satisfactory on a qualitative basis. A detailed quantitative ver-
ification (not presented here) can only be achieved within cer-
tain bounds because of: (1) Assumption 2 in Section 2 and
other assumptions like Gaussian distribution of g/’s in the
algorithm development in Section 3; and (2) uncertainties in
the selection of parameters like mean 6 for computing the
detection threshold o. However, there is no approximation
involved in the analytical derivation in Section 2.

5 Summary and Conclusions

The multiple-level hypotheses test algorithm, presented in
this paper, is not restricted to any specific structure of meas-
urement noise statistics. Its computational efficiency is en-
hanced if the noise distribution in the parity vector, generated
from a linear combination of redundant measurements, is as-
sumed to be Gaussian. The algorithm has been implemented
on a commercially available microcomputer, and then tested
for on-line detection of faulty sensors in a nuclear research
reactor. This fault detection procedure is particularly suitable
for intelligent instrumentation in continuous processes like
spacecraft, aircraft, and nuclear power plants where redundant
measurements are usually available for critical plant variables.
Further research is recommended to quantify the accuracy and
robustness of multi-level fault detection test procedures for
different types of processes.
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On Modeling of Integrated Communication and Control
Systems’

Luen-Woei Liou? and Asok Ray?

In a two-part paper [1,2], Ray and Halevi reported modeling
of Integrated Communication and Control Systems (ICCS).
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Varying and distributed delays are introduced in the control
system due to asynchronous time-division multiplexing in the
communication network. This correspondence illustrates the
relationship of Ray and Halevi’s approach to that of Kalman
and Bertram [3] under nonsynchronous sampling.

Nomenclature

b
i

plant system matrix (n X n)
plant state transition matrix
(nxn)

plant input matrix (n X )
plant output matrix (rx n)
controller system matrix
(gxq)

controller input matrix
(gxr)

= controller output matrix
(mxq)

= controller direct coupling
matrix (mxr)

maximum # of delayed ac-
tuator commands in one
sampling period

p = maximum delay (# of sam-
ples) for sensor data arrival

>
nn i

it

« T QO mOw
i

~
I

T = nominal sampling period
for the sensor and control-
ler

T. = controller sampling period

T, = sensor sampling period

u = plant input vector (mx1)

X = augmented state vector
(n+g+m)yx1)

x = plant state vector (nx1)

y = plant output vector, i.e.,
generated sensor data
(rx1)

A, = time skew between sensor
and controller sampling in-
stants

6., = controller-to-actuator data
latency

6, = processing delay at the con-
troller computer

8, = sensor-to-controller data la-
tency

7 = controller state vector
(gx1)

O,. = sensor-controller delay

0, = controller-actuator delay

& = augmented system matrix

1 Introduction

Varying and distributed delays are introduced in Integrated
Communication and Control Systems (ICCS) due to asyn-
chronous time-division multiplexing in the network [1, 2]. The
finite-dimensional modeling of systems with varying and dis-
tributed delays, reported by Ray and Halevi (1, 2], uses the
concept of state transition to transform the continuous-time
model into a discrete-time form. In 1959, Kalman and Bertram
[3] used this technique to provide a unified approach for mod-
eling different types of sampled data systems that are not
subjected to any induced delays. The objective of this corre-
spondence is to illustrate the relationship between these two
modeling approaches.
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Fig. 1 Schematic diagram for Ithe dglayed cbntrol system

2 Comparison of the‘Modeling‘Approaches: Zero Data
Latency

This section compares the modeling approaches, proposed
in [1, 2] and [3], for modeling JCCS under the conditions of:
(i) identical sampling intervals for the sensor and controller,
i.e., T,=T.=T, and (ii) negligible network traffic, i.e., the
induced data latencies 8, and ., (see Section 3 of [1] and also
the Nomenclature) are both equal to 0, and (iii) negligible data
processing delay at the controller, i.e., §,=0. Then, the net-
work-induced delays reduce to:

0,.=A, and 6,,=0. (1)

Remark I: If the processing delay §, is a constant, there is
no loss of generality in assuming 8, = 0 because §, can be
lumped with the time skew A,. This follows directly from Prop-
osition A.1 in Appendix A of [1]. &

If the instants of sensor and controller samplings are syn-
chronized, i.e., time skew A;=0, then the problem reduces to
a conventional sampling system, and both models are trivially
identical. Therefore, we consider the general case of nonsyn-
chronous sampling [3], i.e., the instants of sensor and con-
troller sampling are not synchronous, implying that A,€(0,7).
Since the network-induced delays, 6, and 6, are constant by
equation (1), the augmented system matrix &, in [1, 2] (see
equation (4.11) in [1]) becomes time-invariant.

To elucidate similarities between the modeling approaches
of [1, 2] and [3], we consider a single loop feedback control
system where the continuous state equation of the plant and
the discrete controller state equation are given as:

Plant: dx(t)/dt=Ax(t) + Bu(t) ?)
y(t)=Cx(¢)

Controller: ny . ,=Fn,— Gy, 3)
Up=Hn—Jy,;

where xe®", ne®R?, ye®’, and ue®R™, and the matrices A4, B,
C, F, G, H, and J are of compatible dimensions.

Figure 1 exhibits the delayed control system structure con-.

sidered by Ray and Halevi [1, 2] with network-induced delays
defined in (1). The control commands, u, and .., act upon
the actuator during the kth sampling period, i.e., {=1. Also,
the delay (in # of samples) of arrival of the sensor data at the
controller, p(k) =0 vk. Under these conditions, equation (4.11)
of [1] reduces to

Kir1=Bx )

where X, = {kankT u,(_IT]T is the augmented state vector,
A;— By JC By H B,

&= -GC F 0

-JC H 0

, Az =exp(AT),

Osc
B;:= SO exp(A[{T--ol) do B,
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Fig. 2 Schematic diagram for nonsynchronous sampling

T
and Bj: = gescexp(A[T— d]) do B.

Remark 2: The matrices &, B, and B, are time-varying in
general [1]. However, for zero (in fact, any constant) data
latency, these matrices are constant. ®

Now we proceed to show that results, identical to those
derived from (4), can be obtained by using the approach of
Kalman and Bertram [3]. Figure 2 follows [3] to present the
layout of individual dynamical elements where CDE refers to
the continuous dynamical element, i.e., the plant, DDE refers
to the discrete dynamic element, i.e., the digital controller,
and SHEs refer to the sample and hold element, i.e., ideal
sampler and zero order hoid.

For the convenience of formulating the transition matrices
of the individual blocks in Fig. 2, the augmented state vector
is selected as X; = [x,” yI_, of ul_,]". It is to be noted that
Xy is different from X in (4) in the sense that y,_, is included
in X;. The transition matrices are defined below.

Sample and hold element 1 (SHEI):

S = I,00 O
CcC00O0
0017, 0 ©)
0001,
Discrete dynamic element (DDE):
p=[ L 0 00
0 7, 00
0 -GFO ©)
0 0 01,
Sample and hold element 2 (SHE2):
s,=[ 1. o 0o
0 I 00
" 7
0 0 1,0 M
0 -JHO

For the continuous dynamic element (CDE), defined in (2),
the states at an instant ¢ for a constant control effort u, in the
interval (¢, ¢) is given as:
t-1to

x(t) =exp (A[t—10]) x(4p) + SO exp(A[t—ty—ol) B do uy

@®)
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The transition matrix of CDE follows from (8).

o(7)= exp(Ar) 0 0 B(7)
0 1,0 0O
0 01,0 ©)
0 00 1,

where 7 is the interval between two instants of transitions, and

B(r):= go exp (Alr—o0)] do B= goexp(Aa) do B.

Following the approach of Kalman and Bertram [3], the
composite state transition matrix is generated as a product of
individual transition matrices from (5), (6), (7), and (9) as
follows.

At the instant &7, sensor samples the plant output y,. This
changes the augmented state vector from Xy to §,Xg. From
the instant k7 to the instant k7T + O, only the continuous
plant changes its state. Therefore, the augmented state at
(kT+6,)" is ¢(8,)S8,X/. Since the processing delay §, at the
controller is assumed to be negligible [or it is lumped with 6,
(see Remark 1)], two state transitions take place at the instant
kT+ O,,. The first transition follows from the controller output
equation (3) where the control command u, depends on 7, and
¥i-1. Therefore, the augmented state, viewed at the actuator
at the instant (kT+6,)" is S,0(0O,) S, X;. The second tran-
sition takes place as the controller changes its state which causes
the augmented state to be DS,¢ (60,)S5,.X{ at (kT+0,)".
Finally, from the instant (kT+8,)* to the instant (k+ )7,
CDE changes the augmented state to yield the following state
transition relationship.

X' =2' X}’
where &': = [¢(T_' esc) D S2¢(q)sc)sl]

The composite state transition matrix &’ is simplified using
(5), (6), (7), and (9) as follows.

(10)

second column and second row of @', (11) becomes identical
to (4).

Remark 4: If the network-induced data latencies are con-
stant, then also the two modeling approaches would yield iden-
tical results. In that case the augmented state vector X may
contain additional terms representing past values of y and u.
Following Remark 4.4 of [1], y,_; can always be replaced by
u,.,_; as part of the state vector but the converse is true only
if the controller matrix F is invertible. Thus the restriction of
zero latency can be relaxed to constant data latency. m

Next we show how the additional book keeping needed to
keep track of varying delays would complicate the modeling
task if the approach of Kalman and Bertram is used.

3 Impact of Varying Data Latencies on Modeling of
ICCS

Varying sensor-to-controller data latency, 4., influences the
sensor-controller delay, ©4., under nonsynchronous sampling
(i.e., identical sensor and controller sampling period, 7, and
a nonzero skew A, between their sampling instants) in the
following way [1]:

0/ =kT+A, for (k—-DT+A;=8S<kT+4,  (12)

The above phenomenon is likely to disorder the sequence
of events at the controller and the actuator. For example, a
sensor data can arrive before or after a given controller sam-
pling instant depending on the magnitude of &g

We now proceed to illustrate the impact of the phenomenon
in (12) for the case of nonsynchronous sampling under the
restriction of the data latencies being bounded within the in-
terval [0,7] with probability 1. Figure 3 shows a timing diagram
to explain the impact of 6, on the sequence of events at the
controller. In view of the fact that the time skew A is always
bounded between 0 and T, there are four possible scenarios
at each sampling period as listed below.

A.!_B(T_ exc)‘]c 0 B(T'— esc)H exXp (A[T— esc})B(esr)

& = c 00 0
-GC 0F 0
-JC 0 H 0

where A;: = exp(AT) as defined in (4) and the terms involving
B(-) are simplified as follows.

T- 05
B(T-6,)= SO exp(A[T—- 6, —0]) do B

T
= SGSC exp(A[T— o)) do B= By,
and CXD(A [T" esc]) B(esc)

= CXP(A [T—' esc]) X

Osc
go exp(A[B,.—o]) do B

Osc
= KO exp(A[T—-o]) do B=B,.

Remark 3: Since B(T) = By+ B,, it follows from (9) that
H(T—-7)p(r)=0¢(T) v1€(0,)m

The second column in the matrix &’ is 0 and this corresponds
to the second (vector) element y;_, in the augmented state
vector X{ = [x! yx_1"nf u,_,T17. If this redundant information
(which is available as y;_, = C x;., from the plant model in
(2) and also from the second row of &' in (11)) is eliminated,
then X} reduces to X, in (4). Accordingly, by deleting the
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1. If 6,.<A, and ©% + A, < T, then the event sequence is
unaltered, i.e., similar to that if §, = 6., = 6, = 0. (Note
that 6,: = b, + 6,.) Then, y, is used in computing u which
arrives at the actuator during the A" sampling period, and this
u, is used for generating X, ;. However, the elements By and
B, in & in (4) will have to be changed because the limits of
integration would be different due to the introduction of vary-
ing 6., (See equation (4.5) in [1].)

2. If 5,4, and ©f, + A, <T, then the sensor data, yy,
arrives at the controller after the &*" sampling instant. There-
fore, y, cannot be used in computing u, and this causes the
event sequence to be altered. However, u, arrives at the ac-
tuator within the k*" sampling period.

3. If &, < A,and 6%, +A,=T, then y, is used in computing
u,. Since this u, does not arrive at the actuator within the k'
sampling period, the event sequence is altered.

4. If 6,=A, and ©f, + A;=T, then both the above dis-
orderly phenomena take place, and consequently the event
sequence is altered.

The above four scenarios would occur randomly in the event
of stochastically varying data latencies, which usually happens
in ICCS.

In order to deal with the above complexity of varying la-
tencies, a concept of event tracking has been introduced by
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Ray and Halevi [1, 2] by systematically taking into account
the sequences of arrival time {#,} and event indicator {p(k)}.
Some of the elements of the augmented state transition matrix,
$,, of a control system in JCCS are functions of {#.} and
{p(k)}, and its structure remains invariant for all scenarios.
In contrast, Kalman and Bertram’s approach would require a

cases are considered on the basis of arrival instant of the control
signal u,_, at the actuator: Case I: (0% +A,) < T, i.e., uy_,
arrlves during the (k-1 samplmg interval; and Case 2:
O +A)=T, i.e., u,_, arrives during the kl sampling in-
tervals.

1. If 8% <A, and (6%, +A,)<T, then

Co(T—00)°D°S%b(00) Si1  for (B4 '+A)<T
Co(T— @) °D°S; *b(wo—¢1)'d(e)Si] for (B5 ' +a)=T

2.If 6, X = A; and ¢% +A,< T, then

significant amount of book-keeping when applied to varying
data latencies. Incorporation of this concept of event tracking
in Kalman and Bertram’s approach is not a straight-forward
task because alterations in the event sequence would change
the order of multiplications of the individual sub-state-tran-
sition matrices. For 8%. < Tvk, and 8. =A;and/or (0.5 +A,)
=T = T forsome k, the system state may have to be augmented
as:

Xe=x{ vl i uio )"

and the matrices S, D, S,, and ¢ need to be modified as:

S = B I, 0 0 0 0 O
cC 00 0 0 O
0 7,0 0 0 O
0 0011 0 O
0 00 0 71, O
| 0 0 0 0 0 [, |
D= I, 0 0 0 0 O
0 I, o 0 0 O
0 0 I, 0 0 O
0 -Gl-p) -G, F 0 0
0 0 0o o017, O
| 0 0 0 0 0 1, |
— —
P, = I, 0 0 000
o I 0 000
0 0 I. 000
0 0 0 1,00
0 -Jl-p) —Jp H 0 0
| 0 0 0 07, 0_]
Yo(r) = exp(A7) 0 0 0 (1-6)B(r) 0B(7)
0 I.0 O 0 0
0 0750 0 0
0 00 7, 0 0
0 000 1, 0
| 0 000 0 I, ]

where p€{0,1} and 6€{0,1} represent number of sampling
periods by which the arriving data is delayed at the controller
and actuator, respectively. Following the notations used in
(10), the disorder in event sequence at the & sample is illus-
trated by using the four scenarios that are described earlier.
In the examples to follow for each of the four scenarios, two
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Po(T= ) D' b(eg) Si] for (85 '+A)<T
Co(T— ) 'D'S3 ¢(po— 1) d(e1)S)] for (85 ' +4)=T

3. If 88 <A, and ¢f + A= T, then

,._ YID'S$(DS)] for (0 ' +4)<T
KD 6 (T—¢y) '8 ()8, for (B4 +4)=T

4.1f 88 = A, and ©F + A>T, then

,._ ) [ID'S%(DS)] for (0 '+4)<T
KD (T—)) '), for (Of ' +a)=T

where @o: = (0%, +A) and ¢;: = (O5' +A,- 1.

Remark 5: Using the method of event sequencing and no-
tations used by Ray and Halevi [1, 2], the expressions in the
above four scenarios can be denoted in a single compact form
as:

R

i

\I/ r

A8, < T

9‘

Case (1)

Ca

Case (2)

Case (3) | l

Case (4) l ’

.2 Ag 8, +4,2 T

Fig. 3 Timing diagrams for different delay scenarios
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&, =["(T— 1)) "V D PH8, %ty ~ 1)) '(1,) Sy

where

(6%, +4,) for (65 '+a)<T

fo: =
0 T for Bk '+A)=T

O '+A,~T) for 05 '+4A)=T
0 for O '+A)<T

and p(k)€{0,1} is the number of samples by which sensor
data is delayed at the controller before being processed. =

The above observation is valid for the simple case of §,. and
5., being bounded by 7. If this restriction is relaxed by in-
creasing the respective upper bounds to p T and £7, respectively,
as seen in [1], then the augmented state X, will include the
additional terms, wy_y, ..., Ugog pkm1s +ons Yi-pe Consequently,
¢ or p additional versions of sub-state-transition matrices will
have to be generated for the Sample and Hold, discrete dy-
namic, and continuous dynamic elements.

The discussion above evinces that the modeling notation and
bookkeeping become quite cumbersome if Kalman and
Bertram’s approach is used for modeling of JCCS. Further-
more, since ®; is obtained by multiplication of a number of
" sub-state-transition matrices, it is difficult to assess the impact
of changes in data latencies on the overall system. In contrast,
Ray and Halevi’s approach shows how the individual elements
of @/ are directly influenced by data latencies.

If the sensor and controller sampling rates are nonidentical,
i.e., T,# T, then the system belongs to the class of multi-rate
sampling [3]. Ritchey and Franklin [4] have used Kalman and
Bertram’s approach to model multi-rate systems for stability
analysis in the absence of any induced delays. In a recent
publication [5], we have used Ray and Halevi’s approach to
model mutli-rate systems for both zero and non-zero induced
delays. The results in Sections 2.1 and 2.2 of [5} show that,
even moderate data latencies (i.e., &, and 6., being bounded
by their respective sampling periods) render the task of multi-
rate system modeling much more complex than that for T,=T..
Although the above approach should yield results similar to
Ritchey and Franklins’s [4] in the absence of induced delays,
the task of book-keeping needed to keep track of varying delays
at every sample is expected to be much more cumbersome for
modeling multirate systems if Kalman and Bertram’s approach
[3] is used instead of that in [5].

4 Conclusions

Although Kalman and Bertram’s approach [3] provides a
unified procedure for modeling digital systems, it becomes
cumbersome when varying delays are introduced within the
contro! loop. Finite-dimensional modeling of systems with dis-
tributed and varying delays, especially developed for Integrated
Communication and Control systems (/CCS) [1, 2, 5] provides
an invariant model structure, simplicity and brevity of nota-
tions, fewer matrix multiplications, and more direct insight
into the impact of induced delays on the system dynamics, i.e.,
the state transition and input matrices.
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On Linearized Coefficients for an Underlapped
Servo-Valve Coupled to a Single-Rod Cylinder

J. Watton'
Nomenclature
a,, a, = linearized coefficient fac-
tors
Ay, A; = cylinder area and annulus
) area
F, F = cylinder load force and

nondimensional value
F/PA,
G, servoamplifier gain
H, position transducer gain
I servoamplifier current
i, = servoamplifier current to
open servovalve spool to
the underlap boundary

K; = flow coefficient k;/ P;
k; = servovalve flow constant
K, = system open-loop gain
P
G H .k, 7’
term
A,
Py, P, = line pressures
P, = supply pressure
Qi, O, = line flow rates
R, = servovalve resistance
N 2P/ k4,
U = cylinder velocity
y = position
o = system open-ioop gain fac-
tor
¥ = cylinder area ratio 4,/A4,
Introduction

A linearized analysis is commonly used in the study of elec-
trohydraulic systems to determine appropriate defining trans-
fer functions. These transfer functions may then be used to
obtain a feel for dynamic performance as a first step towards
system design [1-4]. The servovalve nonlinear flow character-
istic has therefore to be linearized, which results in the deri-
vation of flow and pressure coefficients. The purpose of this
note is to show that these coefficients are functions of the
cylinder area ratio as well as the load force for a position
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