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Networking in Integrated Communication and Control Systems (ICCS) introduces
randomly varying delays which degrade the systein dynaimic performance and are a
source of potential instability. In Part I [I] of this sequence of papers we developed a
discrete-time, finite-dimensional model of the delayed control system for analysis
and design of ICCS where the sensor and coniroller have ideniical sumpiing rates. In
Part II 2] we proposed two alternative approaches for ICCS design, namely, iden-
tical and nonidentical sampling rates for sensor and controller. This Part III
presents extended modeling of ICCS for nonidentical sensor and controller sampling
rates. This model is also suitable for analyzing tracking problems, i.e., control

1 Introduction

Integrated Communication and Control Systems (ICCS),
described in a recent two-part paper [1, 2], are applicable to
complex dynamical processes like advanced aircraft,
spacecraft, and autonomous manufacturing plants. Time-
division-multiplexed networks are employed to interconnect
the distributed components and coordinate diverse functions
in ICCS. The feedback control loops in ICCS are subject to
network-induced delays [I-5] in addition to the delays in-
curred in digital sampling and data processing. These delays
are usually randomly varying and distributed, degrade the
system dynamic performance, and are a source of potential
instability.

In Part I [1]of the above two-part paper, we have presented
the finite-dimensional modeling of ICCS by taking into con-
sideration the effects of network-induced delays. A necessary
and sufficient condition for the system stability was estab-
lished for the special case of periodically varying (nonrandom)
delays. The attention was focused on the control loops with
identical sampling rates for the sensor and controller. Even
though the sensor and controller sampling periods are de-
signed to be identical, a certain difference between them
always prevails due to manufacturing tolerances in the clock
frequencies. This generates a drift resulting in a time skew A,
between the sensor and controller sampling instants. Since the
drift is very slow (because of a small difference between the
sensor and controller sampling rates), A, can be considered to
be a constant over a finite window of time and may
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systems with time-dependent reference inputs.

significantly contribute to network-induced delays. This
aspect has been discussed in view of ICCS design in Part II [2].
One way of circumventing this problem is periodic syn-
chronization of the control system components by which A, is
maintained within a desirable range. This could be achieved by
transmitting high-priority synchronization signals via the nei-
work medium or by additional wiring. Nevertheless this pro-
cedure would require additional efforts to meet the system
reliability requirements.

An alternative approach to the above synchronization pro-
cedure is to deliberately assign nonidentical sampling periods
T, and T, to the sensor and controller, respectively. If the
ratio e=T,/T, is not close to 1/M, where M is a positive in-
teger, then the skew A; will vary rather rapidly and shall not
remain at an undesirable value over a prolonged period.
Another benefit of having nonidentical sampling is to reduce
the occurrence of vacant sampling slots at the controller,
which results from mis-synchronization between the control
system components and varying data latency [1, 2]. This can
be achieved by selecting an appropriate ¢ as presented in Pro-
position 2.1 of Part II [2]. (Note: e¢ was defined as
(T.—T)/T, in Part 1l instead of T,/T,).

ICCS with nonidentical sensor and controller sampling, as
depicted above, belong to the class of multirate sampling
systems [6] and could have significantly different dynamic
characteristics from those with identical sampling. The ICCS
model developed in Part I [1] for identical sensor and con-
troller sampling cannot be readily adapted to the nonidentical
sampling case where the effects of two time frames (due to the
absence of synchronization between the sensor and controller
sampling instants) must be taken into account and the system
is, in general, time-varying even in the absence of network-
induced delays. This Part III specifically addresses finite-
dimensional modeling of control systems that are subject to
randomly varying distributed delays and have nonidentical
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sensor and controller sampling rates. The model is also
suitable for analyzing tracking problems, i.e., control systems
with time-dependent reference inputs. The reported work is
essentially an extension of the two-part paper [1, 2] which pro-
vides the necessary background.

A significant amount of research [6-12] has been reported
on multirate sampling for nondelayed systems. Some of these
techniques are discussed below.

The z-transform method [7] is applicable to multirate linear
time-invariant systems where the individual sampling rates are
restricted to be integer multiples of the basic sampling rate.
This approach is not suitable for ICCS since the network-
induced delays make the system time-varying [1].

The state-space approach, originally proposed by Kalman
and Betram [6], provides a unified procedure for modeling
various types of sampling data systems that consist of both
continuous and discrete components. For multirate sampling
in the absence of varying delays, if the ratio e=L/M where L
and M are relatively prime integers, then this method produces
a time-invariant model at the time epochs that occur with a
period of LM samples. Significant modifications of Kalman
and Bertram’s model are required to develop models of
multirate systems with varying delays. Such models may turn
out to be very cumbersome because of the additional ““book-
keeping”’ needed to keep track of the varying delays at every
sample.

The singular perturbation and time-scale separation [8-10]
techniques have been used for analyzing mutlirate systems that
have a special structure of separable fast and slow dynamics.
Applying the concept of singular perturbation technique for
continuous systems where the faster part is assumed to be in-
stantaneous, the time-scale separation technique transforms
the system model into two decoupled fast and slow sub-
systems. This substantially reduces the computational efforts
for controller design and yields well-conditioned submatrices.
(See Litkouhi and Khalil [8] for example). Although these
techniques could be useful for design and performance
analysis of various control loops belonging to the integrated
control system, the plant and controller dynamics within a
given control loop are not separable. Therefore, these
methods cannot be applied to modeling of ICCS with
nonidentical sensor and controller sampling.

Broussard and Glasson [12] proposed an approach to
multirate optimal control synthesis where the system model is

restricted to have the ratio of fast and slow sampling rates to
be integer multiples and the sampling instants are synchro-
nized. Since the major difficulty in ICCS modeling is the vary-
ing network-induced delays, the above approach is not ap-
plicable to modeling of multi-rate systems with varying delays.

We are proposing a method for modeling multirate sampled
systems that are subjected to randomly or determininstically
varying delays. Our approach to analysis of ICCS with
nonidentical sampling emphasizes finite-dimensional model-
ing using the concepts of state transition and keeping track of
epochs of random event occurrences. (Keeping track of ran-
dom events is much less complex for modeling of ICCS with
identical sampling [1].) This method is apparently better suited
to ICCS modeling than any other reported techniques.

This paper is organized into four sections including the in-
troduction. The finite-dimensional models for control systems
with nonidentical sensor and controller sampling periods are
developed in Section 2. Simulation results using a simple
model are presented in Section 3 to illustrate how the ratio of
sensor and controller sampling rates influences the control
system dynamics. Summary and conclusions along with
recommendations for future work are presented in Section 4.

2 Finite-Dimensional Modeling: Nonidentical
Sampling

In the conventional design of digital control systems, the
sensor, controller, and actuator are colocated and, therefore,
a single sampling rate applies to all components which are
essentially synchronized. Often the digital control law is ob-
tained by modifying the continuous-time version. The sam-
pling time T is a critical parameter in this modified control
law. Since T, and T}, the respective sampling periods of the
controller and sensor, are unequal in the present case, the
ICCS is modeled on the consideration that the digital control
law is based on 7.

Having the sensor sampling rate larger than the controller’s
could provide a means for reducing the total delay in the
ICCS. Furthermore, probability of vacant sampling at the
controller [2] can be reduced to zero by an appropriate choice
of the ratio e = T, /T, where arrival of at least one fresh sensor
data is assured at the controller during each sampling period.
Since the objective is to reduce the detrimental effects of
network-induced delays on the system dynamic performance,

Nomenclature
K = controller direct coupling
A = plant system matrix (n X n) matrix (mXs) 6., = controller-to-actuator data
A, = plant state transition matrix n, = number of sensor samples in latency
(nxn) kth controller period 8max = Supremum of sensor-to-
A, = plant state transition matrix Ty, = sensor sampling instants in controller data latency
(nxn) kth controller period Omin = infinum of sensor-to-
B = plant input matrix (nxn) T, = controller sampling period controller data latency
B, = plant input matrix (nxm) T, = sensor sampling period 8, = processing delay at the con-
in convoluted form t = time troller computer
B, = plant input matrix (nxm) t, = instant of arrival of the last d,, = sensor-to-controller data
in convoluted form sensor data at the controller latency
C = plant output matrix (sxn) relative to the kth sample e = sampling ratio T,/T,
¢, = instant of control command X = augmented state vector note: e was defined as
arrival at the actuator (Nx1) (T.—T)/T, in Part-II [2]
relative to the kth sample of x = plant state vector (nx1) n = controller state vector
the controller u = plant input vector (mx1) (gx1)
F = controller system matrix y = plant output vector, i.e., 8., = sensor-controller delay
(gxq) generated sensor data (rx1) 0, = sensor-controller delay
G = controller input matrix z = delayed sensor data (rx 1) T = input matrix for augmented
(gxs) A, = time skew between sensor system (nxr)
H = controller output matrix and controller sampling $ = augmented system matrix
(mxq) instants (NxXN)
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Fig. 1 Multirate sampling without delays

T, should not be larger than T,. Therefore, we only consider
the case of T,<T,, ie., e<l, for design of ICCS with
nonidentical sampling. However, 7 should not be excessively
reduced since this would cause additional traffic which might
affect the performance of other control loops that share the
network.

The plant and controller models follow the notations in Part
I [1]. The linear time-invariant model of the plant is given as:

dx/dt = Ax(t)+Bu(t) 2.1
y(t) = Cx(1) (2.2)

where xeR", ueR™, yeR*, and the matrices A, B, and C are of
compatible dimensions.

The state space model of the linear, time-invariant, discrete-
time controller is given as:

i

(2.3)
(2.4)

=Gz —ry)
Hu—K (2 —ry)

where neRY, z, is the last available measurement at the instant
u,, is processed by the controller, r, is the reference signal, and
the matrices F, G, H, and K are of compatible dimensions. In
constrast with the sensor data, which may wait at the con-
troller’s receiver queue before being processed, the control in-
put u, acts upon the plant immediately after arriving at the ac-
tuator terminal. This happens because the controller is
scheduled to periodically generate signals whereas the opera-
tions of the zero-order-hold (ZOH) device at the actuator are
essentially asynchronous (see Sections 3 and 4 of Part I [1]).
The reference signal r, couid either be an external input or
may be generated internally by the outer controller loop within
the cascaded control system. In the latter case r; is also sub-
jected to network-induced delays.

The reference time frame of the control system model, i.e.,
the combined plant and controller, is selected with respect to
the controller’s sampling instants. Figures 1 and 2 illustrate
the concept of relative timing between the sampling instants at
the sensor and controller.

Nk+1

Uy

Denotation 1: The number of sensor sampling instants
that occur within the kth sampling period of the controller
(i.e., between the kth and (k+1)st sampling instants) is
denoted as n,.

Denotation 2: The sequence {sj", J=1, 2, ..., 0
0<.S‘_, < T,} denotes the instants of sensor sampling within the
kth sarnphng period of the controller and measured relative to
the beginning of this sampling period.

Remark 1. It follows, from Denotations 1 and 2, that

max n=1+[e"]
k

where [¢] is the largest integer less than ¢, e.g., [4. 3] =4 and
[6]= 5 The observation accrues from the fact that s; k< T,and
if sj =T,, then that occurrence of sensor samphng instant is
assigned to the (k + 1)st period.

2.1 Ideal Network: Zero Data Latency. To obtain a bet-
ter understanding of this multirate sampling phenomenom
within the control loop, we first consider the ideal case of
having infinitesimally small traffic in the network, i.e., we
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Fig. 2 Multirate sampling with network-induced delays

assume the sensor-to-controller and controller-to-actuator
data latencies, §,.* and 8., (defined in the Nomenclature and
explained in [1]), are negligible at every instant k. We also
assume that the control signal processing delay 6,=0. Later
these assumpuons will be eliminated to include the network-
induced delays in the ICCS model.

Under the assumptions &, =0 and 6, =0, it follows from [1]
that the controller-to- actuator delay Bm =0, +06,=0. Given
Sp ]" !, the sequence {s S; kj=1,2, ., ny)in Denotauon
2 ¢an be calculated as:

Slk:—snk-lk_l+6T0~Tczsnk——lk_l”(I_E)Tc
8% =5%+eT,
(2.5)
Syt =8,_1F+eT, ifs, k< T,
Remark 2. s,* = s;¥ + e(m — DT, <T,if m - 1<(T,
—_ k
Sy )/ETC)

Since n, is the number of sensor sampling instants that oc-
cur within the kth period (see Denotation 1), we have

nkz{(Tc—Slk)/(eTc)]+l
sK=5;_ 1k +eT,,j=2,3,...,n,

(2.6)
2.7)

Since the sensor output and controller input sequences,
{»,} and {z,}, are identical for zero data latency, the se-
quence {z,} is replaced by {y,}. The actuator input u(?)
assumes only one value in the kth sampling period. This is il-
lustrated in Fig. 1 which shows the timings of various arrivals.

Denotation 3:  The epoch #, of arrival of sensor data y,,,
that is used for generatmg the control signal at the (k+1)st
sampling instant is given as ¢, =s,.* and y;, | =y (kT +1;).

Definition I: Sensor-controller delay 8,.* is the amount of
network-induced delay experienced by the sensor data that is
processed at the kth controller sample.

Remark 3: 6,*=T,—t,_.,. The physical concept of
sensor-controller delay for nonidentical sampling is similar to
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that for nonsynchronous sampling, i.e., A,>0and T; =T, in
Part I [1].

Denotation 42 x;, , , = x((k + VT.), u, = u(kT,), A,
= exp(4T,), and

T
B.= So © exp(A(T.—7))drB

Integrating (2.1) and using Denotation 4, the plant equation
becomes:

X+ =Acxk +Bcuk (28)

Substituting the expression for u, from (2.4) in (2.8), we
obtain
Xpp1 =AX + B [Hy —K(y—r)l 2.9)

Since yy ., is the most recent data available to the controller
at the (k+ 1)st sampling instant, the continuous-time plant
model in (2.2) yields

Yis1 = Cx(kT +1;)

73
C[exp(Atk)xk + So exp(4 (tk-—s))dsBuk]

= CApx +CBu, (2.10)
where '
A, = exp(At), B, = S;" exp(A (t, — 0))doB.
Using (2.4) in (2.10) yields
Yiw1=CAxy + CB [Hn — K (¥, — 1)l (2.11

Combining equations (2.9) and (2.11) with the controller
model (2.3), we have the closed-loop system model as

Kia1 =4 X+ Tyry

where the augmented state vector X, =[x, T y,. 7 9,717,

(2.12)

A, -BK BH B.K
$,= |CA, —CB,K CBH |,andT,= | CB,K
0 -G F G

Remark 4: The substate vectors x; and y, in the
augmented state vector X, represent plant state and output
vectors at different instants since x;=x(k7T,) and y,=
((k=DT.+1t,_)).

Remark 5: Equation (2.12) is a linear, time-varying state
space model. It represents the system having different sam-
pling periods under very light traffic load. If the sampling
ratio is a rational number, i.e., e=L/M where L and M are
relative prime integers, then the system in (2.12) becomes
periodic. This implies that the varying elements of the matrices
are periodic with a period of LM. In this case, ®;, 15 =%,
and Proposition 4.1 of Part I [1] can be applied to determine
the system stability.

2.2 Network With Medium Trafficc Non-Negligible
Delays. We now proceed to develop the ICCS model by tak-
ing into account the effects of data latencies é,. and §,,, in-
duced by the network, and the signal processing delay 6, at the
controller. The network is assumed to operate under the
following operating conditions.

1. The ratio ¢ of sampling periods is chosen to be suffi-
ciently small such that the probability of vacant sam-
pling is zero (see Proposition 2.1 in [2]).

2. The offered traffic is sufficiently small relative to its
critical value [3, 4] such that the probability of message
rejection at the transmitter buffers of the sensor and
controller is zero.
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Remark 6: The first assumption is necessary to avoid
signal distortion [2] unless the appropriate observer is incor-
porated in the controller [5]. The second assumption is valid
from the point of view of network design such that the offered
traffic is well below the critical limit (see the conclusions in
Section 5 of [3]).

Remark 7: On the basis of the above assumptions it
follows that

0<8,.* < T, and 0< 8, <(T,—3,) vk with probability 1.

However, this condition can be relaxed to 0<6.,*<T, vk
with a minor modification in the ICCS model.

Figure 2 illustrates the timing relations in the derivations to
follow.

Denotation 5: The control command computed at the kth
sampling instant reaches the actuator after a delay of c;.

Remark 8: Since ¢, is the controller-actuator delay at the
kth sample, ¢, =8,,* +8,. On the basis of Remark 7, ¢, <T..
Now the plant state vector can be expressed as:

Xpp1 = X((k+1T,)

, exp(A (T, —s))dsBu, ..,

exp(AT,.)x, + SO

+

T,
S © exp(A (T, —s))dsBu,
Ck

= AXp+Be U1+ B oy

= A Xy +Beug_y + B o[Hn —K (3, — 1)) (2.13)
where
A, = exp(4T,), B, = Sok exp(4 (T, — v))dvB, and
TC
B., = S exp(4 (T, —v))dvB.

k

For brevity of notations, the superscripts of data latencies
are dropped, i.e., we write 5,* + 8, and s,* + 8, implies that
8, in the two expressions represents delays corresponding to
the two different messages.

Next we proceed to evaluate the sensor data y, used in com-
puting the control command u,. Let r be the smallest positive
integer such that s,,,%+8,=7,. Then s*+6,<T. Vj=r.
This implies that the most recent sensor data available to the
controller is that sampled at the instant s,* (relative to the
beginning of the kth sample). Therefore, #, =s,* in contrast to
t, =S, in the absence of any delays. (see denotation 3).

However, the sensor data used at the (k + 1)st sampling in-
stant is still y,,, =Cx(kT, +1,) albeit the fact that 7, is dif-
ferent in the presence of induced delays.

We consider two cases on the basis of relative magnitudes of
¢, and 7.

Case l: t,=c,

Ck
Vit = Clexp(Atx,+ | exp(A (1 —v))dvBuy

+ gr" exp(A (1, — v))dvBuy) @.14)
Ck

Case2: t,<c;
Ik
Ve =Clexpldrx+ | | exp(d (- o)doBu_y 219

By expressing the control command u;, as u, —u,_; +uy_;
in (2.14), we combine the results of the above two cases as:
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C(A Xy +Byuy_y + Bolup—up_11) if t,>c,

Y+ =
¥ C(A,xk—i-B,uk_l) if tk>ck
(2.16)

.
where A, =exp (At,), B, = SOL exp(4 (¢, —v))dvB, and

I3
By= S , exp(A (¢, —v))dvB
Ck

We define the indicator function p, as

{[,,
P =
0

to combine the two expressions in (2.16) as

if ty=cy

if t,<cy

@.17)

Finally, substituting #, from (2.4) in (2.17), and combining
(2.13), the closed-loop system model is obtained as:

Vi1 = C(;‘ltxk + (By =D Bo)tty—y + D Bouy)

the ICCS model becomes periodically varying. Therefore the
system stability can be analyzed by the results derived in
Proposition 4.1 of Part I [1]. If the delays are nonperiodic or
stochastic, sufficiency conditions for stability test could
possibly be achieved by the Lyapunov method which is usually
very conservative. Until an appropriate analytical technique is
available, a viable alternative is simulation of the ICCS using
the state-space model in (2.18) which does not require an
elaborate structure of combined discrete-event and
continuous-time operations. This simulation is very useful for
gaining insight into the problem and is often considered as
essential for stability_analysis.

The effects of nonidentical sensor and controller sampling
on the stability of the delayed system were examined by
simulation of the finite-dimensional model, developed in Sec-
tion 2. In order to compare the results of this simulation with
those obtained for identical sampling, we selected the first
order, proportional control system model which was used in
Part II [2].

The plant model is given as

dx/dt=—x(t) +u(t), y(t)=x(t) 3.1

Kierr =i+ Ture @.18) where x, u, and y are scalar functions of time. Since the
where the augmented state vector X, =[x, 7 »,7 0,7 u;_,] T
A —B. oK B . H B 1 B oK
8, = |ca, ~pyCB.K PyCBoH C(B,-piBy) | »and Ty= |p.CBK
0 -G F 0 G
0 ~-K H 0 K

Remark 9: Elements of the matrics ® and T in (2.18) are
deterministically or randomly varying depending on the nature
of the delays induced by the network traffic. Specifically the
time instants 7, and ¢, that are imbedded in the system model
are determined by the network-induced delays. If the traffic is
random, {#,}, and {c,} are stochastic sequencies; otherwise
they are deterministic functions of time. Even if the network-
induced delays are constants, the matrices ®, and T, are time-
varying except when the ratio e=1/M, M being a positive
integer.

Remark 10: The model for nonidentical sampling case in
(2.18) is in a form similar to that for identical sampling in Part
I 1], i.e., discrete-time, linear, augmented state space
representation with time-varying elements. However, the ma-
jor difference between the two models is how the frame of
reference time is selected. The rationale for using different
reference frames for nonidentical sampling is that the sensor
arrival instants {7;] relative to the controller sampling in-
stants is a sequence of varying terms even in the absence of
network-induced delays whereas the time skew A; between the
sensor and controller sampling instants was treated as a con-
stant for identical sampling in [1]. In (2.18) the states x; are
taken at controller sampling instants and y, is the latest sensor
data available at the kth sample of the controller whereas the
model in [1] uses both x, and y, at the kth sensor sampling
instant.

3 Simulation of ICCS With Nonidentical Sampling
Periods

For a general, nonperiodic time-varying system, there is no
standard technique for stability test. The Lyapunov’s method,
which is known to have no systematic way of finding suitable
V-function(s) can only provide sufficiency conditions.
However, in the special case when delays are constants and the
ratio e=L/M, (where L, M are positivie integers and L <M),
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proportional control law (with no dynamics) is given as:
(3.2)

where r, is the reference signal, and z, is the delayed sensor
data at the controller whose proportional gain is the scalar XK.
In the model developed in Section 2, the corresponding

up=—K(z,—ry)

matrices reduce to scalars: 4A=-1, B=1, C=1,
F=G=H=0. For no vacant sampling slots (.e.,
8. X+ T,<T,), the model in (2.18) becomes:
ka+l Ac _'BCOK Bcl Xk
BETS! = A, =Bk (B —p,By) Vi
U i 0 -—-K 0 Up_,
B, K
+ | peBoK | Ty 3.3)
K
where
A, = exp(—T,)
By = 1-explc,—T.)
By = exp(c,—T.)—exp(-T)
A= exp(—)
By, = 1-explc,—1;)
1 ifty=c,
P =
0 ift,<cp
B, = 1-exp(~t)

T, is the sampling period of the controller.
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Fig. 3 Stability margin for deterministically varying data latencies

The time-varying nature of this system arises from the
dissimilar sampling periods 7, and T, and the varying delays
to which the sensor and control command data are subjected.
In terms of the parameters in the finite-dimensional model
(3.3), the instants {#,} of sensor data arrival within a con-
troller sampling period are varying even if the network-
induced delays are negligible provided that e # 1/M, M being a
positive integer. If the delays are significant, then ¢, depends
on both e and network-induced delays, and ¢, depends only on
these delays.

Numerical data and assumptions used in the simulation of
the delayed control system with nonidentical sampling periods
are presented below:

The sampling period of the controller was set to 7,=0.1s.
The processing time of the controller was assumed to be
5,=0.015 s. The sensor-to-controller and controller-to-
actuator data latencies were chosen to follow sinusoidal func-
tions with frequency w= 13 rad/s [2]. The initial value of the
phase difference between the two delay profile was arbitrarily
chosen to be 0 rad since it varies with sample instant k.

The discrete sequencies {6, } and {8} were generated by
sampling the sensor and controller at the instants:

8, =0.015 + sin(wjT,,)
i=1,23,....
8,51 =0.015 +sin(wjT,)

(3.4

Note that §;, = 0.0ls = 0.1T, and é,,, = 0.02s = 0.2T..
To satisfy the condition that no vacant slot occurs, the con-
straint 6,,,, + T,<7, was imposed (see assumption 1 in Sec-
tion 2.2). Therefore, the upper bound of e = T,/T, was set to
0.8. While there is no restriction on the lower bound of ¢, ex-
cessively high sensor sampling rate results in wastage of the
network medium bandwidth. Furthermore if Ty is less than the
average cycle time, i.e., the time interval between two con-
secutive opportunities to transmit a message, some of the sen-
sor data will be rejected before they are transmitted. On this
basis the lower bound of € was chosen to be 0.2 in simulation
experiments. This implies that the sensor is sampled at most
five times faster than the controller.

The data latencies, generated by the functions in (3.4), were
incorporated into the delayed control system model in (3.3)
following the concept of event scheduling in discrete-event
simulation languages [13]. This simulation model can be also
be used to represent the operating conditions of random traf-
fic in the ICCS network. In that case the sequence of data
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Table 1 Relationshiop between initial skew and marginal
gain fore=1/2

Initial Sensor-controller Marginal
skew delay (6,.) gain
0.2T, 0.4T, 15.3
0.67, 0.2T, 21.7
0.87; 0.67% 12:1

latencies can be generated first by a single discrete-event
simulation using a standard package like SIMAN [13]. The
next step of injecting this delay sequence will follow.

Simulation experiments were conducted to determine the
system stability margin for different sampling ratio e= T,/7,
when tracking a sinusoidal reference input r, =sin(k«/10). In
the absence of an exact relationship the system stability
criterion was approximately taken to be the limiting condition
for the simulation output remaining bounded for a sufficiently
long period of time (which was chosen to be 2000 T, in these
simulation runs). Figure 3 shows the stability region of the
delayed control systems as a function of the feedback gain K
and the sampling ratio ¢ for three values of the initial skew
Ak, It follows from Fig. 3 that A * has no significant bearing
on the stability margin except for certain points with e=L/M,
where L and M are small positive integers, e.g., for e=1/2,
1/4, 2/5, 3/4, etc.

For example, consider the case of e=1/2 and §,.€(.01T,,
0.2T,). Then, if the initial skew is 0.27, =0.1T,, the resulting
sensor-controller delay (see Definition 1 and Remark 3 in Sec-
tion 2) is 0, = (0.5T,—0.1T,)=0.4T,, i.e., the sensor data
that is used by the controller at time ¢ was generated at
t—0.4T, since 6,,,<0.47,. Similarly, if the skew is
0.6T,=0.3T,, the resulting 6, =0.2T,.. However, when the in-
itial skew is 0.87, = 0.4T,, 8, = (0.57, — 0.4T,) + 0.5T, =
0.6T,) because the sensor data sampled closest to the con-
troller sampling instant always reaches the controller late as
8min >0.17, and therefore the previous sensor data is used.
This causes a reduction in the marginal gain (which is inversely
related to 6,.) as shown in Table 1. Bounds for the marginal
gain for other values of initial skew at e=1/2 can be deter-
mined from the information provided in Table 1. For exam-
ple, if the initial skew is 0.957,=0.475T,, then the sensor-
controller delay (0.57.-0.4757,.)+0.5T,=0.525T..
Therefore, the marginal gain should lie between 12.1 and 15.3.
On the other hand, for those €’s at which sampling patterns
have long periods, the time time-varying skew A% would be
scattered in the interval (0, T). Under these circumstances the
effects of the initial value of A ¥ is “‘averaged out’’ as expected
and the marginal gain becomes independent of the initial skew
as seen in Fig. 3.

The general trend is that the expected value of 6§, is an in-
creasing function of ¢ except possibly for the critical points
where the effects of the initial skew on 0, are significant.
However, as pointed out in Part I [2], system stability is not
solely dependent on the expected value of 6. Other factors
such as variance of the difference (which is an analog of time-
derivative in the mean square sense) of the sensor-controller
delays at consecutive samples may be significant for system
stability. Analytical and simulation work is being conducted
to this effect.

For evaluating the ICCS model performance under random-
ly varying delays, a large number of simulation runs using dif-
ferent (random number generator) seeds needs to be con-
ducted to obtain useful statistics. Figure 4 shows dependence
of stability margin on the sampling ratio e for the model
depicted in (3.3) and the conditions similar to those for Fig. 3
except that the data latencies are randomly varying with
uniform distribution in (0.17,, 0.27,). The data latencies &,
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Fig. 4 Stability margin for randomly varying data latencies

and 6, are assumed to be mutually independent and

memoryless, i.e., 6* is independent of 6**+/vi=0. This assump-

tion is an approximate representation of random traffic in 2

network consisting of a large number of subscribers. The in-

tention is to present a case of completely random data laten-
cies in contrast to that for deterministically varying data laten-

cies in Fig. 3.

A comparison of the results in Figs. 3 and 4 apparently
reveals that the system stability is only moderately influenced
by the probability distribution of network-induced delays.
Further simulation and analytical studies are needed for infer-
ring any such conclusions about systems that are more com-
plex than that considered in this example. While the stability
margin under random delays is modestly superior to that
under completely deterministic delays with similar upper and
lower bounds, critical points, particularly at e=1/M, M=2,
3, 4, and 5, exist in both cases where the stability margin is
strongly dependent on the initial value of the skew A/*. In
view of this observation for deterministically and randomly
varying delays, the ratio ¢ should not be selected in the vicinity
of the critical points where the initial skew may have detrimen-
tal effects on the system stability.

The pertinent results derived from simulation experiments
(but not yet established by rigorous analysis) are summarized
below.

o The impact of the initial value of the skew A.* on system
stability is not significant except at those values of ¢ that
yield short periods, namely, e=L/M where L and M are
small positive integers. This indicates that the effects of the
varying skew A* are averaged out for aperiodic systems as
well as for those with large periods.

o The general trend is that the stability margin is improved as
e is reduced. This can be explained from the fact that the
sensor data generated at fast sampling induces smaller
sensor-controller delays on the average.

4 Summary, Conclusions and Recommendations for
Future Work

In this Part III of the sequence of papers on Integrated
Communication and Control Systems (ICCS) we have
presented modeling of a control loop where sensor and con-
troller sampling rates are nonidentical. The control system
model is capable of analyzing tracking problems. This is an ex-
tension of the work presented in Part I [1] for identical sensor
and controller sampling rates. This finite-dimensional model
takes into account the effects of network-induced distributed
delays that are deterministically or randomly varying.
Although the plant and controller models are taken to be
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linear time-invariant, the phenomenon of multirate sampling
renders the system to be time-variant even in the absence of
delays (except when the sensor sampling rate is an integer
multiple of the controller sampling rate). A model for the
nondelayed case has been first developed to establish the
model structure which essentially relies on the time frame of
reference relative to controller sampling instants. Later
network-induced delays have been taken into account. In con-
trast to the model in Part I [1] under general traffic condi-
tions, the model in this paper has been developed under
moderate traffic when the network-induced data latency is
small relatively to sensor and controller sampling periods.
This assumption has been made to ensure clarity of presenta-
tions of the analytical derivations. The methodology applies to
the more general case of increased traffic when the data laten-
cy could exceed the sampling periods or their multiples.

To better understand the physical phenomena we have
presented simulation of a first order system similar to that in
Part II {2]. The ratio ¢ of the sensor and controller sampling
periods plays a dominant role on the system dynamic per-
formance. The simulation results suggest the possible ex-
istence of critical values of e around which the system dynamic
performance may sharply deteriorate. Further analytical work
is necessary to confirm the conclusions derived from the
simulation results and this is a subject of current research.

The integrated control system may have cascaded control
loops, each of which is served by the same network and thus
subjected to delays induced by the random traffic. In that case
the reference input r, to an inner loop, which is the output of
an outer loop, is a stochastic process. Since the input matrix
T, is also stochastic, the conventional concepts based on the
Wiener integral would no longer be valid. More advanced con-
cepts, such as those based on It6 integral [14, 15], have to be
develgped for analytically solving the stochastic difference
equation.

Another very important problem, albeit much more dif-
ficult, is the stochastic stability analysis of the control system
under random network traffic. A prerequisite for this research
is a thorough understanding of the stochastic phenomena that
take place within this multi-rate sampling environment. This
can be achieved by simulation of the model derived in Section
2. The input to the model could be stochastic sequences of
network-induced data latencies {5,.“} and {6,%} which can
be generated by a single discrete-event simulation run of the
network under random traffic.

Acknowledgment

The authors are thankful to the reviewers for their sugges-
tions. Benefits of discussions with the authors’ colleagues Dr.
Y. Halevi and Dr. Rogelio Luck are gratefully acknowledged.

References

1 Halevi, Y., and Ray, A., ““Integrated Communication and Control
Systems: Part I—Analysis,”” ASME JOURNAL OF DYNAMIC SYSTEMS, MEASURE-
MENT AND CoNTROL, Vol. 110, Dec. 1988, pp. 367-373.

2 Ray, A., and Halevi, Y., ‘“‘Integrated Communication and Control
Systems: Part II—Design Considerations,”” ASME JOURNAL 0oF DyNamic
SYSTEMS, MEASUREMENT AND CONTROL, Vol. 110, Dec. 1988, pp. 374-381.

3 Ray, A., ‘“Performance Evaulation of Medium Access Protocols for
Digital Avionics,” ASME JOURNAL OF DYNAMIC SYSTEMS, MEASUREMENT, AND
ConTROL, Vol. 109, Dec. 1987, pp. 370-374.

4 Ray, A., “Distributed Data Communication Networks for Real-Time
Process Control,”” Chemical Engineering Communications, Vol. 65, Mar. 1988,
pp. 139-154.

5 Luck, R., and Ray, A., ““Observer Design for Compensation of Network-
Induced Delays in Integrated Communication and Control Systems,”’ Recent
Advances in Control and Nonlinear and Distributed Parameter Systems, Robust
Control, and Aerospace Control Applications, ASME Winter Annual Meeting,
Chicago, 1ll., Nov./Dec. 1988, pp. 175-182.

6 Kalman, R. E., and Bertram, J. E., ““A Unified Approach to the Theory

SEPTEMBER 1990, Vol. 112/ 363



of Sampling Systems,’”’ Journal of Franklin Institute, Vol. 267, 1959, pp.
405-436.

7 Ragazzani, J. R., and Franklin, G. F., Sampled-Data Control Systems,
McGraw Hill, New York, 1958. :

8 Litkouhi, B., and Khalil, H., ‘“‘Multirate and Composite Control of Two-
Time-Scale Discrete-Time Systems,”” IEEE Trans. Auto. Contr., Vol. AC-30,
No. 7, 1985, pp. 645-651.

9 Phillips, R. G., “Reduced Order Modeling and Control of Two-Time-
Scale Discrete Systems,”” Int. J. Control, Vol. 31, No. 4, 1980, pp. 765-780.

10 Kokotovic, P. V. ‘A Riccati Equation for Block-Diagonalization of IlI-
Conditioned Systems,’’ IEEE Trans. Auto. Contr., Vol. AC-20, 1975, pp.
812-814.

364 / Vol. 112, SEPTEMBER 1990

11 Berg, M. C., Amit, N., and Powell, J. D., ‘‘Multirate Digital Control
System Design,”” IEEE Trans. Auto. Contr., Vol. AC-33, No. 12, 1988, pp.
1139-1150.

12 Broussard, J. R., and Glasson, D. P., “Optimal Multirate Flight Control
Design,”” Proceedings of the 1980 Joint Automatic Control Conference, San
Francisco, CA, WPI-E, Aug. 1980.

13 Banks, J., and Carson, J. S. ‘Process-Interaction Simulation
Languages,”’ Simulation, May 1985, pp. 225-235.

14 Jazwinski, A. H., Stochastic Processes and Filtering Theory, Academic
Press, New York, 1970.

15 McGarty, T. P., Stochastic Systems and State Estimation, Wiley, New
York, 1974,

Transactions of the ASME



