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Fault Detection Using a Linear Algebraic Approach
ASOK RAY" AND MUKUND DESAIt

Abstract: The paper preéents the concept of a redundancy

‘management_procedure for fault detection and isolation (FDI)

from a linear algebraic point of view. The procedure can be
used for developing intelligent instrumentation in strategic
processes like spacecraft, aircraft, and nuclear power

" plants where redundant measurements are usually available

for individual critical wvariables.

The redundancy management procedure is independent of the
fault detection strategy and measurement noise statistics,
and can be adopted for real-time applications using
commercially available microcomputers. Its efficacy has been
verified by on-line fault detection in operating nuclear
reactors. -

1. Introduction

Control systems for strategic processes such as aircraft,
spacecraft, and hazardous chemical and nuclear power plants
require intelligent instrumentation for coordination of
plant monitoring, fault diagnostics, and decision making.
Specifically, safety and reliability of such complex
processes can be improved by systematic failure detection
procedures [1-11]. Along this line the intelligent
instrumentation system can be designed to accommodate, for
each essential process variable, redundant measurements that
may comprise both sensor outputs (possibly of different
accuracies) as well as analytically derived measurement(s).
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628 RAY AND DESAI

The analytic measurements are synthesized from physical
relationships between measurements of other process
variables and/or from known characteristics of the process
[3,9,10,11].

Some of i1he known fault detection procedures [1,2,7,8,9] are
based on certain assumptions such as a known probability
density function (or its characteristics) for nominal and
failed conditions, and existence of a process model for
constructing a filter. For many industrial applications,
measurement noise statistics are not usually completely
known nor do they follow a specific pattern such as Gaussian
distribution, and the available process models are too
complex or of insufficient accuracy to be used in filters.
In the absence of relevent statistical information, the
noise model may be approximated as amplitude-limited. i.e.,
the maximum noise amplitude that does not exceed & specified
error bound is interpreted to be acceptable under nominal
operaling conditions. The information on sensor and plant
equipment that is routinely available from the manufacturers
is usually sufficient to duantify such reguisite error
bounds. However, if sufficient information on noise
statistics is available, the afore-said restriction should
be removed by assigning appropriate probabilitier, instead
of 1 and 0, to the noise amplitude being within the error
bound for nominal and failed conditions, respectively; and
established procedures such as sequential tests of Wald
[12], Shiryayev [13] and Chien [14] can be used for
algorithm development. Along this line we propose a fault
detection technique using multiply-redundant measurements of
a process variable which could be a vector quantity (such as
the velocity or acceleration of an object in space) or a
scalar (such as the thermal power or coolant temperature of
a nuclear reactor).

The fault detection procedure presented in this paper is an
extension of our earlier work reported in [6] with the
following major improvements.

o The nonlinear and time-varying effects of measurement
errors are considered, i.e., the errors are no longer
assumed to be purely additive and time-independent.

o The fault detection procedure is partitioned into two
modules: (1) redundancy management, (2) detection and
isolation of faulty measurements via either single
sample or sequential tests.

o A concept of measurement estimation which is equi-
valent to the midvalue selection technique of Potter
and Suman [16,17] is introduced in the setting of the
fault detection procedure. :

The goal of this paper is to present the concept of the
redundancy management procedure from both an algebraic and a
geometric point of view, that could be used in the
development of a fault detection and isolation methodology
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for intelligent instrumentation. The redundancy management
procedure makes use of all available measurements -- sensor
outputs and analytic redundancy, and is essentially
independent of the failure detection strategy, the
measurement noise statistics and the associated assumptions
such as amplitude-limited noise. An outline of the procedure
is given below.

Failure decisions should be made by concurrent checking of
"consistency” or "inconsistency" of individual measurements
at each time sample. (Precise definitions of the terms in
gquotation and their physical significance are provided in
the next section.) Checking of consistency or inconsistency
of each redundant measurement can be carried out by one of
the two options: (1) use of the allowable error bounds of
respective measurements, that are specified a priori and can
be time-varying; or (2) use of individual measurement’s
noise statistics provided that the available information is
adequate for developing a decision algorithm. Both options
can be implemented either using single sample tests or via
sequential tests based on the time history of current and
past observations [11,14,15].

The paper is organized in four sections and two appendices.
Section. 2 discusses._the theoretical development of the
redundancy management procedure, its physical interpreta-
tion, and how to apply this procedure. Sections 3 and 4

address the real-time application and experimental verifica-

tion of this procedure to nuclear power plants, and summary
and conclusions, respectively. Appendix A contains the three
supporting theorems. A sketch of a sequential test algorithm
that can be used in conjunction with the redundancy
management algorithm is presented in Appendix B.

2. Theory of the Redundancy Management Procedure

The redundant measurements of a plant variable are modelled
at the time sample t as

z(t) = [H(t) + 6H(t)] x(t) + b(t) + &€(t) (1)
where

z is (gx1) vector of known measurements,

H is (gxn) a priori known measurement matrix with g>n
such that any n rows of H are linearly independent,

6H is (axn) matrix for unknown scale factor errors,

x is (nxl) unknown value of the measured variable,

b is (gxl) unknown array of blas errors, and

€ is (gqx1) vector of measurement noise with E(€) = O.

In a previous publication [18] we reported the development
of a calibration and estimation filter where, along with
estimation of the measured variable, the combined effect of
the scale factor and bias errors c(t) = S8H(t)x(t) + b(t) is
also estimated for calibration of the measurements z(t).
calibrated measurements are defined as

m(t) = z(t) - S(t) = H(t) x(t) + e(t)
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where
2(t) is the estimate of c(t) and

a
e(t) = (c(t) - S(t)) + €(t) is the additive noise and
errors associated with the calibrated measurements.

L
e {.}

The calibration technigue [18] is particularly suitable when
scale factor errors occur slowly with respect to the
sampling frequency, which is usually the case for the
majority of industrial processes. However, if this is not
the case as it is in inertial navigational instruments, the
calibration process may require scale factor and bias errors
to be separately estimated using nonlinear filtering
techniques. (For example, see [18].)

If failure decisions are made by observing the calibrated
measurements, then occurrence of alarms due to gradual
degradation is significantly reduced and abrupt failures
that are large in comparison to the allowable bounds are

b Bt

easily detected. However, the calibration correction c(t) =
may track the failure in the event of a-gradual-degradation. -~ ;5
Therefore, additional steps must be taken in the failure P
detection system design to guard against such a situation. =
This feature has been addressed and experimentally verified =
in our earlier work [18) and will not be repeated in this =
paper. In the rest of this section, we present the =4
theoretical development of a redundancy management ﬁgﬁ
procedure. : égg
For brevity, we are dropping the time dependence notation in %&
subsequent mathematical eguations. Thus, (2) is rewritten as =

m=Hx + e (3) ﬁgé
A measure of relative consistencies between redundant ..%
measurements is given by the the projection of the §§§
measurement vector m onto the left null space of the 22
measurement matrix H such that the variations in the é%i
underlying variable Hx in (3) are eliminated and only the %3;
effects of the noise vector are observed. A ((g@-n)xq) ig,
matrix V is chosen such that its (g@q-n) rows form an EE
orthonormal basis for the left null space of H, i.e., =

VH = 0 and VVT = Ig-n ; ’ (4) =

Ry

The column space of V is known as the parity space of H and
the projection of m onto the parity space as the parity
vector [16] which is given as

p = Vm = Ve ' (5)
Ffom (4), it follows that

VIV = Iq - H[HTH]-1HT (6)

oo

Because of the idempotent property of VIV, the norm of the
projection VIVm of m onto the left null space of H is iden-
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tically equal to\[p“. The columns, vi, v2,....,vq, of V that
are projections of the measurement directions (in Re) onto
the parity space are called failure directions since the
failure of the i-th measurement mi implies the growth of
the parity vector p in (4) in the direction of vi. For
nominally unfailed operations,]]pn remains small. If a
failure occurs, p may grow in magnitude along the failure
subspace, i.e., the subspace spanned by the specific column
vectors associated with the failed measurements; and if the
fault is time-varying, then the failure directions (and
hence the failure subspace) may also be time-dependent. The
increase in the magnitude of the parity vector signifies
abnormality of one or more measurements and its direction
can be used for identification of abnormal measurement(s).

The redundancy management strategy was presented in our
earlier publication [6] as determining the largest subset of
unfailed measurements or alternatively as determining a
failure subspace of smallest dimension such that the
projection of the parity vector onto the orthogonal
complement of the failure subspace does not indicate the
presence of a failure. This observation follows from the
Theorem 1 of Appendix A.

The uniqueness of a failure subspace of smallest dimension
‘depends upon the number of failed measurements relative to
the total number of redundant measurements. It is shown in
Theorem 2 of Appendix A that the number of failures
occurring-at-a-given-time-that can-be-uniquely isolated, is
less than or equal to [(gq-n)/2], i.e., the integer part of
(a-n)/2. However, if the number of failures is greater than
[(a=n)/2] but less than or equal to (g-n-1), the non-
uniqueness needs to be addressed explicitly for possible
identification of a consistent subset of unfailed measure-
ments. (The upper bound of {(g-n-1) arises because at least
(n+l1) measurements are required to ascertain consistency
between the remaining unfailed measurements at a given
time.)

A comprehensive procedure is adopted for identifying an
appropriate failure subspace where relative orientation of
the parity vector is determined with respect to all failure
subspaces of dimension (g-n-1) (which is one less than that
of the parity space). Equivalently, such information can be
generated by checking the consistency of individual (n+l)-
tuplets of measurements, that involve only the computation
of magnitudes of associated one-dimensional parity vectors.
The procedure for evaluating consistencies of (n+l)-tuplets
can be explained from the geometry of the bounded region in
the (g-n)-dimensional parity space, where the parity vector
lies if the set of q measurements is consistent. The consis-
tency region in the parity space is the projection of the
error cell in Ri, where the error vector e should be
contained in the absence of any malfunctions, and is a poly-
hedron in the parity space bounded by hyperplanes belonging
to failure subspaces of dimension (g-n-1). Each hyperplane
is the projection of a boundary of the error cell in Ra.
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The presence of a malfunction can be tested by checking
proximity of the parity vector to each of the hyperplanes
bounding the polyhedral consistency region. The task of
checking proximity involves determination of the components
of the parity vector orthogonal to the bounding hyperplanes;
equivalently, consistency of each (n+l)-tuplet is tested.

We introduce several definitions to delineate the concepts
of consistency and inconsistency of a set S of g measure-
ments (g>n) of an n-dimensional variable relative to all
(n+l)-tuplets, i.e., distinct subsets of cardinality (n+1)
denoted as si1, sS2,...., Sr

where S 7
(n+l)!(q-n-1)!

The magnitude of the parity vector pi of dimension one,
generated from (n+l) measurements in the (n+l)-tuplet si,
i=1,2, ...r, is a measure of inconsistency of the (n+l)
measurements in si.

Definition li The iﬁconéisteﬁcy index o(t)[si] of the (ﬁ41)¥

tuplet si at sample time t is a real number directly related
to ‘pi(t) . Thus, after dropping the time dependence
notation for brevity, the inconsistency index can be
expressed as

gisi --» [0,®), i =1,2,...... , T (8)

Furthermore, o is appropriately scaled such that, under
nominal conditions, o[st J<l1 for every i. The exact
structure of o is dependent on the noise statistics as well
as on the detection algorithm.

An example of how o can be selected in a single-sample test
assuming amplitude-limited noise is illustrated in [6]. For
a sequential procedure, o can be obtained via a recursive
relationship which relies on the information derived from
the past and current observations. For each (n+l)-tuplet the
one-dimensional parity vector is generated at every sample
time to compute the inconsistency index. As an example, an
algorithm for obtaining o is presented in Appendix B using
Chien’s modified sequential probability ratio test [14]. In
Chien’s methodology the noise associated with each parity
vector (which is a linear combination of all measurements
in the (n+l1)-tuplet) is assumed to be Gaussian. We reiterate
that the redundancy management procedure is independent of
the noise statistics and the fault detection strategy, and
is not restricted to Gaussian noise.

An (n+l)-tuplet st, i=1,2, ..... , T is
defined to be internally consistent if its inconsistency
index is less than or egual to unity, i.e., o[si]=1l.

Definition 3: A set of measurements is defined to be
consistent if each of its (n+l)-tuplets is internally
consistent.
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Definition 4: Two disjoint subsets Si: and S2 of a
measurement set S is defined to be relatively inconsistent
if there exists no internally consistent (n+l)-tuplet
having at least one element from each of Si1 and S52.

Definition 5: A set of measurements that is not consistent
is defined to be inconsistent [moderately consistent] if the
set can [cannot] be split into two or more relatively
inconsistent subsets.

The concept of moderate consistency is germane to the
situation when errors in some of the measurements are in the
vicinity of their rspective error bounds such that the
measurements are contiguously dispersed and no measurement
appears to be clearly malfunctioning.

The above definitions and associated separation of
measurements serve the objective of isolation of
inconsistent measurements. At this stage an appropriate
subset of the rémaining consistent or moderately consistent
measurements should be identified for estimation of the
measured variable. The estimate can be obtained wvia one of
the two alternatives: (1) a weighted average of all
measurements in the consistent or moderately consistent
subset where the weights are adaptively updated on the basis
of individual measurement’s a posteriori probability-of-
failure [18]; or (2) a selected n-tuplet using the midvalue
selection concept of Potter and Suman [16,17].

Definition B¢ Degree of inconsistency D(S) of a
measurement set S is the largest of the inconsistency
indices associated with each of its (n+l)-tuplets, i.e.,
D(S) = Max o[si].

1

Remark: S is consistent iff D(S)<l.

Remark: The degree of inconsistency -is a single scalar
measure of the consistency of a measurement set and can be
geometrically interpreted as the inverse of the amount by
which the parity vector should be multiplied so that it lies
on the surface of the polyhedral consistency region.

Definition 7: Given a nonempty subset T of S, the relative
degree of inconsistency D(T;S) of T with respect to S5 is
defined to be the largest of inconsistency indices of all
(n+l)-tuplets of S, that contains at least u elements of T
where u = Min(#T,n) and #T denotes cardinality of T.

Remark: D(T;S) is a measure of relative consistency between

the subsets T and (S-T); and D(T;S)>1 if T and S-T are
relatively inconsistent. The inconsistency indices of the
(n+l)-plets [if any] of T are taken into account for
determination of D(T;S) whereas those of (S-T) have no
direct bearing on D(T;S).
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Definition 8: A nonempty subset T of S is defined to be a
most relatively consistent subset of S if T has the least
relative degree of inconsistency amongst all subsets of S,

Remark: Theorem 3 in Appendix A states that there exists an
n-plet which is a most relatively consistent subset of S.
Determination of a most relative consistent n-tuplet is
equivalent to the midvalue selection process in the
thresholdless redundancy management procedure proposed by
Potter and Suman [16,17].

3. Real-time Experimental Verification in a Nuclear Reactor

The procedure described above was experimentally evaluated
by on-line testing of sensor failures in the 5 MWt nuclear
reactor MITR-II operated by the Massachusetts Institute of
Technology. A description of the system configuration and
instrumentation of the 5-MWt fission reactor is given in the

MITR-II Reactor Systems Manual [20]. The nuclear instrumen-. _ _

tation for the research reported in this paper consists of
three neutron flux sensors and a gamma-ray sensor that
correlates neutron power with the radioactivity (N-18) of
the primary coolant. Four independent measurements of
primary coolant flow are obtained from pressure differences
across orifices. Primary coolant temperatures are measured
as follows: two sensors for the hot leg, two sensors for the
cold leg, and one sensor for the temperature difference
between the legs. The noise and staistical characteristics
of the MITR-II’s flow, temperature, and neutron flux
instrumentation are similar to those in commercial reactors.
These sensors are connected to a portable LSI-11/23
microcomputer system through appropriate isolators,signal
conditioners, and A/D converters.

In line with the rationale and definitions presented in the
previous section, a real-time computer code was developed
for concurrent checking of consistencies between all redun=
dant measurements of a (scalar) process variable such as
power, flow and temperature. Built-in tests such as limit
checks and rate checks were routinely incorporated .within
the sequential test procedure. The execution time of the
code on the LSI-11/23 processor is about 150 ms per cycle
including the time required for data acquisition and signal
processing. ’

Fault detection and isolation capabilities of the reported
procedure were tested for both natural and injected failures
of sensors. For continuous operations extended over a period
" of six months, two natural failures in temperature and flow
sensors were automatically detected and isolated, and no
false alarms were reported. The efficacy of the procedure
was also tested for abnormal operations by injecting faults
as described below. '
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isolated as faulty and the estimate was generated from the
remaining measurements.

Gradual drift. Drift was intrduced in a given sensor. The
sensor was isolated after the accumulated drift exceeded the
permissible error bound.

Failed Sensors. Some of the sensors were disconnected from
the prototype device and the corresponding ports of the the
data acquisition system was short-circuited. The respective
sensors were identified as faulty.

The procedure was also tested for transient operations.
During a reactor shutdown process, the power estimate
generated by the prototype device followed closely the true
power until the calibration of neutron flux sensors (at a
power level below 1 MWt) was no longer accurate making the
measurements inconsistent.

4., Summary and Conclusions
The paper presents the concept (from both a geometric and an

algebraic point of view) of a redundancy management
procedure for fault detection and isolation to be used in

intelligent instrumentation where the measured variables may
“be-time-dependent vector or scalar quantities. For the '

process variable under consideration, there should be
redundant measurements which could be sensor outputs and/or
analytic-measurements . -The redundancy management-procedure
is independent of the fault detection strategy and
measurement noise statistics.

The procedure has been verified for real-time detection and
isolation of faulty sensors and plant equipment using
commercially available microcomputers in nuclear rsactors by
experimentation.
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Aprendix A: Theorems

Theorem 1: Let vi,v2,...,vq represent the failure directions
in the parity space corresponding to the set of g redundant
20 measurements {mi ,mz2,...,mg} ¢f an n-dimensional variable.

The norm of the projection of the (gq-n)-dimensional parity
vector (generated from the q measurements) onto the (k-n)-

ui  is the (kxl1) vector comprising k measurements and
w2z is the ((g-k)xl) vector comprising the remaining
measurements.

dimensional subspace that is orthogonal to vk+i,vk+2,...,vq,
: is identically equal to the norm of the (k-n)-dimensional
Vol.. parity vector which is generated by the set of measurements
{mi,m2,...,mk} where n<k<aq.
oI ————Pyrooft~The measurement-vector m; —~mesurement matrix H, —and
tor projection matrix V in (3) are compatibly partitioned as
; follows:
o mf=[p1T p2T], HT=[H1T} HzT], and V=[Vi1 | V2] (A-1-1)
: where ’
pp.

From (3) it follows that

M1 = Hix + el (A-1-2)
where any n rows of the (kxn) matrix Hi are linearly
set of k measurements is given by (5) as

~

= Vu (A-1-3)

ieP4

~

where V has the properties given by (4):

VE1 = 0 and VVT = Ik-n (A-1-4)
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Let C be a (k-n)x(gq-n) matrix such that its rows form an

‘orthonormal basis for the left null space of V2, i.e., the
subspace orthogonal to the directions vk+1,vk+2,..... , Vv .

Thus C has the properties given by (4):

Cvz = 0 and CCT = Ik-n (A-1-5)

independent. The (k-n)-dimensional parity vector T for +the
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The projection matrix ¥ in (A-1-3) can be chosen to be
identical to CVi because CV1 satisfies the properties in
(A-1-4). Then, the projection of the parity vector p onto
the column space of C is

Cp = CVm = C[Vi{ V2][maT}peT]T

CVimt = Vw1 = B (A-1-6)

The proof is completed by arguing that the norm of the
projection of p onto the left null space of is identically
equal to || Cp|.

Theorem 2: Given g redundznt measurements of an n-
dimensional variable at a sample time, the number g of
failed measurements that can be uniquely isolated is given
as 2g < (g-n), i.e., g s [(@q-n)/2] where [*] indicates the
integer part of x.

Proof: For unique isolatiohvof'g fai1uréS4ih;a;sét?6ffqfi'545”

redundant measurements, the subset of the remaining (g-g)

measurements must be consistent.
failure directions are needed to span the (gq-g-n)-
dimensional parity space that is generated from the subset

of (q-g) measurements, such a subset containing failed
measurements may exhibit consistency if more than (g-g-n)
failures (that are mutually consistent) occur. For unique

isolation of g failures, +there must be one and only one
largest consistent subset containing (g-g) unfailed
measurements. This implies that g < (g-g-n) or 2g s (g-n).

Theorem 3: Given a set S of q measurements of an n-
dimensional variable such that g>n, there exists an n-tuplet
which is a most relatively consistent subset of S. (See
Definition 8.)

Proof: Let a j-tuplet (1l<j<q) be denoted as SiC S. With
respect to a giyen Si,ﬂlet an i-tuplet be denoted as jSi if
J8iC S3 or as §Si if 3;Sic (S - S3). From Definitions 1, 6

and 7, it follows that
D(S§;S) = Max Max o[§SkUxBn+1-k] (A-3-1)
§ Sk kSn+i-k = (S - 3Sk)
where k = Min(j,n). '
By Definition 8, a most relatively consistent subset
satisfies the following condition
D(Q;S) = Min . Min D(S$;8) (A-3-2)
l€j<q SJ

Two cases are considered to show that there exists an n-
tuplet which satisfies (A-3-2).

Since no more than (g-g-n)
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Case 1:

Let X(SJ) be the collection of all (n+l)-tuplets SJL)Jgn+1-J
generated from a given j-plet SJ. Substituting j for k in
(A-3-1), it follows that

1<jsn, i.e., k=min(j,n)=j in Definition 7.

D(S8i;8) = Max o[¢]
¢ € X(84)

(A-3-3)

By use of Lemma 1 in (A-3-3), it follows that - {l

D(Si*+1;8) < D(SJ4;S8) if SIc Si+1 and 1sj<n. (A-3-4)
From (A-3-4) it suffices to observe that
Min D(Sr;S) < Min D(SJ;8) for 1<j<n (A-3-5)
Sn SJ
Case 2: n<jsg, i.e., k = min(j,n) = n in Definition 7.

Let Y(Si) be the collection of all (n+l)-tuplets (ySnU nS1).
(nS! has a cardinality 1 and is given as nSlc (S - jsn).)
Substituting n for k in (A-3-1), it follows that

D(SJ3;8) = Max o[¢] (A-3-6)
[, w,¢m EM,Y( SJ“) e e e e e S e oo e
By use of Lemma 2 in (A-3-8), it follows that
D(Si;S) s D(Si+1;S) if Sic SI+! and nsj<q. (A-3-7)
From (A-3-7) it suffices to observe that
Min D(Sn;S) < Min D(8J;S) for nzj=zq. (A-3-8)
Sn 84
Combining (A-3-5) and (A-3-8), it follows that
Min D(Sr;S) < Min D(S8J;S) for 1lsjsgqg. (A-3-9)
Sn 84
Thus, there exists an n-tuplet which satisfies (A-3-2).
Lemma 1 [of Theorem 31: If Sic Si+! and 1<j<n, then
X(Si+l ) X(S3). il

Proof: Let u ¢ SJ and Si+1
u g (S - Si+l) and (S - 8J)
j+18n-J < (S - Si+l), there exists an jSnr+l1-J¢ (S - S4) such
that jSn+1-4 = (;+150-3 U {u}). Thus, every (n+l)-tuplet
(Si+1Uj+18n-3) € X(Si+1) is contained in X(Si).

8J U{u}. This implies that
(8§ - S3+1)U{u}. For every

If SicSi+l and n<j<q, then

Y(Si)cY(Si+tl).
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Proof: Since SiC Si+t, for every jSn there exists an j+15n
that j+18n = joso. Thus, every (n+l)-tuplet (snUnSt) € Y(S§)

is contained in Y(Si+1),
Appendix B: A Sequential Test Algorithm

Given redundant measurements for an n-dimensional process
variable, the one-dimensional parity vector pi (t) for the
j-th (n+l)-tuplet si at the sampling inst-ant t is given as
pi(t)=Viui(t) for i=1,2,....,X (B-1)
where Vi is the 1x(n+1l) projection matrix associated with
pui which is the (n+1)xl vector representing measurements in
si . The probability distribution of pi is assumed to be
Gaussian on the justification that pi is a linear
combination of the measurements in si, which are usually
uncorrelated or weakly correlated. Using the a priori
information on the covariace matrix of the noise in
measurements in si, pi (t) is scaled to zi (t) such that the
variance of zi(t) is unity. For nominally unfailed .
conditions E[zi (t)]=0 for every i and t.

In the seguential tests a decision is made between the no-
failure hypothesis, and one or more failure hypotheses, on
the basis of the information processed at consecutive
samples. If M distinct modes of failures are considered,
then (M+1) distinct modes of operations should be
designated by (M+1l) mutually exclusive and exhaustive
hypotheses such that each hypothesis can be treated
as a Markov state. The recursive relations for a
- posteriori probalities in multiple hypotheses are
derived in our earlier publication [(18]. However,
hypothesis which represents all abnormal modes
high and low failures 1is considered in this example.

only one
including

The no-failure and failure hypotheses, Ho and Hi
respectively, are defined below.

Ho: zi(t) is Gaussian with zero mean and unit variance
at every sample instant t for all i.

Hi: zi(t) is Gaussian with mean #6i and unit variance at
every sample instant t and for each (n+1)-tuplet 1i.
The mean is positive or negative signifying high or
low failures, respectively.

The iog l1ikelihood ratio at the t-th sample is defined as

plzi (t)|H1)
¢i (t)=-fn -——-—=-=—-=-- , i=1,2,...,T
plzi ()| Ho)

(B-2)

If the measurement noise is stationary, the log likelihood

ratio %1 (k) for k consecutive conditionally independent
samples is given by
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p[z1(1),21(2),....,z1(k)|H1]
81 (k)=-€n ===---—mmm e
p[Zi(1),Zi(2),....,2i(k)|HOJ
k
=2 @i (t) (B-3)
t=1

which yields the followihg recursive relations for positive
and negative values of the mean in hypothesis Hi .

@r(k):@f(k-1)+81(81/2-z1(k))
- - (B-4)
@i (k)=%1 (k-1)+61 (81 /2+z1 (k))

Following Chien’s sequential test procedure [14], the above
algorithm is formulated for i=l,2,....,r as follows.

Initialization:

&t (0)=8% (0)=0.

Lower limit setting:

81 (k)=Max[87 (k),€1]
for all k>0
®1i (k)=Max[&1 (k),€1 ]

Consistency of the i-th (n+1)-tuplet:

8 (k)¢bt and &7 (k)g6i for all k>0

Inconsistency of the i-th (n+1)-tuplet:

8L (k)>61 or 7 (k)>61 for all k>0

Upper limit setting:

81 (k)=Min[&! (k),6:] -
_ _ for all k>0
®i (k)=Min[®1 (k), 61 ]

where §i= en[N(Bi)Q/ZJ is the detection threshold, N being
the allowable mean time, i.e. the number of samples,
between false alarms (N>>1), and the lower limit setting
€i 1is the probability of failure of any measurement in
the i-th (n+1)-tuplet. The parameter for upper limit
setting is set to be equal to 6: to enhance recovery from
a failure condition after the faulty measurement has been
reinstated. The inconsistency index o in Definition 1 of
Section 2 can be interpreted as follows.

U(k){Si]:Max[dt(k),@?(k)]/ﬁi (B-5)

The magnitude B8i of the mean can be chosen as a function of
the error bounds of the measurements in the i-th (n+1)-
tuplet. Error bounds can be computed by measuring sensor
noise statistics or from manufacturer’s specifications.

B i it B ek






