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This paper presents statistical analysis of delays in Integrated Communication and
Control System (ICCS) networks [1-4] that are based on asynchronous time-
division multiplexing. The models are obtained in closed form for analyzing control
systems with randomly varying delays. The results of this research are applicable to

ICCS design for complex dvnamical processes like advanced aircraft and spacecraft,
autonomous manufacturing plants, and chemical and processing plants.

I Introduction

Distributed information processing is essential for control
and management of complex dynamical processes like ad-
vanced aircraft and spacecraft, autonomous manufacturing
plants, and chemical and processing plants [3-8]. Computer
networking is a rcliable and efficient means fc- com-
municating between spatially distributed components of such
processes. The role of Integrated Communication and Control
Systems (ICCS) is to coordinate and perform inter-related
functions ranging from closed-loop control of essential pro-
cess variables to routine maintenance support and information
display. In ICCS, a control loop is closed via the common
medium of the network which mulitplexes digital data from
sensor to controller and from controller to the actuator along
with traffic from other control loops and plant management
and decision-making functions [1-4]. Due to asynchronous
time-division multiplexing of the protocol, as it is commonly
uscd in ICCS networks, randomly varying delays are intro-
duced within the control system. The notion of network-
induced delays in ICCS, as explained in [1], is different from
that in conventional local area networks (LANSs) [9, 10] as the
delays degrade dynamic performance of the feedback control
system(s) and are a source of potential instability.

Although ample research work in modeling of communica-
tion protocols has been reported [9-11], the significance of
network-induced delays relative to stability of feedback con-
trol systems has not been apparently addressed except in a few
cases [1-4]. Analysis and design of ICCS require interactions
between the disciplines of communication systems and control
systems. It has been shown in [1-4] how network-induced
delays can degrade the stability of a feedback control system
where the components are interconnected via a common
medium. The dynamic performance of ICCS networks was
evaluated in (3, 4] using combined discrete-event and
continuous-time simulation under diverse traffic conditions as
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well as for different protocols. Finite-dimensional models of
(randomly varying) delayed systems were developed in [I, 2]
from the point of view of control systems design. Section 4 of
[2] elucidates certain critical steps in ICCS design where the
knowledge of statistical characteristics of network-induced
delays is essential.

Since ICCS networks must accommodate a combination of
periodic and nonperiodic traffic, the message arrival process
may not be Poisson. Therefore, the M/G/1 queucing model-
ing approach [9-11], that uses the concept of imbedded
Markov chain, is not generally applicable 1o statistical analysis
of delays in ICCS networks. On the other hand, G/G/1
queueing modeling does not provide a closed-form solution
[11] and hence is not suitable for analyzing the control systems
that are subjected to randomly varying delays. The major con-
tribution of this paper is statistical modeling (as closed form
solutions) of network-induced delays for ICCS design from
the points of view of both communication and control
systems. The work reported in this paper complements the
earlier work [1, 2] which provides the necessary background.

The paper is organized in three sections including the in-
troduction. Section 1l which forms the main body of this
paper presents concepts of pertinent network parameters and
establishes an analytical base for ICCS network design. The
general case of random message lengths and inter-arrival times
at individual terminals is dealt with in the first part of Section
II. Then network-induced delays and associated parameters
are analytically derived for two special configurations of con-
trol systems: One is the case of identical sampling frequency of
the sensor and controller within a feedback control loop; the
other addresses the situation where the sensor sampling fre-
quency is larger than that of the controller, which is a viable
option for ICCS design [2]. Terminologies, specific to ICCS,
are explained in the nomenclature which is distributed in two
places in Section Il. Assumptions are stated and definitions
are introduced wherever necessary. Twelve propositions and
one supporting lemma present the analytical results which are
focused toward statistical analysis of network-induced delays.
The significance of the derived analytical results relative to
ICCS network design are discussed as remarks that follow the
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individual propositions. Section 111 presents the summary and
conclusions.

II  Analytical Network Performance

Parameters

Modeling of

Nomenclature

N =number of terminals in the network

T =message inter-arrival time (for example, sampling inter-
val in a control loop) at a terminal

/=message length (in time units) including overhead, i.e.,
the message length (in bits) divided by the transmission
rate (bits/unit time)

6=queueing delay, i.e., waiting time of a message at a
source terminal

g =cumulative length (in units of time) of all waiting
messages at the queue of a source terminal at a given
instant

o=the sum of the station response time 10 a source ter-
minal and the propagation delay from its predecessor.
(Note that (o, +0,+ ... +0,), where the subscripts
indicate terminal numbers, is called ring latency [10] of
the network.)

Remark I: The station response time at a terminal is the
electronic delay due 1o protocol execution and is an identical
constant for all terminals under normal opcrating conditions.
The propagation delay between a pair of terminals is negligible
in small local area networks with low transmission rates but it
could be significant for high transmission rates. For example,
in the 100 Mbps SAE 1oken bus protocol [12], the station
response time is specified to be bounded within 0.5 us; if the
cable distance between pairs of terminals within a small net-
work (e.g., ICCS network in an aircraft [3]) is assumed to be
in the range of 2m and 80m, then the resulting o at a terminal
should be approximately between 0.51 and 0.9 us. Never-
theless, o plays an important role in the performance analysis
of network-induced delays and this is shown later. ]

Assumption 0: The key assumption is that random pro-
cesses that are incurred in the network operations are ergodic
with probability onc [13). =

NS TS 1

Assumpiion I: The random variables 7 and / are mutually
statistically independent at and between all terminals. Further-
more, ¢, is a constant v/ but o, 0;is possible for i . B

initions and General Resuits
Definition 1:  Offered traffic G is defined as the expected
value of the lengths (in units of time) of messages that arrive at
network terminals per unit time. L
Proposition 1:
N
G= ) El)/E[T))
i=1
where the subscript i denotes the ith terminal.
Proof: Let the length of the jth message transmitted by the
ith terminal be denoted as ¥. Consider an interval T, during

which the jth terminal receives n'(T) messages. As T— o (and
also ni— )

(ZA: "Ei/{)/r—o

1=} y=1
Since T/n'—E[T,] and ("’.Z #)/n'—E[l;], the proof is com-
=1

plete. ! u
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If E [T} is identical for all terminals, then
G=NEN/E(T)

Remark 2:

where E[/] is the expected value of message lengths over all ter-
minals. Furthermore, if /, and T, are constants for all /, then

N
G= Y I/T, "

1=
Definition 2:  Critical offered traffic G, is the largest of-
fered traffic for which, assuming infinite queue capacity, all
queues are bounded under steady states. L

Remark 3: Definition 2 implies that if G>G.,, then some
of the queues become unbounded and a steady state does not
exist. B

Remark 4: G< G,, does not guarantee absence of message
rejections for random traffic if the queue capacity at a ter-
minal is finite. But it does guarantee no message rejections
under steady states for identical /; and 7 at all terminals even
if the queue capacity is limited to 1. (See Propositions 1 and 2
in [3].) [

Definition 3:  Cycle time 7 is defined as the time interval
between two consecutive opportunities 10 transmit waiting

message(s) at a given terminal. ]
Remark 5: The random variable 7 is a network parameter
related to all terminals. =
Remark 6: In a token passing protocol, the random

variable 7 is the interval between two successive token arrivals
at any terminal. B

Now we develop a relationship between El7} and G in terms of

g;.

Proposition 2:  For G<G,,, El7] is given as

N
Elrl= ), 6,/(1-G)

i=1

Proof:  Let the system complete k cycles during a period T.
Then,

N N
T=k), 0,+TG~ ), Elg,] as T—oo

i=1 i=1

The first term on the right is the total time due to ring latency
[10], the second term is the total length (in units of time) of
messages that arrive in (0, T), and the third term is the total
length of messages accumulated in the queues. The difference
between the second and third terms yields the total transmis-
sion time. Since G<G,, and all ¢,'s are finite, dividing the
equation by & and using the notation E[r] =T/k as T— o, we
obtain

N N
Elr)= Y o, + E[r)G— ( ) E[q,]) Jk

1=} i=1

Since k— o as T—co, the last term £0€s 10 zero and the result
follows. B

Remark 7:  The implication of Proposition 2 is that, for a
N

given G, E[7] is directly proportional to the ring latency T o,
i=1

of the network [10). For a large N, the ring latency may have a
major impact on 7 (and hence on network delay performance)
even if G is small. Under these circumstances, an implicit
token passing protocol will perform better than an explicit
taken passing protocol because of a smaller g at each terminal
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[9]. The explicit token passing bus protocol, as recommended
for avionic applications [3] and real-time chemical processes
[4] that are usually characterized by small NV, may not be ideal
for large Computer-Integrated Manufacturing (CIM) pro-
cesses where N is likely to be very large [7, 8]. This is especially
important if a high-speed fiber optic protocol is adopted for
CIM applications where o may be not be insignificant relative
to E[/]. L]

Proposition 3: The critical offered traffic is given as

T o,/ (min E[T.)

l-l

G,

Proof: Assuming infinite queue capacity, no queue
saturation occurs under steady state if and only if the aver-
age number of message arrivals at every terminal is less than or
equal to the number of opportunities to transmit (e.g.,
number of token arrivals in a token bus protocol). This im-
plies that E[T;}= E[r]vi. Therefore, the critical inequality is
obtained by use of Proposition 2 as

min £[T,)= }:a/(x—c) or

i=]

N
_ /. 8w B
z\\ \ Jeo/min E[T]] ).
\ Nisd i 77
Proof follows from Definition 2. B

Remark 8: The above result is useful for obtaining an
estimate of the critical offered traffic G,,. The implication is
that an ICCS network should be designed such that G is
smaller than G, by a safe margin [3]. B

We define the conditional cycle time with the objective of
evaluating the expected value of the queueing delay 9[3, 4].

Definition 4:  The conditional cycle time ¢ is defined as the
cycle time (see Definition 3) during which at least one message
arrives at any one of the terminals. 8

Propositon 4:  For steady-state operations of the network,
¢t and 7 are related as

Elf) = Elr] + Var[7}/E[7)

\y r:

where Var{r] is the variance of 7

Proof: Let the random variables ¢ and 7 assume one of the
discrete values in the sequence [T, /=12 ...,J}). Leta
time period T be partitioned into subintervals of lengths T,
with multiplicity n,j=1,2,...,J. As T—oo, the probablh-

ty p; of a message arrival in the subinlcrval T, is given as

_ Tl n, Tj

{En,)Em

J

=x;T,/E[7]

where =, is the probability that 7 assumes the value T,. As
J— o, the distribution functions of ¢ and r are related as

dF,(8) = (¢/E[7)) dF, (¢)
Therefore, E[f] = {¢dF, (¢) = [ (¢/Elr])dF, (6)
=(J¢?dF,(¢))/El7) = El7) + Var[r]/E[r] =

Corollary to Proposmon 4: The expected value of queue-
ing delay at a terminal is E[f] = (E[7] + Var[r])/E[7])/2.

Proof: Since the process of a message arrival at a terminal
is independent of the instant of its transmission, the queueing
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delay 6 is equally likely to take any value within the period of ¢
(see Definition 4), i.e., uniformly distributed between 0 and ¢.
Therefore, E£16] = E]r}/2. B

Remark 9: The above procedure does not assume any
specific distributions of the message arrival process and
message length. However, the first two moments of 7, as re-
quired in the analytical expression for £[0] in Corollary to
Proposition 4, can only be evaluated under certain specific
conditions. On this basis, the problem of evaluating expected
values of network-induced delays within a control loop is ad-
dressed later. ]

Now we deal with the situation when the network could be
overloaded due to unexpected increase in traffic such that
G>G,,.

Proposition 5:  Let the terminals be ordered according to
the expected values of their message inter-arrival times in a
nondecreasing sequence, i.e., E[T;,,]=£[T;]. Then, under
steady states, wth terminal’s queue will be saturated or un-
bonded if the same happens at (P" I)st terminal and

Eo + Z‘ El)
~
1= Y EU)/EIT)
i=p
where p is the minimum index such that 7, =7,. (Note that
T=p if T,>T 1 )

Proof: If the wth terminal saturates, then all terminals
with smaller sampling intervals saturate. Let the system com-
plete k cycles during a period T. With T and k approaching .
it follows from the proof of Proposition 2 that

E[T, 1<

T= kEa +kvE E[l]+TEE[I]/E[T} TE[q}

=9 I=p

The second term in the right denotes message transmission
time by the terminals with saturated queues, which transmit at
every cycle, i.e., k times in T. The message transmission time
in the remaining terminals is given as the dilference between
the third and fourth terms. E[7] is obtained in the same way as
in the proof of Proposition 2. Queue at the wth terminal will

be unbounded if E1T,] < E7]. B
Coroilary to Proposition 5: Given that only terminals 1,
., J saturate, E[7] is given by

Y EUYEIT)

i=y+1

Proof: The proof follows directly from the expression

N p=l N N
T=kY o, +k ), EU+TY, ELVEITI- Y q.El)

i=1 i=1 i=p i=p

as T—oo. ]

Remark 10: Proposition 5 and its Corollary show how the
saturated terminals affect the rest of the system. For example,
if only a few terminals that execute decision-making functions
are saturated under an emergency situation, the average per-
formance of other terminals that conduct routine functions
are not likely to be significantly affected. On the other hand, if
multiple functions are assigned to a single terminal, all of
them will suffer if that terminal saturates. This fact should be
taken into account in ICCS network design. ]
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II.1 Time Delay in 2 Control Loop of ICCS
Nomenclature

U = sum .of the propagation delay from source 10
destination and the electronic delay due to protocol
execution beyond the source terminal. Furthermore,
Y, is a constant ¥/ but 9, ¢, is possible for i .
[Note: ¢ is different from o.]

6 = data latency of a message; 6= (6+/+09) where 6 is
the queueing delay at the source terminal and / is the
message length (in time units). Sensor-to-controller
data latency is denoted as &, and controller-to-
actuator data latency as 6,.

4A; = time skew between the sampling instants of sensor
and controller

4, = processing delay at the controller computer for ex-
ecuting the control law

O, = sensor to controller time delay

O, = controller 1o actuator time delay

6, = lumped network-induced delay in the loop;
6,=06,+6,,

6, = total delay in the control system that includes ©, and

the effect of sampling

Remark 11: Since the station response time is a constant
for a given protocol and the relative positions of sensor, con-
troller, and actuator are fixed, 9, and o, can be treated as
constants. 4, is also a constant for a specific control law.

Remark ]2: The sensor and control signals usually have
fixed lengths. However, these terminals may serve other func-
tions and additional information may be concatenated with
sensor and control data within a message. Therefore, /,. and
I, are treated, in general, as random variables. =

The following assumptions are based on normal operating
conditions of ICCS networks [1, 2].

Assumption 2. The sampling interval T of the controller is
almost identical to that of the sensor. Thercfore, A, varies
very slowly and is considered to be a constant over a finite
time window. Following Appendix A of [2], A is uniformly
distributed in [0, 7). L

Assumption 3. The control signal acts upon the plant i
mediately upon its arrival at the actuator (see Section 3 of [1
_ Assumption 4. The network is lightly loaded, ie,G<G,
implying that E[7] < E[7T]. E

Assumption 5. Sup §,.< T and Sup 8.0 < T with probabili-
ty 1. B

Under the assumptions 2 to 5, 6, and 6., are given below
(1].

O =04,+3(8,—A,)T

0 for x<0
where the unit step function 3 (x): =
1 for x=0

and 6., =4,+é,

Remark 13: In general 8, > §,. because the sensor waits at
the receiver buffer of the controller before being processed at
the next sampling interval. =

Proposition 6:  E[8,.)=T/2+ E[5,.]

Proof: Let f;(+) be the probability density function of e
Under assumption 2, f;(¢) =0 for ¢¢[0, T). Let Sia(s, *) be
the joint probability density function of &, and A, which are
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independent, i.e., f,, (6, )=/, (¢)f,(¢) = (1/T)f;(®), o,
w€l0, 7).

E[e,r]' = (SOTKOT(M T3(o—e))fs (d>)d¢>d¢> /T
= <§0T¢d‘p-gorfa(d>)dd>)/T+ Sorfb (w) Sors(w—go)dpdw

= (LT*"W’)’ T+ Sorwf,cmdw T/2+ Elb,] "

Corollary to Proposition 6: 1f E[6, )= El6,,) = E[6) and /.
and /., are constants, then

E(6,)=T/2+2E[6)+ A, + 1, +1,,+ 0, + 0,
EIO,)=T+2E0)+ A, + 1y + 1+ 0, + 0,

Proof:  The first equation follows directly from Proposi-
tion 6 by using the relationships 0,=6,.+0,, and
6=6+1+4d. The second equation follows from the fact that
when the sampling process is viewed as a time varying delay,
its average is 7/2. "

Remark 14:  Assumption 5 may be replaced by the weaker
one that neither the sensor’s gueue nor the controller’s queue
saturate. I other terminals on the network saturate, E[0] is af-
fected but Proposition 6 and its Corollary still hold. n

The queueing delays are the only random variables in com-
{©,and 8,if /, ¥, and A, are assumed 10 be con-
stants. By corollary to Proposition 4, E[6] depends only on the
first two moments of the cycle time 7. By Proposition 2, £[7] is
obtained in terms of the offered traffic G and the known net-
work parameters o;, i=1, 2, ..... , N. We present the
following definition and a proposition to find Var|s] for ob-

taining E[6].

Definition 5: M is the probability of message transmis-
sion by the ith terminal transmits in a cycle. ]

Lemma 1: Given that the queue capacity is 1 at the ith
terminal,
rl for E[T,)<E]7]

AL
lV‘l'—

lElfl/E[T,] for E[T,)=E]7)
Proof: 1f the ith queue is not saturated, then T/E[7) cycles
and T/E[T}] transmitted messages are expected over a period

T. If its queue saturates, a terminal transmits at every cycle.
B

N
Proposition 7:  Var[7]= E M (1= M) (E[}))?

i=1

Proof: The distribution is binomial where the ith terminal
has a probability M, 1o transmit a2 message for a duration of
E[li]. [ |

II.1.1 [Identical Traffic at all Terminals. We specialize
now to the case where all N terminals have statistically iden-
tical and independent traffic. Proposition 8 is a summary of
the results obtained in the previous propositions under this
specific condition.

Proposition 8: 1f E[T;}=E|T], E[l,)=E[f], and 0,=0 Vi,
then

(i) G=NE/E[T]

(i) E[7}=No/(1-G)

(iii) G, = (1—No/E[T])

(iv) E[1)=E[7)+ N(E[T] - E[7))(E[)/E[T])? or alternative-
ly, Ell}= G*E[T)/N + (N=G*)a/(1 - G)
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i

(v) E[0, )J=(1+G/NYE[T)/2+ [(N=G*)/(2(1 = G))]o
+9d, +E[]]

(Vi) E[0.,]=GE[T)/(2N) + [(N=G*)/(2(1 = G))]o
+9, +E[]+4,

(vii) E[0, ]—(l +2GY/NYE[T)/2+ [(N=G*/(1=G)lo
+9, +0.,+2EN+4,

(vm) E[e ]—(l+G /NYE[T)+ [(N=G?)/(1 = Gla+ 9,
+9,+2E[1+4,

Proof: Parts (i)-(iii) are obtained directly from Proposi-
tions 1 to 6. Part (iv) is derived from Proposition 7 as follows.

Var[7] = N(E[7)/E[TI)(1 - E[r)/E[T)E[N?
= NE[T)(E[T] - E[7)) (E[/E[T])*
= E[7](E[T) - E[7))G*/N

Then (iy) is obtained as

Elf) = E[7] + Var[7)/El7) = El7] + (E|T] - E[7})G*/N
=No/(1 = G) + (E[T} = No/(1 - G))G*/N
=o(N=-G*)/(1-G)+G*E[T)/N

Proofs of (v) and (vi) follow by subsmutmg E[0)1=E[1)/2
from Corollary to Proposition 4. (vii) is obtained from the
relationship 0, =0, + O, and (viii) follows from the relation-
ship E£[0, ]—E[ﬂ/2+E[O,]. L

Remark 15: Using the relationship E[/]=E[T]G/N from
(i) in Proposition 8, the network-induced delays can be ex-
pressed in terms of G and N as follows:

E[0,.)=(N+ G*+2G)E[T)/2N)
+(N=GHo/QQ1 - G)) + I,
E[0,] =(G* +2G)E[T)/N+ (N=Ga/(2(1 - G))
+d,+4,

and expressions for £[Q,) and E[0,] follow accordingly. The
above equations reveal that the average delays cannot be solely
determined by the offered traffic G but they also explicitly de-

pendon N, =

Remark 16: Reduction in E[7] has two effects that are
mutually opposing. On one hand, the delay due to sampling
decreases with 7. On the other hand, the queuing delay 6 in-
creases since G is inversely proportional to £]7]. Therefore
El6,) may have a minimum which means that there may exist
an upper bound beyond which increasing the sampling interval
may cause larger delays in the control loop.

3G/3EIT = = G/EIT)
dE[0,)/dE[T} =1 + G*/N— (dG/IEIT(2G(1 - G)
~N+Go/(1 -G)?
=1=-GY/N—=(1+(N-1)/(1-G)*)Go/E[T)

As G—1, 3[E[0,]/0E[T] <0 but in addition G must satisfy
G<G,,; therefore, a minimum may or may not exist. ]

Remark 17: Suppose that £[T]) and G are given as constant
parameters which imply constant NE[/] but it does not deter-
mine N and E|/] separately. The problem under consideration
is which combinations of N and EJ/] lead to acceptably small
delays.

A6,/AN= =G (G +E[T)/N* + /(1 - G)
A6,/AN>0=0/(1-G) >G(G + 2)E[TI/N?
=N>[G(G+2)(1 - G)E[T]/a)'"?

where AQ,/AN is the increment of O, relative to the integer N.
L]

Since o < < E[T], for moderate traffic (i.e., G not very close
to 1) with N not being very large, A8,/AN<O0. This implies
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that, in terms of delay for a given G and E[T7], it is better to
have more terminals with short messages than few terminals
with long messages. On the other hand, for N being larger
than the critical value for which A6,/AN>0, an increase in N
accompanied by an appropriate decrease in E[/] will increase
the delay. The observation has a significant bearing on ICCS
network design for selecting the number of terminals as well as
the number of subscribers that individual terminals support.

Next we derive the probability density function f;(+) of 8
with the objective of evaluating the probability P,, of vacant
sampling at the controller [1, 2]. (Vacant sampling is defined
as the phenomenon of no sensor data arrival at the controller’s
receiver during a sampling interval.) Evaluation of f; and P,
are required for selection of A; for optimal performance of
ICCS as delineated in Section 4 of [2].

Proposition 9:  The probability density function f; () of
the queueing delay is given by

N
fo()= ( Y 7 3U(No+iE(N) - s]> /El7)

i=0

where ;= <!N> (E[s)/E[TY) (1 = E[7)/E[T)N~/, and

3[-] is the unit step function as defined carlier.

Dranfs Ny  nccitrmmiie A LIl E[T1 Dealalkilien, ~f
Irooj. Dy aaaumpuun 4, C|Tj<Ly/j. rrooaoviily oi

message transmission from a given terminal during a cycle is
E[r)/E[T). The probability that exactly / terminals transmit
during one cycle is ; as defined above. If all terminals have
identically distributed messages, then N+ 1 possible values of
the E[¢] (see Definition 4), namely, T, =No +iE[]], i=0, 1, 2,

, N exist. Following the proof of Proposition 4, the
probablhty of [E[)=T;) is =, T,/E[7). Using fy(¢ II—T )
=J(T;—=£&)/T,;, we have

N
fol8)= Y Sy (Eli=T)) Y. /Elr) =

1=0

Y w3(T,—8)/El] =

Corollary to Proposition 9:  The distribution function of ¢
is

N
Fo(t)=E JE+ (T, —£)3(E=T,))/El7)

Proof: The proof

function. ]

Remark 18: The statistics of data latency are necessary for
optimizing ICCS performance as discussed in Section 4 of [2].
|

Next we calculate the probability of vacant sampling at the
controller [2] as a function of the skew A; between the instants
of sensor and controller sampling. In the following proposi-
tion, we consider the special case when the instants of message
arrival at individual terminals are random. n

Proposition 10: If the queueing delays of any two con-
secutive messages at the sensor terminal are independent of
each other and if the sensor message length is a constant, then
the probability P,, of vacant sampling is given as

N ~N
EPL = [ L (w1 = T wr,-10)/
i=0 J=t+1
(6T (L)

where the skew A, is a random variable, the constant T is the
sampling period of the control loop, and T;: = No+il.

Proof: Vacant sampling [1, 2] occurs at the jth sample if
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8, <A; at j-1 and 8,24, at j where Ssei=04+1+9,.
Therefore,

Pus(As).':FB(As'_I—ﬂsr)“-Fﬂ(A:_[_lssr)]

Using Corollary to Proposition 9, we have
P, (4s) = f;r,l(As-/-%)
+(Ti= (A, =1=90,))3(A,—1-0,,—T))-
[iwj[Tj—(A,—l—ﬂn)}S(Tj— (A =1=19,.))/(E|))?

=0
where T,=No+il,i=0,1,2,....,N.

It has been shown in Appendix A of [2] that A, is uniformly
distributed in [0, 7). On this basis

STN+I+ Yy,

T C
E[P,)= So P, (¢)de/T= P, (¢)d¢/T

+ g0
since P, (A;)#0 only for /+0,, <A, <Ty+/+19,. Proof
follows by evaluation of the integral. n

I1.1.2  Nonidentical Sampling Rates for Sensor and Con-
troller.  We consider the ICCS configuration of the sensor
sampling rate being faster than that of controller [2]. This im-
plies that the time skew A, varies at every sample. Let the con-
trol‘ler sampling period be 7,=T and the sensor sampling
period T = T/« given that a> 1.

Specific scenarios of the network traffic are now considered
to exemplify the methods for obtaining the system perform-
ance data such as average delays. Nevertheless the analytical
procedure, presented here, is independent of these restrictions,
and it can be extended to more general cases.

Assumption 6. Every terminal belongs 1o one of the two
groups with message inter-arrival time equal to either T or 7.
B

_As:sumpzion 7. The number of terminals is equally
distributed between the two groups, i.e., N/2 terminals in cach
group. B

On the basis of the above assumptions, Proposition 1 yields
G=NE[(a+1)/Q27)

where E[/] is the average message length over all terminals.

If G<G,,, using the above expression for G in Proposition

2 yields
N
E gi
=]

= I =NE[)(a+1)/(2T)

Defining p, =E[7)/T, p,=aE[s]/T, and g@:(NI./z)
(Ni/2)) (p,) (1= p,) WD=i for
i<N/2 and, gi=gi=0 for i>N/2, we have the following
result.

(pc)i(] —pt) (N/Z)-i, and gl’ = (

Proposition 11:  Probability, =, that j terminals transmit in
one cycle, is given as

m=§@wﬂ

Proof: p. and p, are the probabilities of transmission
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from terminals with message inter-arrival times (or sampling
periods) T and T, respectively, in one cycle. g! and g are the
corresponding probabilities that exactly / terminals transmit.
7, is probability that a total of j terminals from both groups
transmit in one cycle. Proof follows directly. B

Corollary 1o Proposition 11: The density function for
gueueing delay 6 can be expressed as

N
fe@r = (X %3N0+ iEN - 1) /EI7) :
1=0

For stable operation of the ICCS, the delays incurred by the
sensor and the controller must be bounded in a probabilistic
sense. From the point of view of ICCS network design, we
modify the earlier assumption 5 as Sup 6,<7; and Sup
8., < T, with probability 1. Smaller ;. also reduces the prob-

s
ability of vacant sampling as pointed out in [2].

Proposition 12: Sensor-to-controller delay O, for
nonidentical sampling (7, = T/a, «> 1) is given as
T Elr] NEN?
=—+
Bl ==+
+ Ell] + 9y,
provided that Sup é,. < T, with probability 1.

((1+a)T— (1+a?)E[7])

Proof: The time skew A, between sensor and controlier
sampling instants, is time-varying and uniformly distributed in

{0, T,) as shown in Appendix A of [2]. Therefore we have
O, =A,+ T,3(6,,—A;) where b, = (0, + ;. + )

Proof follows by substituting the results of Propositions 6
and 4 and Corollary to Proposition 4 in the above as well as by
making use of binomial distribution of messages at all
terminals.

Var[r] = [p, (1= p;) +pc (1= p)IEINPN/2
=|(14a)T— (1+?)E[)EITIEIPN/(2T?) =

Remark 19: Proposition 12 is useful for analytically
evaluating the expected values of the lumped delay ©, and the
total system delay 6,. This information is necessary (although

not sufficient) for stability analysis of ICCS. E
III Summary and Conclusions

J

This paper presents performance analysis of integrated
communication and control system (ICCS) networks as a con-
tinuation of earlier work [1-2] which provides the necessary
background. Statistical models of network-induced delays,
that are analytically derived in this paper, complement the
finite-dimensional state-space model of the ICCS that has
been reported in [!, 2]. Since the parameters of the above
state-space model are stochastic processes that are dependent
on the network-induced delays, the knowledge of statistics of
these delays is necessary for investigating the stability and
dynamic performance of ICCS. These models of network-
induced delays provide critical information for ICCS design,
and largely mitigate the need for repetitive simulation runs for
numerically obtaining the statistical characteristics of delays.
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