An Introduction to Sensor Signal Validation
in Redundant Measurement Systems

This paper presents an introduction to
the important topic of sensor signal valida-
tion where multiply-redundant measure-
ments of critical variables are available.
Pertinent results from a collection of pre-
vious publications have been reviewed in
this paper, but it does not serve as a survey
of the field of signal validation. The inten-
tion is to focus on redundancy management
in fault detection and isolation with the em-
phasis on the parity space, which apparently
has not been dealt with in details in any
other survey or tutorial paper.

Introduction

The successful operation of complex
dynamical systems, such as aircraft, space-
craft, chemical plants and nuclear power
plants, is largely dependent on the validity
of sensor signals providing information for
display and control. To enhance safety and
improve plant performance, redundant sen-
sors are often installed for measuring criti-
cal variables such as neutron flux detectors
in nuclear reactors and inertial navigational
sensors in aircraft. The task of sensor signal
validation in redundant systems can be clas-
sified into two broad categories: 1) fault
detection and isolation; and 2) measurement
calibration and estimation. The objective of
this article is to introduce the reader to the
first category of sensor signal validation in
multiply-redundant measurement systems.

Fault detection and isolation (FDI) algo-
rithms [1]-[8] can be designed to exploit, as
much as practicable, all useful redundant
information that are available in the plant.
Redundancy is broadly classified as direct
or analytic. With direct redundancy there
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aremorethanthe minimumnumberofsensors
(i.e., two or more for scalar variables, and four
or more for three-dimensional variables).
With analytic redundancy, additional

information is obtained from an analytical
model formulated on the basis of physical
relationships among other direct and analytical
measurements. Thus, analytic measurements
may supplement sensor redundancy for plant
variables of interest. Furthermore, analytic
measurements allow detection of (non-sensor)
plant component failures and common-mode
failures, i.e., simultaneous and identical failures
of two similar devices possibly due to acommon
cause. The failure decisions can be made either
solely on the basis of current values of the avail-
able measurements or they can be made by
sequential tests that use past observations in
addition to the current measurements. The single
sample approach is applicable only if changes
due to failures are large in comparison to meas-
urement noise and statistics. The sequential ap-
proach that makes use of the cumulative
information provided by the measurement his-
tory has the advantage that it can detect moderate
degradation of sensors. Methods for on-line
calibration and estimation of the measured vari-
able in the framework of this sequential approach
are not presented here, but are discussed in [5].

Various methods for fault detection andisola-

tion (FDI) with diverse applications have been
extensively reported in literature, notably the
excellent survey papers of Wilisky [9], Isermann
[10}, Gertler [11] and Frank [12]. The intent of
this review article is to discuss some of the key
concepts of sensor redundancy management and
illustrate them via simple examples. The next
section presents the model of a multiply-redun-
dant measurement system. The subsequent sec-
tion deals with the generation of residuals and
describes the concept of parity space, and the
following section focuses on failure detection
including sequential testing.

Measurement Model
The first step toward developing a fault

detection algorithm is to formulate a mathemati-
cal model of the redundant measurements, which
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includes the sources of measurement errors.
Regardless of whether the measured vari-
ables are scalar- or vector-valued, the in-
dividual sensor signals are usually scalar
quantities. Certain approximations are
needed to formulate the measurement
model, which we illustrate by the following
two examples.

Example of a Scalar Variable

Consider the problem of measuring static
pressure of fluid flowing through a pipe, i.e.,
the pressure of the fluid exerted on the pipe
wall. We assume that the pressure transducers
follow a linear relationship where s(7) is the
transducer signal attime #; 4 is the scale factor
which converts the measured signal from the
physical unit, i.e., pressure, into electrical
unit; and p(¢) is the pressure being measured:

s=h-p(t) (1)

The signal s(z) includes: i) electrical
disturbances in the measurements such as
amplifier noise and electromagnetic interfer-
ence; and ii) time-varying process character-
istics due to variations in temperature,
mechanical vibrations, and physical
deterioration of the transducer; and iii)
transducer nonlinearities, i.e., # may not
remain constant over the measurement range.
Note that a measurement implies that it is
either a sensor data or analytically obtained.

Example of a Vector Variable

Consider the problem of measuring the
rigid-body acceleration vector a(f) in an
aircraft, with scalar components a.(f) a,(t)
at) in the x, y, and z directions, respectively.
Ideally, the output signal s(r) from a single-
axis accelerometer would be proportional to
the component of acceleration along the axis
of orientation of the accelerometer where the
elements, h,;, h,,, and k., of the (1 X 3) scale
factor vector k7 is proportional to the direc-
tion cosines of respective axes of the ac-
celerometer relative to the reference frame.
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Fig. 1. Measurement of a three dimensional vector quantity.

s(6) = hma(). 2)

A specific configuration of three acceler-
ometers in Fig. 1 illustrates how to obtain a(z).
These three accelerometers generate the signals
51(1), 52(2), 55(2), respectively. Assuming no meas-
urement errors and a scale factor of one, the
following measurement model results where 6
and ¢ represent rotation angles for the
accelerometer:

51 (2) cos® sin® 0 |alr)
s:(t) |=|sind cosd 0] |ald].
s53(1) 0 0 1]|al()

In summary, the following two assumptions
[1] are often imposed to arrive at a measure-
ment model that is convenient for signal
validation: 1) Each sensor has a single meas-
urement axis, i.e., a sensor measures the
projection of the vector quantity along its own
axis. (Complex sensors with more than one
axis, e.g., tri-axial accelerometers, can be rep-
resented as a combination of highly correlated
single measurement-axis sensors); 2) The sen-
sors are assumed to be mutually redundant,
i.e., when measuring an n-dimensional vector,
every setof n measurements should be linearly
independent. In the three dimensional case, no
three measurement axes should be coplanar,
and in the two dimensional case, no two meas-
urement axes should be collinear. All meas-
urements should be as nearly orthogonal to
each other as possible to minimize errors.
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Nonetheless, a realistic model must take
into account the effects of measurement errors
such as: i) time-dependent variations in the
orientation due to vibrations of the acceler-
ometer fixture; ii) changes in the proportion-
ality constants due to temperature fluctuations
and nonlinearities; and iii) bias and noise in
the accelerometer signals due to electronic
disturbances. Similar to the scalar case, a
measurement can be either a sensor data or
analytically obtained.

Considering the sources of error given
above, the expressions (1) and (2) for the
transducer signal can be rewritten as

s(t) = h(t,x)r x(2)

+ b(t,x) + n(t) 3)
where x(¢) is the (nx1) measured vector and
the terms b(z,x) and n(¢) are known as additive
errors that represent the bias and (zero-mean)
noise, respectively. The scale factor vector
h(t,x) = h, + Ah(t,x); the constant vector A, is
anominal value for the transducer scale factor;
and Ah(t,x), with the expected value of
Ah(t,x)"x equal to zero, is known as the multi-
plicative error representing nonlinearities and
time-varying effects of the measurement
process.

For notational simplification, the function-
al dependence on x and ¢ will not be explicitly
displayed except when necessary. If an es-
timate b of the bias b is available such that the
expected value of (b—b') is zero, then the

transducer signal can be compensated as fol-
lows:

no=s-b
= (hAAR)x + (b-b*) +n 4)
If the norm of the covariance matrix of Ah
is small relative to the norm of h,, then the
expected value of u is approximately equal to
the scalar product of k, and the expected value
of x. The € (= n) redundant measurements after
bias compensation can be approximately rep-
resented in a simple matrix form as shown
below:
m=Hx +e (5
where H is the (€ X n) measurement matrix
with its rows representing the scale factor of
individual measurements; each of the meas-
urement vector m and the error vector e is of
dimension ¢, and the expected value of each
element of e is equal to zero. Since a minimum

n, out of the £ measurements are needed to
obtain the measured vector x, each combina-
tion of n rows of H must form a non-singular
matrix, which suffices that the rank of H is n.
As stated earlier, the axes of any three ac-
celerometers must not be co-planar. For a
scalar variable, such as pressure, the measure-
ment matrix H is of dimension (€x1) and there-
fore each element of H must be non-zero. A
practical implication is that the scale factors of
the individual measurements should not be
widely different. In the special case of scalar
measured variables, i.e., n=1, the individual
measurements can be appropriately scaled to
have H=[11 ... 11" without loss of generality.

Generation of Residuals — The
Parity Space

Fault detection can be divided in two
stages: residual generation and decision-
making [13]. In the first stage, outputs from
sensors are processed to enhance the effects of
possible failures so that they can be detected.
The processed measurements are called
residuals and the enhanced failure effect on the
residuals is called the failure signature. In a
Kalman filter-based approach, the innovation
sequence can be treated as the residuals. If
redundant measurements of a physical vari-
able are available, then residuals are often
obtained by taking the difference between
functions of the observed sensor outputs and
expected values of these variables under the
nominal, i.e., no-fail, mode. In the absence of
a failure, residuals should be of zero mean
showing close agreements between the ob-
served and expected nominal behavior of the
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system. A failure signature typically takes
the form of residual biases that characterize
the specific failure.

Residuals can be obtained directly from
the measurement model if multiple
redundancy is available. To do this, we first
consider the general problem of measuring
an n-dimensional quantity using a total of
¢(n) sensors. The measurement model (5)
can be adopted for solving this problem. The
objective is to obtain a scalar function f{e)
of the ¢-dimensional measurement vector m
such that the effects of the errors become
prominent:

fim) = f(Hx+e) = fe). (6)

For mathematical tractability, we impose
linearity, i.e., flm) = f(Hx)+ f(e). Then,
f(Hx) is forced to be zero. This is satisfied
by making f(e) linear such that it can be
expressed in a matrix form: fim)= vm
where v is an (€x1) vector determined from
the characteristics of f(e) [14]. However,
selecting v to satisfy the relation v'H=0
yields v'm =v'e independently of x because

vim= vT(Hx+e) =v'Hx +v'e. 7N

The following example should help
clarify this concept.

Example: Consider the problem of
comparing the readings from three similar
thermocouples to estimate the room

temperature, i.e., ¢=3. The measurement
model is derived as in equation (5), i.e.,m =
Hx + e, where x is the true temperature, and
m={m m m;]T is the thermocouple measure-
ment vectorande =[e, e: es]” is the measure-
ment error vector, and H =[1 1 117 is the
measurement matrix. The residuals are ob-
tained from vectors v such that v'H=0, i.e., v
must be orthogonal to H=[1 1 1)". The equa-
tion v'H = 0 have two degrees of freedom
meaning that two out of three elements of v
can be chosen arbitrarily. The two degrees of
freedom can be represented by two linearly
independent vectors v, :=[vy vi vi]" and v,
:=[v v22 23], one for each, such that v,"H=0
and v,’H=0.

Thus we have two linearly independent
residuals, namely, v,'m = v,"e and v.’m=v,"e.
Any other residuals can be expressed as a
linear combination of the above two. This
information allows development of alfault
detection and isolation (FDI) procedure
based on the knowledge of the residuals. To
do this, the two residual equations are
grouped together in the following manner:
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The vector © on the left side of (8) is
called the parity vector according to Potter
and Suman {1]. The parity vector can be
readily calculated if v, v, and m are known.
Notice that, in the right hand side of equa-
tion (8), 0 is a linear combination of three
(2x1) vectors weighted by the measurement
errors ey, e; and e, respectively. The column
vectors, e, e; and e;, are known as failure
directions, and the vector space spanned by
the failure directions is referred to as the
parity space in which the parity vector lies.
The physical significance of the failure
directions is explained as follows. Let e; be
much larger than e, and e; for a particular
measurement set, then

|V
[ N[v22:| e . )

In other words, the parity vector points
toward the failure direction [v;; v»]’. A
failure can be detected by computing the
normll g || of the parity vector and compar-
ing it to a preset threshold. Then, the source
of failure can be identified by comparing the
orientation of the parity vector to that of the
failure directions.

To determine the failure directions, it
suffices to specify the six components of the
two (3x1) vectors v, and v,. Two equations
are obtained directly from the orthogonality
property:

V{H =vhavipevia=0
and

viH= v, + vy +vy;3= 0.

Since v, and v, form a basis for the left null
space of H, it is convenient to make them
orthonormal. This generates three more
equations, namely,

T .
Vivi=vie+vim+tvin=1;

T, _ =1:
VaVa = Vot Vo + Vo = 15

= =0
ViVa= ViVar + VoVt VisVas = U

Now we have five equations and six un-
knowns and a solution can be obtained by
arbitrarily fixing one unknown, say v,=0.
The solution is: v, = [N2N3 —1/6 —1/6)"
andv,=[0 1A2 —1/~N2]" Then, it follows
from (8) that

[eas], [ wel, [ e,
=0 |97 v (O -2 [

The failure directions associated with
the errors e, e, and e; are symmetrically
spaced at 120° as shown in Fig. 2. Assuming
that at least two sensors are functioning
normally, the parity space, i.e., the space
spanned by the failure directions, can be

region 1 <
ez s
\_:' region 2
region 3 =
g :.'\1 200
= —>
region 2 /‘-‘/1200 €4
<  region 3
€3

Fig. 2. Failure directions in the parity space.
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divided into three failure regions which can be
used to identify the remaining failed sensor [4].
If g lies in region 2 of Fig. 2, then any possible
failure is characterized by the errors e, or e;. There-
fore, the measurement, m, is least likely to be faulty
because the parity vector o is most nearly or-
thogonal to the corresponding failure direction [v»,
vy, This is is equivalent to midvalue selection
[11.12] of the set {mmams}.

Now we proceed to extend the above concept
to the general case of vector variables where the
measurement matrix H is of dimension (éxn) and
¢>n>1. Since the rank of H is given to be n, there
exists a set, {Vi,Va,...Vs},0f (€—n) linearly indepen-
dent (¢x1)vectors, such that, for each i, the (1xn)
vector v; "H=0. That is, there are n independent
equations involving ¢ unknown elements of the
vector v;. A projection matrix V can be constructed
such that; "is the ith row of V. The elements of the
(¢-n)-dimensional parity vector § are then
vim,vim,..v._,'m. Thatis,

©=Vm 10)

where V= [viv2...ve] (and hence VH =0).

The concept for evaluating the (én) £ unknown
elements of the (én)x £ projection matrix V for
vector variables is, in principle, similar to that for
scalar variables described earlier. The relationship
VH =0provides(¢-n)nequations which are intrinsic
to the development of the parity vector. Therefore,
we have [(¢—n) £ — (-n)n] = €n) unknowns that
can be arbitrarily chosen. A procedure, following
Potter and Suman [1], for choosing these variables
is presented below.

Additional (¢n)¢én-+1)/2 equations can be ob-
tained by requiring that the (¢—) rows of V are
orthonormal, i.e., WV'=L,. The remaining [(&f —
&n) (En+1)2] = (€n) (én=1)2 unknowns are
essentially free, and are satisfied by setting each of
the (én) (én-1)2 lower diagonal elements of the
rectangular matrix V to zero.

The two relationships VH=0 and VV'=[,, are
equivalent to having the (¢n) rows of V form an
orthonormal basis of the left null space of H [14].
This implies that V'V = I-HK where K is a left
inverse of H, i.e., KH=I,. In this process, K can be
usedtoobtaina least squares estimate.x ™ of the vector
variable x where Ke is essentially the estimation
error:

x'=Km=KHx+Ke=x+Ke (11)
Moreover, the residue vector
N=VVm=(1-HKYnm=m-Hx'

= Hx+e-Hx =H(x-x)+e.
(12)
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The above expression also implies that V' Vm
= V' @ is an estimate of the measurement error
e, and the estimation error is H(x—x*) = H(x—
Kmy). Furthermore, since the éx€ matrix V'V is
idempotent (i.e..the square of V' Vis equal to V'V
itself), the residue vector is its own residue, and
thenorml g Il of the parity vector is identically
equal to the norm
[I'm Il of the residual vector.

Fault Detection and Isolation

Once the residuals are obtained, a failure
decision rule can be put into effect. Such a
decision process may consist of a simple
threshold test on single samples or moving
averages of the residuals, or it can be based ona
sequential hypothesis test [15]-[18]. Approaches
using both fixed and variable sample size are
appropriate for sequential testing [7],{18]. The
variable sample size could provide an optimal
decision rule for fault detection [15],[16]
whereas the fixed sample size is usualtly simpler
in computation although not necessarily optimal.

In general, an optimal decision rule minimiz-
es a composite cost function consisting of the
weighted sum of opposing requirements such as
the probability of false alarms adjoined with the
delay incurred in detecting the fault [15],{16].
Wald’s sequential probability ratio test (SPRT)
[15] is optimal in the sense that the expected
value of the number of samples required for
making a decision between two hypotheses,
whether the system is in the normal or degraded
mode, is minimum for specified probabilities of
incorrect decisions. Wald’s test is devised on the
assumption that either one or other of the two
hypotheses holds while the test is running. This
restriction is removed in the disruption test of
Shiryaeyev [16] where the probability of the
change in the hypotheses at any sample is taken
into account, and the decision as to whether a
transition has occurred from the normal to the
degraded mode is made on the basis of the a
posteriori probability of failure derived from the
past and current observations. In contrast to
Wald’s test, Shiryaeyev’s test provides a smaller
expected value of the delay in fault detection at
the expense of increased computations. Chien
[17] developed a sub-optimal procedure for on-
line fault detection in navigational system sen-
sors with Gaussian noise, which is
computationally faster and retains the improved
features of Shiryaeyev’s test.

Sequential Testing for Fault Detection
Let us first assume that only a single sensor
is available to measure a scalar variable. Let si

denote the sensor data at the kth sample. Then, a
fault may be detected by analyzing a window of

Jj consecutive measurements, Wy := {SiSc1,.-5-
). This is done by first identifying the different
operational modes where each mode signifies
either the normal operation or a degraded opera-
tion possibly due to plant component failure(s)
or externally induced disturbances, and is usual-
ly represented by an explicit model that includes
the size (and sometimes the instant of occur-
rence) of the failure. The objective is to decide
which mode is currently active by on-line
analysis of the measurement window W,, Notice
that the data window is moving with respect to
time, i.e., whenever a new measurement arrives,
the time index k is increased by one and the
window slides forward to include the recent
arrival. An example of nuclear reactor in-
strumentation is cited below to explain this con-
cept.

Suppose that a radiation flux sensor in a
nuclear reactor consistently exhibit abnormally
high readings. This leads to two possibilities: i)
Hypothesis H;, i.e., the sensor data is correct
implying that the radiation flux is indeed abnor-
mally high; or ii) Hypothesis H, — the sensor is
erroneous. Selecting H; when H, is true would
delay the detection of the cause of high radiation
which may have catastrophic consequences. On
the other hand, selecting H, when H, is true
would cause a faise alarm hindering the reactor
operations. In general, there is a trade-off be-
tween detection delays and false alarms
[15],[16]. The decisions for selecting H, over H,
and vice versa are made on the basis of a
posteriori probabilities, Pr(H|W,,) and
Pr(H,|W,,, of H, and H, given that W, is known.
For example, it is logical to select H; over H, if
the a posteriori probability of H; is relatively
large, i.e., highly erratic sensor readings. A can-
didate procedure for selecting the appropriate
hypothesis, H, or H, is presented below where
the scalar constant 7y is an a priori determined
measure of the importance of H, relative to H:

If [ Pr(Ho|W,,/Pr(H\|Wj.)] is greater than ¥, then
select Hy; else select H;. (13)

In this example of radiation flux detection, y
should be larger than one indicating that H, is
more critical than H,. However, a large y would
increase the probability of false alarms. The
above decision rule needs to be modified to
obtain the a posteriori probabilities Pr(H,|W,.)
and Pr(H;|W,,) in a practical implementation. To
this effect, if the a posteriori probabilities
Pr(H|W,)), i=1,2 are expressed in terms of the
apriori probabilities Pr(W;4H)), i=1,2,i.e., the
probability of W, assuming that the mode of
operation H; is active. Applying Baye’s rule,
the decision (13) is expressed as:
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If [Pr(WH.)/PW;,[H))] is greater than y
[Pr(H,)/Pr(H,)], then select Hy; else select H,.
(14)

The ratio, PHW,/H,)/Pr(W,JH,)), of a priori
conditional probabilities is referred to as the
likelihood ratio, and the a priori probabilities
Pr(H,) and Pr(H,) represent the relative fre-
quencies of H, and H, to be experimentally
obtained or derived via statistical modeling.
Since sufficient data for a failure condition
may not be available, a priori probability of
the failure is often constructed by obtaining a
pseudo-estimate of the failure size. Further-
more, if P{H,), Pr(H,), PrW,H,) and
Pr(W;[H,) are Gaussian, the log-likelihood
ratio test can be easily implemented by taking
the natural logarithm of both sides of the ine-
qualities in (14).

The conditional probabilities Pr(W,,|H}) =
Pr(si, Siises8i-vi|H)) are not usually straight-
forward to obtain in practice. We discuss two
alternatives to circumvent this difficulty. In
the first approach, a moving average is con-
sidered instead of a moving window. Thus, the
collection W, = {54, Si1,....5i41 } 1S substituted
by the average A = (Si+s1.1+...+5i1,)/j and the
joint statistics of W, are approximated by the
scalar statistics of A A problem with this
procedure is that detection of failures can be
delayed since the effects of unusually high or
low sensor readings are averaged. In par-
ticular, detection of soft-failures, e.g., slowly
drifting bias errors in the measurements, may
suffer from significantly large delays before
being detected.

The other approach is to assume that the
measurements are conditionally independent.
That is,

Pr(sk:Skrly--'vsi\—vvllH[)
= P’”(SkIHA)PTfSk-||HL--P'(Sk—,+||H,)‘

(15)

This leads to arecursive relation which has
been extensively used for sequential tests
[51,[6]1.[11],[18],[19]. However, if the
assumption of conditional independence is in-
valid, then this technique may also suffer from
nullifying the effects of joint statistics. For
example, measurements obtained from a
gradually drifting bias are conditionally de-
pendent, and an independence assumption
may result in a delayed detection.

Applications of sequential testing to fault
detection in multiply-redundant measurement
systems are reported in the recent publications
of Ray [18],[19) where Chien’s modified
SPRT [17] has been used in the framework of
a parity-space-based redundancy manage-
ment procedure [4]. The reader is referred to
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an interesting and highly critical article by
Kerr [20] on fault detection algorithms based
on the sequential probability ratio test.

Remark: Sequential tests may not be ap-
propriate in the absence of relevant statistical
information and knowledge of plant
dynamics. In that case, if measurement redun-
dancy is unavailable, the only resort is built-in
test procedures like limit check and rate check.
However, in the presence of measurement
redundancy, fault detection and measurement
estimation can be carried out either by Potter
and Suman’s technique [1] of thresholdless
redundancy or by approximating the measure-
ment uncertaintiies as being amplitude-
limited [3],[4].

Summary and Conclusions

The topic of redundancy management has
been addressed in the context of sensor signal
validation. The concept of parity space has
been reviewed along with sequential tests for
fault detection and isolation (FDI). The major
requirement for this FDI approach is the
availability of multiple measurements, either
direct or analytic, of a variable. This is indeed
the situation in many complex systems such
as nuclear reactors and aircraft guidance,
navigation and control.
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Mitre Corporation, as well as academic positions at
Camegie Mellon University and Massachusetts In-
stitute of Technology. He joined Pennsylvania State
University in July 1985, and is currently a Professor
of Mechanical Engineering. Dr. Ray’s research
experience includes real-time microcomputer-
based control and instrumentation, networking,
and communication protocols, intelligent systems
design, and modeling and simulation of dynamical
systems as applied to aeronautics, process control,
and autonomous manufacturing. Current research
interests of Dr. Ray include distributed control
systems, applied stochastic processes and fault
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detection, andintelligent instrumentationand com-
puter networking for aeronautical and manufactur-
ing systems. Dr. Ray has authored over onehundred
and fifty research publications, and is an Associate
Fellow of AIAA, a Senior Member of IEEE, and a
memberof ASME.

Rogelio Luck was born October 27, 1961, in the
Republic of Panama. He received the B.S. degree in
mechanical engineering from Texas Techn University
in 1984, and the M.S. and Ph.D. degrees from The
Pennsylvania State University in 1987 and 1989,
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failure detection and isola-
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and controls systems.
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The 1991 IEEE International Conference
on Robotics and Automation will be held April
7-12, 1991, at the Hyatt Regency in Sacra-
mento, California. The General Chair is
Professor T. C. Hsia of the University of
California at Davis, and the Program Chair is
Professor T.J. Tarn from Washington Univer-
sity in St. Louis.

The theme of this conference is "Automa-
tion and Manufacturing in the 90’s" with

emphasis on information and technology
for sensor-based systems. Special topics
include automation systems, flexible
manufacturing systems, artificial intel-
ligence, intelligent robot systems, robot
sensing, teleoperated and autonomous
robots, mobile robots, micro
electromechanical devices and systems,
and applications of automation and
robotics to industry.

The conference hosts workshops and
tours on Sunday, April 7, and Friday, April
12, 1991, and tutorials on Monday, April 8.
Conference sessions will be held on Tues-
day, April 9, to Thursday, April 11, 1991.

For further information, contact Harry
Hayman at (305) 483-3037, or write to
Robotics and Automation, P.O. Box 3216,
Silver Springs, MD 20901.

Nominations Solicited for Control Systems

Technology Award

Nominations are open for the new Control
Systems Technology Award, which would be
awarded for the third time this year. This
award is to be given for outstanding contribu-
tions to control systems technology, either in
design and implementation or in project

February 1991

Tl I

management. It may be conferred on either an
individual or a team. The prize is $1000 and a
certificate. Nominations are open to all. The
prize is to be awarded annually at the IEEE
Conference on Decision and Control. Dead-
line for nominations is April 30, 1991. Please

send you nominations, together with support-
ing documents, to the Chairman of the Tech-
nology Award Committee: Juergen E.
Ackermann, DFVLR-Dynamik, D-8031,
Oberpfaffenhofen, West Germany; phone:
08153-28423.
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