini-
tions introduced in the Section 2 of the main text, a set of k
redundant measurements is consistent if all k(k—1)/2 pairs
are consistent. It is important to note that the redundancy
management procedure is independent of the criterion for
determination of consistency of a measurement pair. For ex-
ample, the afore-said criterion could be a simple single-sample
test based on allowable error bounds or a sequential test using
recursive relations based on the generalized likelihood ratio
test.

A real-time algorithm for the redundancy management pro-
cedure has been developed and verified by experimentation at
operating nuclear reactors [22, 23]. It does not need any
multiplicative arithmetic operations. The set of redundant
measurements is partitioned into appropriate subsets on the
basis of two consistency numbers for each measurement. The
algorithm is briefly outlined below.

1. Order the redundant measurements of the scalar variable
such that my<=m,<= ..... < =m.

2. Determine consistency numbers

/

N = E x[pair m; and m; consistent], i=1,2, RN(E))]
Jj=i+1
i—1

N = 2 x[pair m; and m; consistent], i=2,3, . . . .. 3L

Jj=1

where, in the above, the indicator function x is defined as

1if *
x[*1=
0if *

and N =Ny =0.
3. (i) The set is consistent if N;" + N; =/—1 for every i.

(ii) m; is inconsistent with respect to each of the remain-
ing (/— 1) measurements if N;* + N; =0.

(iii) The set consists of relatively inconsistent subsets if
there exists a measurement m; such that
Nj =N; =0. Specifically, the subsets
[ml, s myy s myay e, o m (2)}, RN
{Mjgys1s - - - sy} are mutally incosnsitent and
each of the above subsets is either ‘‘consistent’’
““moderately consistent’’ (see Definition 5) only if
there exists Jj(1)<j(2)< . ... <j{g) such that
Ny =Njg+1 =0for k=12, ... .q.

J!

is true

is false.
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