Integrated Communication and
Control Systems: Part |—Analysis'

Computer networking is a reliable and efficient means for communications between
disparate and distributed components in complex dynamical processes like advanced
aircraft, spacecraft, and autonomous manufacturing plants. The role of Integrated
Communication and Control Systems (ICCS) is to coordinate and perform inter-
related functions, ranging from real-time multi-loop control to information display
and routine maintenance support. In ICCS, a feedback control loop is closed via the
common communication channel which multiplexes digital data from the sensor to
the controller and from the controller to the actuator along with the data traffic
Jrom other loops and management functions. Due to the asynchronous time-
division multiplexing of the network protocol, time-varying and possibly stochastic
delays are introduced in the control system, which degrade the system dynamic per-
Sormance and are a source of potential instability. The paper is divided into two
parts. In the first part, the delayed control system is represented by a finite-
dimensional, time-varying, discrete-time model which is less complex than the ex-
isting continuous-time models for time-varying delays; this approach allows for
simpler schemes for analysis and simulation of ICCS. The second part of the paper
addresses ICCS design considerations and presents simulation results for certain

Yoram Halevi?

Asok Ray
Mem. ASME

Mechanical Engineering Department,
The Pennsylvania State University,
University Park, PA 16802

operational scenarios of ICCS.

1 Introduction

Complex dynamical processes like advanced aircraft,
spacecraft, and autonomous manufacturing plants require
high-speed, reliable communications between system com-
ponents which perform a set of inter-related functions ranging
from active control to information display and routine
maintenance support [1]. The system components include a
number of computers, intelligent terminals, sensors and ac-
tuators, and their functions are executed in real time. The ac-
tivities of system components can be coordinated by ap-
propriate information exchange via a multiplexed communica-
tion network to achieve a better utilization of the resources.
However, the network introduces delays in addition to the
sampling delay that is prevalent in all digital control systems.
The network-induced delays are time-varying and possibly
stochastic, and are dependent on the intensity, probability
distribution, dynamics of the traffic as well as on mis-
synchronization between control system components and
noise in the communication medium. The Integrated Com-
munication and Control Systems (ICCS) for these processes
must be designed to compensate for these delays. The
schematic diagram of an ICCS network in Fig. 1 illustrates
how these delays are introduced.
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In ICCS, a control loop is closed via the common com-
munication channel which multiplexes digital data from the
sensor to the controller and from the controller to the actuator
along with the data traffic from other control loops and
management functions. Furthermore, the control system com-
ponents (e.g., the sensor and controller) may not be syn-
chronized. Figure 2 illustrates how the network-induced vary-
ing delays O,, and ©,, enter the control system.

In the continuous-time, the control law for a given plant
model is derived as a transfer function or using a state-space
realization. In the discrete-time, an additional parameter of
importance is the sampling time T of the control system [2]. In
1CCS, T'is essentially the sensor message inter-arrival time and
can be considered as a common parameter of the control
system and the communication network. From a point of view
of control systems design, smaller values of 7 (with the excep-
tion of sensitivity to round-off errors in the controller com-
puter) are desirable as the discrete-time control law more
closely approximates its continuous-time design. On the other
hand, a smaller T, i.e., a higher sampling frequency, implies a
larger network traffic, for a given data transmission rate,
which in turn increases the data latency.

Analysis and design of ICCS require interactions between
the disciplines of communication systems and control systems
engineering. It may be appropriate to bring out the notions of
delay as it is used in the two disciplines in somewhat different
manners. In communication systems, the delay is primarily
referred to as queueing delay and data latency which are
associated with only those messages that successfully arrive at
the destination terminal [3, 4]; messages that are corrupted by
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Fig. 1 Schematic diagram for the ICCS

noise or deleted due to queue saturation at the transmitter buf-
fer of the source terminal are not considered for this purpose.
In control systems, the delay is related to the question: How
old is the data which is currently used?. When no messages are
rejected, the two notions of delay are similar; otherwise they
are different.

Although ample research papers in modeling and simula-
tion of communication protocols have been published [5], the
significance of network-induced delays relative to the stability
of feedback control systems has not been apparently ad-
dressed except in a few cases [3, 4].

In our earlier work [4], the basis for selection of the SAE
linear token passing bus [6] as the medium access protocol for
ICCS networks has been reported along with the simulation
results for its performance analysis. We have shown that the
bus traffic in an ICCS network is subject to time-varying data
latency of messages resulting from asynchronous time-division
multiplexing in the communication network. The detrimental
effects of data latency on the dynamic performance of ICCS
are further aggravated due to possible mis-synchronization
between terminals in the control loop as well as to loss of
messages resulting from saturation of buffers and noise cor-
ruption in the network medium.

The paper is the first of two parts, and presents the results
for ICCS analysis focusing on discrete-time control systems
which are subject to time-varying delays. The analytical
technique developed here is applicable to integrated dynamical
systems such as those encountered in advanced aircraft,
spacecraft, and real-time control of robots and machine tools
via a high-speed network within an autonomous manufactur-
ing environment.

This paper is organized in five sections and one appendix.
The current status of research for analysis of time-delayed
control systems is summarized in Section 2. The significance
of data latency and mis-synchronization between individual
system components in ICCS networks is discussed in Section 3
in view of the time-varying delays. A finite-dimensional,
discrete-time model for analyzing linear time-invariant feed-
back control systems with distributed and time-varying delays
is derived in Section 4. The summary and conclusions of this
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Fig. 2 Delayed control system

paper along with recommendations for future work are
presented in Section 5. Appendix A contains a supporting
proposition.

Part II is presented as a companion paper [7] which ad-
dresses system design considerations. These include the
physical significance of the network delay parameters in ICCS
design and some of the simulation results.

2 Research Status for Analysis of Delayed Control
Systems

Several approaches for analyzing the dynamic performance
and stability of delayed control systems have been suggested
[8-16]. Most of the literature on delayed systems deals with
the case of constant delays, but some results concerning time-
varying delays were presented, ¢.g., Yorke [8], Hirai and
Satoh [9], Ikeda and Ashida [10], and Belle Isle [11, 12]. For a
network with randomly distributed traffic, the delay in the
ICCS loop could be a stochastic process. The use of stochastic
Lyapunov functions for stability analysis of systems with ran-
domly varying delays has been suggested by Belle Isle.

The network-induced delays in an ICCS feedback loop are
sensor-controller delay and controller-actuator delay as shown
in Figs. 1 and 2. Since both these delays are time-varying, they
may not be lumped together, in general. However, since the
digital control algorithm is time-invariant, the two delays
could be lumped together if no message rejection/vacant
sampling (defined later in Section 3) occurs. A statement of
this property and its proof are given as Proposition A.1 in Ap-
pendix A,

Lumping the two delays, ©,. and O, in Fig. 2, does not
necessarily solve the problem of control system design as the
lumped delay could still be a time-varying quantity. This
makes the system analysis and design difficult because the
specifications of feedback control systems are usually given in
terms of phase margin and gain margin in the frequency-
domain or in terms of smallest decay rate, overshoot, rise
time, settling time, etc. in the time-domain. These specifica-
tions, the frequency domain data in particular, are stated in
view of linear time-invariant systems, Approaches for solving
time-varying delay problems are discussed below.

Given a linear finite-dimensional time-invariant system with
a lumped time-varying delay placed between the controller and
actuator, the closed loop digital control system is approx-
imately represented in continuous-time as

dax(t)/di=Ax(t)—Bx(t—L(1))

where x is the (n X 1) state vector,
A and B are (n X n) constant matrices, and
L(t) = 0foralls > 0.
A first order system is considered to illustrate how the com-
plexity of dynamic performance analysis increases with time-
varying delays.

dx(t)y/dt=ax(t)—bx(t—L) (1)) 2.2)

where x is a scalar, a < 0, b > 0, and L is a continuous func-
tion of ¢ such that sup L(¢) = g and inf L(¢) = 0.

@2.1)
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A sufficient condition for uniformly asymptotic stability of
(2.2) has been shown by Yorke [8] to be ¢ < (1.5)/b provided
that @ = 0, i.e., the plant is represented by a pure integrator. It
is interesting to note that if L(#) = ¢ for all ¢, then the above
condition can be relaxed to the necessary and sufficient condi-
tion of ¢ < #/(2b) by use of Nyquist stability criterion. This
suggests that replacing L (¢) by its supremum may not be the
solution. Similar results have been derived by Hirai and Satoh
[9] using a different approach.

An overview of methods for analyzing delayed control
systems is presented below.

Stochastic Lyapunov Function. The underlying principle
relies upon the well known Lyapunov method [13], except for
that the definitions of norms are modified to accommodate
the time-varying delay argument and the differential operators
are defined in a stochastic setting. Bell Isle and Kozin [11, 12]
used the concept of a stochastic Lyapunov functional to derive
a sufficient condition for almost-sure sample stability of ran-
domly varying delayed systems.

D-Partition Method. It gives the region(s) in the parameter
space within which the system is stable. Given a system
dx(t)/dx = ax(t) — bx(t — q), the method defines region(s)
in the a, b plane within which the system is stable for a given
constant delay g. Rekasius [14] adopted this concept to iden-
tify stable regions for systems with the constant delay ¢ or as a
function of g. Except for the traditional graphical approaches
like Nyquist’s [17] and Mikhailov’s [18], the algebraic ap-
proach presented by Rekasius is one of the few methods that
gives necessary and sufficient conditions for stability of con-
trol systems with constant delays. This method has a potential
for application to ICCS design if an equivalent constant-delay
system could be identified to replace the time-varying delays.

Method of Steps. In this approach adopted by Hirai and
Satoh [9], the time-varying delay is assumed to be of the form:
Lty =t — nTfornT <t < (n + 1)T. Consequently, the
term with time-varying delay, ¢ — L(¢), in the system equa-
tion remains a constant within each time period (0T, (n +
1)T}, i.e., x(¢ — L(t)) = x(nT). Thus the output at the time
instant (n + 1)T can be recursively expressed in terms of the
output at the time instant nT, x(nT) in the formx((n + DT)
= F(.) x(nT), where F(.) is a function of the sampling time
and system parameters. The necessary and sufficient condition
for the stability of a scalar system is |F| < 1.

A common drawback in some of the design methodologies
for time-delayed systems, Bell Isle [11, 12] and Mori et al. [15,
16] for example, is that the stability criterion does not involve
the exact magnitude of the delay, and its functional
characteristics and constraints in the case of time-varying
delays. Such results are very conservative since stabilty is
guaranteed for a wide range of delays. As a result, many of
these criteria have very limited practical significance.

We propose a discrete-time approach for analyzing delayed
systems following the concept of the method of steps. If the
plant and controller are time-invariant and the control inputs
are piecewise constants, the system can be represented by an
augmented state vector which consists of past values of the
plant input and output in addition to the current state vectors
of the plant and controller. Thus the problem of time-varying
delays can be treated by a finite-dimensional time-varying
discrete-time model where the delays are not restricted to be
integer multiples of a given time period. From the perspectives
of ICCS analysis and design, the proposed method has the
following advantages.

e The two time-varying delays in Fig. 2 can be treated

separately, i.e., unlike the other methods, these delays are
not required to be lumped. Therefore, the proposed
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method is not limited by the restrictions stated in Proposi-
tion A.l of Appendix A.

® The delays can be a discrete function of time or a discrete-
ly sampled sequence of a continuous-time function.

3 Significance of Delays in ICCS Networks

In Section 1 the structure and operating principles of an
ICCS network are briefly described. The characteristics of the
actual network protocol are not considered and no specific
structures for the delays are assumed since these issues have
been addressed in our earlier publications [3, 4]. In this section
we present how time-varying delays could occur in an ICCS
network. To better explain the physical significance of
network-induced delays, we make the following assumptions.

1 Traffic is periodic with constant message lengths, i.e.,
queueing delays and data latencies of all messages are deter-
ministic (but time-dependent).

2 Message lengths for sensor and control signals are iden-
tical. This signifies that sensor to controller and controller to
actuator data latencies have identical characteristics. Let the
infimum and supremum of these data latencies be 6., and
Omax» TESPECtively.

3 The sampling intervals of the sensor and controller are
identical and equal to 7.

4 The time skew A, between the sampling instants of the
sensor and controller is a constant (A, € [0, T1) over a finite
time window.

STThe control signal processing delay 8, is a constant and §,,
< T

6 The network is not overloaded and the communication
medium is error-free, i.e., no message is lost due to saturation
of the transmitter buffer at any terminal or by noise con-
tamination. This also implies that 6., < T.

7 The capacity of the receiver queue at the controller is one.
This assumption is consistent with the usual ICCS design prac-
tice [3]. (If an observer is used to estimate the delayed sensor
data, the queue capacity may have to be increased.)

Let y; be the sensor data, generated at the jth sample of the
sensor, be immediately stored at the sensor terminal’s
transmitter buffer at the time 7, + /7, and wait to be
transmitted as a message via the network medium. Upon
transmission, the sensor data is received at the controller at 7,/
+ JT. The sensor data has to wait at the receiver buffer until
the next sampling instant of the controller at 7, + jTif 7/ <
r,orat7, + (j + DTif 1/ = r,. As the processing is com-
pleted at 73 + j7, the control signal is put in the controller’s
transmitter buffer where it waits to be transmitted to the ac-
tuator terminal. Finally, at 7/ + jT, the control signal arrives
at the actuator terminal and immediately acts upon the plant.
Referring to the timing diagram for message transactions in
Fig. 3, the delays are interpreted as follows.

e Sensor to controller data latency 6,/ = 7/ — 7

e The interval 7, — 7, is the time skew A, between the sen-

sor and controller sampling instants.

e Control signal processing delay 6, = T3 T T

e Controller to actuator data latency 6./ = 7/ — 73

o Controller to actuator delay 6,/ = 7/ — 7,, which is

essentially the sum of the processing delay 6, and con-
troller to actuator data latency 8,/.

Let z; be the delayed sensor data which is used by the con-
troller at its jth sample at time 7, + j7. Then the sequences
{z;} and {y;} are related as

Z;=Yj-p() 3.1
where p(j) is a non-negative integer with an upper bound p.

Now we introduce the concepts of the delays involving the
data latency and time skew.

Definition 3.1. The modified sensor-to-controller data
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latency v/ for a sensor message y ; at the jth sensor sample is
defined as the interval between the instant of the sensor data
generation and the instant when the controller starts process-
ing these data or it would have been processed if not replaced
by any fresh sensor data.

Therefore, v,/ is given by the following relationship in
terms of the sensor-controller data latency 8§,/ and time skew
A

S
Vol =kT+A for (k— DT+ A, <8,/ <kT+ A, (3.2

where k is a non-negative integer and, under the assumptions 1
and 6 stated earlier, k is either 0 or 1.

Lemma 3.1. p(j) = 0 or 1 v/ under the assumptions I to 6
stated earlier.

Proof. Since v/ is time-varying, 0 < 8,;, < 8,/ < §,.x <
Tvjand 0 = A, < T, we have only two possible conditions:
() v,/ < A;implyingz; = y; and (ii) v,/ = A, implying that
Zj = yj_ 1.

Remark 3.1. If 7/ < 7y, i.e,, p(j) = 0, then v/ = A if
T/ = 1,16, p(j) = 1, then V/ = T + A,

Remark 3.2. The number v/, of sensor message arrivals at
the controller during its jth sampling period, has an expected
value of 1 since the sensor and controller sampling intervals
are identical. v/ assumes exactly one of the values: 0, 1, and 2.

Remark 3.3. v/ = 0: If v,/ < A; and Vv /*! = A, then
z;,; = z; = y;. This implies that no fresh sensor message ar-
rives at the controller during its jth sampling period, and the
old sensor data is used at the (fj + 1)st sampling instant for
computing the control signal. This phenomenon is called va-

cant sampling as illustrated in Fig. 4.

Remark 3.4. v/ = 1: If one of the two conditions occur: (i)
V. =z Ayand V/*! = A, implying that z;,, = y;, or (i)
Vol < Ajand v/t < A, implying that z;,, = y;,,, then
exactly one sensor message arrives at the controller during its
Jth sampling period, and this message is used to compute the
control signal at the (j + 1)st sampling instant.

Remark 3.5. v/ = 2: If v,/ = Ay and v /*! < A, then
Z;,1 = Y,,,. This implies that two sensor messages arrive at
the controller during its jth sampling period. The former ar-
rival is discarded and the latter arrival is used for computing
the control signal. This phenomenon is called message rejec-

tion at the controller’s receiver as illustrated in Fig. 4.

Definition 3.6. The sensor-controller delay O,/ for the
delayed sensor message z; + ¥;_,(; is the time interval be-
tween the (j — p(Jj))th sampling instant of the sensor and the
Jth sampling instant of the controller (when z; is processed).
Therefore, O,/ can be expressed as

escj =p()T+A (3.3)

Remark 3.7. The condition p(j + 1) < p(j) + 1vjisin-
dependent of the stated assumptions. The rationale is that the
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Fig. 3 Timing diagram for message transactions
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sensor data, available to the controller at one instant, is also
available at the successive instants unless replaced by a fresh
data.

Proposition 3.1. Under the assump@ions 1 to 6, stated
earlier, the sequences { v/} and {6,/] are identical, i.e.,
vV = e:cj vj.

Proof. Using Lemma 3.1 and making use of Remarks 3.3,
3.4, and 3.5, we need to consider only two possible cases: (i) z;
=y, implying v,/ = 0,/ = A, and (i) z;,, =y, implying
Vel =06, =T+ A,

The importance of the above proposition is that the control
system delay O,/ in Fig. 2 is equal to the communication
system delay parameter V,/ which can be readily obtained
from (3.2). v,/ can be calculated on the basis of the network
traffic characteristics which could be deterministic or random,
and A, can be approximately maintained at a desired constant
value by periodically broadcasting synchronization signals via
the network medium,

Remark 3.8. v/ and O,/ refer to the same sensor message
only when v/ = A,.

Using the above physical concepts of the network-induced
delays, we develop a discrete-time, finite-dimensional, time-
varying model of the delayed control system as proposed in
Section 2. The delayed system model, to be presented next, is
generic and is not restricted to the assumptions that were made
in the beginning of this section for physical explanation of the
delay phenomena.

4 Development of a Delayed Control System Model

We consider the control system in Fig. 2 where G, (s) and
G, (z) are linear, finite-dimensional, time-invariant models of
the continuous-time plant and discrete-time controller, respec-
tively. In Section 3, we described how the sequence {z,]} of
the delayed plant output at the controller sampling instants is
obtained from the corresponding sequence {y,} of the
measured plant output at the sensor sampling instants. Since
the delay O,,, in Fig. 2, is time-varying, the controller may use
the sensor data generated at the current or earlier samples. The
delay ©,, to which the control input sequence {u,} is sub-
jected is also time-varying. This implies that even if the con-
troller generates the commands at a constant rate, the interval
between their successive arrivals at the actuator terminal may
not be a constant. In contrast with the sensor data which may
wait at the controller’s receiver queue before being processed
by the controller, the control input acts upon the plant im-
mediately after arriving at the actuator terminal. This happens
because the controller is scheduled to generate signals at con-
stant intervals whereas the actuator operations are essentially
asynchronous. The characteristics of the delay 6,, are dif-
ferent from those of 8, in the case where two or more sensor
data arrive at the controller during one of its sampling inter-
vals. Since the controller operates in discrete time, unlike the
actuator which is essentially a continuous-time device, only
the most recent sensor data is accepted. We have referred to
this phenomenon as message rejection at the controller’s

Instants of Arrival
of Conirol Inputs

at the Actuator 111‘ Lo ' l:) 1"1=T
1 | | | | I
Sensor Sampling i1 f ...... f j / ...... / jri
Instants S
Conlrol Signals Control Signals
\Rejecled
Sensor Data
. Vacant Sample
Controller Sampling 1 I 1
Instants i-1 i j+1

Fig. 4 Timing diagram for sensor and control signals

Transactions of the ASME

Downloaded From: http://vibrationacoustics.asmedigital collection.asme.or g/pdfaccess.ashx?ur|=/data/j our nalg/jdsmaa/26105/ on 03/27/2017 Terms of Use: http://www.asme.or ¢



receiver in Section 3. On the other hand, if no fresh sensor
data are available during a sampling interval, the previous sen-
sor data is used to compute the control input, i.e., z,, | = z;.
We have referred to this phenomenon as vacant sampling at
the controller. Having this scenario in mind, we present a for-
mal definition of the problem.

The linear, finite-dimensional, time-invariant model G, (s)
of the plant in Fig. 2 is given in the standard state-variable
form:

x=Ax+Bu @.1)

y=Cx 4.2)

where xeR", ue¢R™, yeR’, and the matrices A, B, and C are of
compatible dimensions.

Let the system be sampled every T units of time, and let the
input u(z) to the plant be piecewise constant during each
sampling interval. More specifically, let u (¢) assume at most (/
+ 1) different values in the interval [T, (X + 1)7) where the
changes occur at the instants k7 + ¢f,i = 0,1,2,....,!
such that ¢/ = ¢, ,* with ¢t} = 0 and ¢;* < T. The superscript
k indicates that the instants ¢/ may vary from one sampling in-
terval to another.

The solution of the state equation (4.1) is given below.

T
x({(k+ 1)T)=exp(AT)X(kT) + So exp[A(T—7)]Bu(r)dr
4.3)

Using the fact that the input is piecewise constant, we have:

!
Xpeor =AgXy + E Bfu,_;
i=0
where x;, = x(kT), A, = exp (AT), and w,_; = u(?), t€[tf,
t;_,*) as illustrated in Fig. 4, and

4.4)

k
tiy
Bf= S Ik exp[A(T—7)IBdrand t_ *=T, t}=0. (4.5
f
Remark 4.1. Some of the 5’s should be set equal to zero
and others to T if the actual number of different inputs acting

on the plant during one sampling interval is less than (/ + 1).

Remark 4.2. The following relation holds regardless of the
value of t£:

! T
E Bf = SO exp(A7)Bdr=a constant 4.6)
=0

The right-hand side of (4.6) is the input matrix in case only one
constant control input is applied throughout the sampling
interval.

Remark 4.3. The sequence {¢}) satisfies:
tFH1 =0iftf <Tforviz=(j+1).

To see this, first note that the input u,_; is the same as
Wi 1)-u+ 1y 1 this input arrives at the actuator before the (k
+ I)st sensor sampling instant, then all previous inputs have
arrived before the (k + I)st instant as well, and their relative
arrival time ¢! in [(k + 1T, (k + 2)7) is zero.

Setting the reference signal r, in Fig. 2 to zero, the discrete-
time, linear, time-invariant model G,(z) of the controller is
given in the state-invariable form as:

Ner1 = Fni — Gz
u, =Hpy, —Jz,

“.7

(4.8)

where n€RY, z, is the last available measurement at the instant
when u, is processed by the controller, and the matrices F, G,
H, and J are of compatible dimensions.

We combine (4.4), (4.7), and (4.8) with the expression z; =

Journal of Dynamic Systems, Measurement, and Control

¥,_p( for the delayed sensor data in (3.1). Any finite amount
of delay is satisfied by having p(k) = 1,2, ..., p wherepis
the maximum of p(k) for all k. We obtain an augmented state
representation as follows.

P
Xy =(Ag~ BokJTokC)Xk - BokJ E Tikqu

i=1

!
+ By Hy, + E Bfu,

j=1
I, ifi=p(k)
where T/ =
0 ifiz#p(k)
Vi =Cxy
yk—i:Iryk—h i=12,... :(‘P_ I)’ (49)
r
Mee1 = — GTFCxy — E THYi—i+Fry
i=1
P
ue= —ITHCx, —3 Y, TFy, i+ Hy
i=1
w_;=Lu_;,i=12,....,(-1.
Equation (4.9) is written in a matrix form as:
X1 =2 X (4.10)

where X = xSy, " - v v, T e T w717 s the
augmented state vector of dimension N = # + pr + g + m/,
and the (N x N) augmented state transition matrix is given as:

(A, 0....0BJH B*. .. Bf ]
C o 0
0 1, 0
=10 I 0
0 0F 0 0
0 0OH 0 0
0 0 1, 0
L 0 O Ilﬂo J
( BJ] [TC Tk ..TX0....0]
0
0
-l G @.11)
J
0
o
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Since only one of the T/#’s is nonzero, (4.11) implies that on-
ly one matrix column is added to the first term on the right-
hand side.

Remark 4.4. In the realization (4.9), the sensor outputs y,’s
can always be replaced by earlier control inputs u;’s. To see
that (4.2) and (4.4) are combined as:

i
Vi1 =CA™! (Xk— E Bik_luk—i—1>

i=0

4.12)

which means that w,_,_, can replace y,_, as part of the
augmented state vector X,. In that case, the matrices Bf~!
must be stored as well. Following the same argument,
Yi-is - -« »¥4-, can bereplaced by u;_,_, . . . W, if the
matrices B/, j = 1,2, . . . ,p are stored.

Similarly, if F is nonsingular (Note: A, is always non-
singular), u;’s may be replaced by earlier y;,’s. To see that
(3.1), (4.7) and (4.8) are combined as:

e  =HF Y+ GY 1 _pe-ny) = IVi—1-pe—1 4.13)

andw,_y, ..., canbereplaced by yx , (>« « « s¥pso if
the values of p(k — j), j = 1, 2, ...l are stored. The
realization (4.10) is minimal if = m, i.e., the number of in-
puts and outputs are identical. The minimum dimension of the
system, assuming F to be nonsingular, isn + g + (p + DY
where Y = min(r, m). But, for r # m, this minimal realization
would require storage of time-varying parameters, especially if
r>m.

Equation (4.9) is a linear, finite-dimensional, discrete-time,
time-varying model of the system, which is apparently better
suited for simulation, analysis, and design than the
continuous-time approach proposed by other investigators,
Bell Isle [11, 12] for example.

Network traffic is generally random but it can be approx-
imately periodic. As a first step in stability analysis for ICCS,
we consider periodic traffic. (The assumption of periodicity
needs to be modified to accommodate quasi-periodic traffic;
this is a subject of future research.)

For certain applications such as the token bus [6] with
periodic traffic, the delay sequences have been shown to be
periodic [3, 4]. In that case, there exists a positive integer M
such that:

p(k+M)=p(k)and t} =t}*M forevery iand k (4.14)

Considering the (N X N) system matrix &, in (4.11), (4.14)
implies that ®,, ,, = ®, for ¥ k. Let us define, for any &,

M
M =T [ @ snr, 4.15)

=

Proposition 4.1. Let the delays in the control system in Fig.
2 be periodic with a period of M. Then the system (4.10) is
uniformly asymptotically stable if all eigenvalues X\, of ¥ M
are contained within the unit circle, i.e., IN;I < 1 fori =1,
2,...,N.

Proof of Proposition 4.1: We need the following two lem-
mas to prove the proposition.

Lemma 4.1. The eigenvalues of ¥, are identical to those of
¥ M for every k.

Proof of Lemma 4.1: Since ®;, ,, = ®; v/,

= (CTT )

J=M-s+2 j=1

M-s+1

Dur_u1) 4.16)

where s = k modulo M. By Lemma 4.2, it follows that the
eigenvalues of ¥, M are identical to those of ¥,

Lemma 4.2. If T" and Q are two square matrices of same
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dimensions, the eigenvalues of I'Q are identical to those of QT'.

Proof of Lemma 4.2: The problem is stated as: If « is an
eigenvector of I'Q with an eigenvalue y, i.e., 'Qo = po, then
does there exist a vector 8 such that QI'8 = uB. The proof
follows by premultiplying the first expression by { and setting
B = Qa.

Now we present the proof of Proposition 4.1. From (4.10)
and (4.15), it follows that X, = ¥, M X, for any given k.
Since this is a linear, autonomous system, X, | — Oasi—
oo iff each eigenvalue of ¥, M lies within the unit circle. By
Lemma 4.1, IX, | — 0 as k — oo iff IN,| < 1 fori =1,
2,...,N.

Corollary to Proposition 4.1. The system will have a
minimum decay rate (per every M samples) of y € (0, 1) iff
INI < yfori=1,2,...,N.

Proof of Corollary: The proof directly follows Proposition
4.1.

Remark 4.5. Since Id, 1l < o for every k, there exists a
finite { € R, such that, for every j < M, (I, < ¢. For
example, one way to choose { is

{= Max ®. |l
I<k=M

Remark 4.6. Proposition 4.1 applies to all periodic, finite-
dimensional, time-varying systems. In the ICCS, this can be
used only if the delays are periodic. This simplification was
possible because the infinite-dimensional delayed system could
be represented by a linear finite-dimensional model.

4.17)

5 Summary, Conclusions, and Recommendations for
Future Work

The asynchronous time-division multiplexed networking in
Integrated Communication and Control Systems (ICCS) in-
troduces time-varying delays between system components.
These delays could degrade the system dynamic performance
and are a source of potential instability in complex dynamical
processes like advanced aircraft, spacecraft, and autonomous
manufacturing plants.

The system, under consideration in this paper, consists of a
continuous-time plant and a discrete time controller where the
sensor and control signals experience time-varying delays; no
assumption has been made regarding any specific network
topology or protocol. The plant and controller models are
finite-dimensional, linear, and time-invariant. In contrast to
other investigators’ approach of modelling the system by
delayed differential equations, we have represented the con-
trol system in discrete-time. This yields a finite set of time-
varying, linear difference equations. The effects of the
network-induced delays, i.e., data latency and mis-
synchronization between components, on the system dynamic
performance have been taken into account.

No general stability test have yet been established for the
time-varying system. However, for periodic delays, which is
an idealized case of periodic traffic in a linear token passing
bus protocol [3, 6], a necessary and sufficient condition for
uniform asymptotic stability has been established. Further
research is required for defining stability conditions for
nonperiodic delays. The existing techniques for solving time-
varying systems need to be investigated for this purpose. The
areas of current research are: (1) Development of appropriate
observers (or filters) to compensate for network-induced
delays, and (2) Construction of an appropriate Lyapunov
function for stability analysis of the finite-dimensional time-
varying system.

Although the ICCS model is derived in a deterministic set-
ting, it can be extended for random delays without any struc-
tural modifications. In that case, the time-varying coefficients

Transactions of the ASME

Downloaded From: http://vibrationacoustics.asmedigital collection.asme.or g/pdfaccess.ashx?ur|=/data/j our nalsjdsmaa/26105/ on 03/27/2017 Terms of Use: http://www.asme.org



in the system difference equations are replaced by stochastic
delay parameters [13].
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APPENDIX A
Supporting Proposition
Proposition A.1: The time-varying delays ©, and O, in
Fig. 2 can be equivalently lumped together as a single delay A
= N(O,., O,) in Fig. A.1 provided that
1. The sensor and controller have identical sampling
periods T,
2. No message rejection at the sensor and controller
terminals,
3. A¢t)=0forvi,
4, N(KT+®%)=2&%, and
5. NKAT+71)<7vre[dk, T+ ®F+1)

where &% 20,% +0_*.

Proof: The lumped and unlumped delayed systems in Fig. 2
and Fig. A.l are equivalent with respect to the input/output
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relation if, for a given y(#) at anytime ¢ = 0, u(¢) and u*(?)
are identical. The function u(¢) in Fig. 2 is piecewise constant
and is given by
u(t)=u, if kT+ 0% <t= ((k+1)T+ PrH!
The function u*(¢) in Fig. A.1 is given by
() =u if kT (t—=ND) < (k+ DT

For u(¢) and u*(¢t) to be equivalent, the time ranges in two

equations must be the same. Condition 4 guarantees that
w(kT+d*)=u,

Condition 5 assures that this value remains constant as long as
t < (k + DT + ®**!, This follows from the fact that
t=AN) =kT+7—A(kT+7)=kTat theinstant t =kT + 7

Thus the input to the plant is u(¢) = w,. The proof can also
be obtained graphically and is shown in Fig. A.2.

Remark A.1.1: As can be seen from conditions 4 and 5 in
Proposition A.1, A(¢) is not unique and any admissible func-
tion is equally applicable.

Remark A.1.2: If X (t) is a constant or can be approximated
by a constant for all ¢ even though O, and O, could be in-
dividually time-varying, then the control system can be de-
signed using conventional frequency-domain techniques.

Controller Lumped Delay U’ (t) - y(t)
G (2) et ZOH. |l L ant | .
€ MB3c0cp) G p (s)
Yk T

Fig. A.1 Lumped delayed control system
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(a) Comparison of delayed and undelayed output

o(t)

Each of the functions shown is equivalent to u(t)

Lumped Delay »(1)
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(b) Regionof \t), T + 04 = t > 2T + 0,
Fig. A.2 Graphic representation of admissible functions

Each of the tunctions shown is equivalent to u(t)
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