A Decision Support System for Real-Time

Monitoring and Control of Dynamical

Processes”

Steven R. Narint and Asok Ray S
Mechanical Engineering Department, The Pennsylvania State University,
University Park, Pennsylvania 16802

Soundar Kumara

Industrial and Systems Engineering Department, The Pennsylvania State
University, University park, Pennsylvania 16802

employs qualitative reasoning., in conjunction with quantitative models, for monitoring
and diagnosis of malfunctions in dynamical processes under routine operations and
emergency situations. DECA is especially suited for application 1o time-constrained
environments where an immediate action is needed to -avoid catastrophic failure(s).
DECA is writlien in common Lisp and has been implemented on a Symbolics 3670
machine; its efficacy has been verified using the data from the Three Mile Island No. 2

Nuclear Reactor Accident.

This article presents the concept and development of a prototype diagnostic decision +
support system for real-time control and monitoring of dynamical processes. This deci-
sion support system, known as Diagnostic Evaluation and Corrective Action (DECA), e

1. INTRODUCTION

Decision support systems for on-linc monitoring and control of complex B
and large-scalc dynamical processes requirc timely handling of data and cxccu- - :7§  e
tion of diverse functions. In general, the quantitative approach 1o decision Rt
making relies on analvtical techniques, such as dynamic programming, hypoth- ,
eses testing, and optimal filtering. to find an optimal or a sub-optimal solution. T
However, as the complexity of the plant increases, the number of plant vari- L
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740 NANN. RAY. AND KUMARA

ables ar “h¢ program execution time increase exponentially. This often ren-
ders the w5 of quantitative techniques unpractical for real-time decision-mak-
ing. On the other hand. qualitative procedures using knowledge-based
techniques have been successfully used for off-line decision making in diverse
disciplines'™ but their applications to real-time operations have been rather
limited due to the constraints of knowledge-base size and complexity of inter-
actions within the currently available computational power. Examples of the
existing knowledge-based systems in the real-time control domain are
ECESIS,® PICONS, and FALCON.” Whereas ECESIS and PICON are de-
signed for the Space Station. FALCON serves as an automated fault detector
and analyzer for chemical 1 ocesses.

The role of a human operator in real-time decision support systems of
large-scale strategic processes, such as advanced aircraft, spacecraft, and nu-
clear power plants, can be envisioned as a supervisor assisted by a set of
heterogeneous instruments. The major tasks of the operator are monitoring of
the processes under automatic control and intervention in the cvent of cata-
strophic failures and emergency situations. The human opcrator’s role can be
well-defined under the normal operation but could drastically change in the
emergency environment when a myriad of unforeseen and hard-to-diagnose
events may occur. The human operator, while faced with abundant data and
severe time constraints under these circumstances, is required to plan strate-
gics, make decisions, and take actions. There is a need for a decision support
system that will systematically prioritize the available information for the hu-
man operator in real time as well as assist him/her in making timely and accu-
rate decisions. The research reported here is aimed toward fulfilling this nced.

A. Theme of the Research

Timely detection of a malfunction is the first step in real-time control and
decision making. The sccond step is to locate the faults and then prioritize them
in the order of their severity. At the final step, a decision is made for appropri-
ate corrective action(s). A procedure encompassing the above three major
steps is usually specific to a problem. However, the architecture of a decision
support system should be general enough for adaptation to similar domains of
problems. These concepts are brought forward to the development and imple-
mentation of a decision support system with the following features:

e Development of a framework for on-line diagnosis of malfunctions, that
is, disruptions, abnormal operations. and failures of plant components;

e Incorporation of qualitative reasoning into the above framework in con-
junction with quantitative models.

® Providing support to human operator(s).

¢ Ensuring portability of the system software.

B. Development and Implementation of the Decision Support System

Jow®* used a semi-empirical quantitative algorithm, which is based on the
principle of local optimization and is much less complex than dynamic pro-
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DECISION SUPPORT SYSTEM 741

gramming for on-line monitoring. information prioritization. and decision mak-
ing. The decision support system. proposed in this article. is built upon the
general concept of Jow ‘s work. and is referred to as Diagnostic Evaluation and
Corrective Action (DECA). However. instcad of being restricted to an al-
gorithmic approach. DECA makes usc of qualitative reasoning. The architec-
ture of DECA is built upon the fundamental notions of Milne’s theory of diag-
nosis.” A major objective of DECA is to support human operators in the
decision making process.

DECA is designed to implement a decision making strategy for dynamical
processes during routinc operations and time-constrained, cmergency situa-
tions. DECA has been developed as a general-purpose shell which is versatile
and sufficiently autonomous in the sense that it would be capable of handling
the computer operational details and exccute the processes in real time while
the human user would concentrate on setting up the knowledge base for the
particular application at hand. DECA has a hierarchical decision structure such
that it functions less autonomously at higher fevels.

The general framework of DECA and its cfficacy have been tested using
data of the Three Mile Island No. 2 (TMI=2) nuclcar power plant accident.
(This particular cxample was chosen due to the availability of relevant
data.'>1") DECA has been implemented on a Symbolics 3670 machine using
common LISP in conjunction with Flavors,”” and can be interfaced with real-
time simulators or with the plant under control.

C. Organization of the Article

The article is oganized in four sections including the introduction and two
appendices. Scction 11 describes the DECA architecture in detail. Implementa-
tion of DECA on a Symbolics 3670 machine is described, and the results of the
test runs that utilize the actual data from the TMI1-2 accident arce presented and
discussed in Scction 111, Summary. conclusions, and goals of future rescarch
arc given in Section IV. Milne's theory of diagnosis’ which provides the notion
of qualitative rcasoning in DECA is succinctly described in Appendix A Ap-
pendix B bricfly describes the accident of TMI=2 which is the plant under
consideration for clucidating the architecture of DECA.

1. ARCHITECTURE OF DIAGNOSTIC EVALUATION AND
CORRECTIVE ACTION (DECA)

The architecture in DECA 1s {ormulated to meet the objectives stated in
Section 1-A. Specifically the goal of DECA is as follows:

Simultancous monitoring of multiple plant variables in real time;
Feature extraction, that is, ability to identify relevant data from extrane-
ous information.

Diagnoscs of malfunctions: and

Prioritization of relevant information. thus drawing the operators’ atlen-
tion to the part of the plant where the problem emanates from.

e
I
i
i
i
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A. Overview of DECA

The architecture of DECA is formed on the basis of Milne's theory of
diagnosis? which consists of four interconnected levels: (i) Structural; (ii) Be-
havioral: (iii) Functional; and (iv) Pattern Matching. The functions of these four
levels are described in Appendix A.

The concepts of the first three of the above four levels of Milne have been
used in DECA, and their correlation is as follows:

e DECA’s first level, called as Classifier, is similar to Milne’s Structural
level;

e DECA’s second level, called the Prioritizer, correlates to Milne’s Be-
havioral level; and

e The Corrective Action segment of the DECA’s inference engine resem-
bles Milne’s Functional level.

The Classifier performs the following tasks: (i) Read the input data to determine
what plant variables are beyond the normal operating range and to assess their
severity; (ii) determine the source of problem(s); and (iii) select feasible sce-
narios. This information is then fed to the Prioritizer whose major functions
are: (i) identification of critical plant variables under the current operations,
and (ii) determination of the priority of these plant variables on the basis of a
number of scenarios. At the third level, the Corrective Action assimilates the
information on the plant variable priority and scenario likelihood to determine
the cause of the emergency. The duty of the Corrective Action is to decide
which of the selected scenarios are most closely related to the problem under
investigation. Once the likely scenario(s) are identified, DECA searches the
knowledge base to identify appropriate action(s) that are sugested to the opera-
tor or autonomously implemented. In the event that DECA is unable to identify
any action (possibly because of uncertainties associated with the selection of
scenarios), the Corrective Action will provide the operator with a list of plant
variable priorities and subsystem(s) where the problem is likely to be located.

The major factors in making prioritized decisions for any action are catego-
rized as follows:#!3

Importance is attributed to cach pertinent variable of the plant. The level of
importance bears a direct relationship to potential consequences that may
follow if this plant variable is ignored. More catastrophic the potential
consequence would be, more important is the variable.

Stability is a measurc of the impact of deviations of a plant variable from its
desired response. More stable is the variable during a given time interval,
safer is it to be set aside by the operator for any later action(s).

Urgency is a measure of the proximity of a plant variable to its nearest
alarm level or safety limit.

A trade-off between the above three attributes is necessary to arrive at the
decision of taking any specific action(s). Such decisions must be made in real
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Table 1. Critical plant variables in TMI-2.

Sym ol # Description

PZR-P 1 Pressurizer pressure

PZR-L 2 Pressurizer level

HLI-T 3 Hot leg temperature

CLI-T 4 Cold leg temperature

SGi-P S Steam generator #] pressure
SGI1-L 6  Steam generator #1 level
SG2-P 7 Steam generator #2 pressure
SG2-L 8 Steam generator #2 level
OQNT-P 9 Drain tank pressure

time because of the time-constraints (e.g., sampling time interval in digital
control, and time-out periods in scheduled operations) in the plant under con-
sideration.

B. Detailed Description of DECA

The features of DECA will now be discussed in detail by using the TMI-2
nuclear power plant accident as a prototypical example. Appendix B provides a
brief functional description of the TMI-2 plant and explains how the accident
happened. The ninc plant variables of the TMI-2 plant that are pertinent to this
specific accident® are listed in Table 1. In view of the physical process that the
TMI-2 plant had undergone®!®!" during this accident, twelve possible sce-
narios have been identified as listed in Table 11. These scenarios arc considered
to be adequate for describing different events of the accident.

The databases in DECA are structured in an «a priori known order. It is
assumed that built-in test procedures (c.g., limit check and rate check) in the
plant instrumentation routinely test the accuracy and validity of the collected
data before their delivery to DECA. For the normal operation, nominal values

Table 1. Description of possible acci-
dent scenarios in TMI-2,

Scenario # Description

I Pressurizer leak

2 Block valve leak

3 Drain tank disk rupture
4 Drain tank discharge

5 Pipe rupture PCS hot

6 Pipe rupture PCS cold
7 Reactor pump fail

8 Steam generator PCS

9 Steam generator SCS
10 Pipe rupture SCS
11 SCS feedwater pump fail
12 SCS turbine trip

Sy S _,,“‘.._4‘ ‘
R B R .
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of the critical variables are defined « priori. The ranges on the deviations from
the nominal values are divided into a number of categories and subcategories to
classify the severity of out-of-bound (0ob) variables. As the sensor data is read
into DECA, it is stored in an on-line information (OLI) relation. This history of
transient data facilitates deduction of importance, stability, and urgency of
individual plant variables.

1. Evaluation of Plant Variables

After processing a sensor record from the OLI database, the plant vari-
ables arc computed for comparison with the respective data in the nominal-
point-record (NPR) database. In this way, DECA determines whether plant
variable is within or beyond the normal operating range. Flags for the out-of-
bounds (0ob) plant variables are set, and their severity indices such as high (H),
very high (HH), extremely high (HHH), low (L), very low (LL), and extremely
low (LLL) are identified. If such information is unavailable or inadequate or
found to be erroneous, DECA may consult an appropriate analytical module
for computing the required nominal point(s).

There are several ways in which a plant variable and its nominal point can
be compared and analyzed. This versatility is necessary to keep a generic
format of DECA for usc in a variety of dynamical processes. As an exampile,
one such procedure (c.g., estimation of the plant variable) can be described by
the following three rules.

Rule 1. Computation of pertinent plant variables using the sensor data
from the OLI database. The sensor data are validated using the built-in-test
procedures.

Rule 2. Comparison of the plant variables with their respective values in
the NPR databasc. If a plant variable is greater than H or less than L, then
it is flagged as oob.

Rule 3. Identification of severity index. An oob plant variable is compared
with its respective values for LLL, LL, HH, and HHH in the NPR data-
base, and the corresponding range where they are located is identified.
This range dctermines the severity index for the oob variable.

The above rules and the associated database retrieval may require a hybrid
formalism for efficicnt implementation, that is, different representations such
as algorithmic, rule-based, and data-based schemes are preferred instead of
using a single representation. For example, Rule | can be executed through
procedural calls to appropriate algorithmic and/or database modules in a Lisp
environment. Once this step is complete, the data from NPR are retrieved using
the Sequential Query Language (SQL) for exccuting Rules 2 and 3. The plant
variables can then be compared with respective severity index paramecters
(e.g., values from LLL to HHH) using an algorithmic approach,

(
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C.  Knowiedge Base of DECA

The knowledge base and inference mechanism in DECA are developed as
separate entities to ensure modularity and portability. The knowledge base is
generated by integrating various pieces of information related to potential sce-
narios of malfunctions of the plant under consideration. In this article the
knowledge base has been been constructed usir the information from the
TMI-2 nuclear power plant.

The submodules in the knowledge base of DECA only represent what are
anticipated as possible disasters. and the completeness of the knowledge base
largely depends upon the knowledge of the expert, thoroughness of the system
design, and completeness of the analysis and coding. In general, this is not
enough to cover all possible scenarios. To alleviate this problem, DECA dis-
criminates between the root causc and the side effects by taking advantage of
sensor and analytical redundancies''7 that are usually provided in large-scale
strategic systems. For example, a well-designed failure accommodation plan
may often point out a single gradually degrading component: this will prevent
propagation of abnormal inputs through cascaded plant components, which
might result in a myriad of alarm signals. In essence, this information will help
determine the relative importance and urgency of individual plant variables at a
given instant. This feature of DECA directs the user toward the source of the
problem even if the exact cause is unknown. When DECA fails to clearly
diagnose a problem, it lists the plant variables in the order of their (dynamically
changing) priorities. and points out where the operators should concentrate
their efforts. This is preciscly what was needed during the TMI=2 accident
because the operators, being overwhelmed with side-effect alarms, failed to
notice the block valve that was stuck open until after the reactor core was
damaged.

Table 111 shows a list of scenarios and the corresponding plant variables
that were identified to be affected in the simulation of the TMI=2 accident. For

Table HI. Relationship between scenarios and out-of-
bound variables in TMI=2.

Scenario #  Plant Variable # (Sce Table 1)

(Table ID ] N 3 4 s 6 7 8 9
1 X X X X X X
2 X X X X X X X
3 X X <
4 X X X
5 X X X X X
6 X X X X X
7 X X X X
8 X X X X X X
9 X X X X X
10 X X X X X
11 X X X X X
12 X X X X X
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example, the senario 3 represents a pipe rupture in the drain tank. The sce-
narios 9 and 10 are affected by the sensor data SGI-P, SGI-L, SG2-P, SG2-
L. and CLI-T (defined in Table I). These are the submodules which have
to be serrched for identification of most likely scenarios if the plant variables
are oob. This is attempted by the inference engine via its look-ahead mecha-
nism from a control perspective. The objective is to see how closely the ensems-
ble of severity indices of the oob plant variables correlates to the expected
scenarios and draw conclusions from these correlations. This approach may be
subjected to combinatorial explosion if multiple scenarios are selected at sev-
eral consecutive stages. Therefore, it is critical from the point of view of real-
time execution that the number of likely scenarios at each stage be kept as small
as possible.

1. Variable—Expect Knowledge
This data file is used by DECA to determine the rank of the plant variables.
DECA checks to see what scenarios match up., and gives a rank according to
the template given below. The list contains several sublists patterned in the
following manner:

( (plant variable (rank (corresponding match list for the rank))
(rank (number of scenarios needed for rank)))

)
For example, for the plant variable QNT-P, the list is as:

(QNT-P ((10 (2 3 4))

(9.5 (2 4))

(8.5 (2 3))

(8 (3 4) )
430 )

This indicates that, for QNT=P to have a rank of 10, the scenarios 2, 3., and 4
must be considered as possibilitics by DECA. If only scenarios 2 and 4 are
considered, then QNT-P will have a rank of 9.5. Similarly. for the scenario
pairs, 2 and 3, and 3 and 4. the respective ranks will be 8.5 and 8. In the second
sublist, if any one of the scenarios (i.c.. 2 or 3 or 4) associated with the plant
variable QNT-P is a possibility, then QNT-P will be assigned a rank of 4.3,
This serves to cut down the number of scenarios associated with an oob plant
variable, and thereby drastically reduce the probability of a combinatorial cx-
plosion.

2. Scenario~Tendency K. nowledge

This part of the knowledge base contains information regarding the ex-
pected tendency of individual plant variables for a given scenario. Better the
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expected tendencies match the plant variables, more likely that the scenario
has actually occurred. For example, if the occurrence of senario 4 is suspected,
DECA would look at the expected tendencies of the plant variables associated
with scenario 4.

(4 ( (PZR-P lower)
(PZR-L higher)
(QNT-P higher)

)

In scenario 4, PZR-P would be lower than the nominal point, and PZR-L and
QNT-P would both be running higher than their respective nominal points. If
everything matches, then scenario 4, that is, drain tank discharge, would be
one of the more likely explanations.

3. Scenario Knowledge

This part of the knowledge base contains all the pertinent plant variables of
the process which DECA is monitoring. For cach plant variable, there follows a
list of scenarios which must be evaluated if that plant variable is flagged as oob.
This list is accessed by DECA's look-ahead mechanism. For example, if the
plant variable PZR-P is beyond its nominal point value (and flagged as oob),
then DECA will access this data and determine that the scenarios 1, 2, 3, and 4
are possible evenls occurring in the process.

4. Nominal Point Knowledge

The first element of the data file indicates the number of plant variables
under consideration. Next listed is the plant variable, then its operating
modc(s) (c.g., normal, reactor shutdown, refueling). Next listed is the units of
measure of the data, and finally a list of the nominal point value(s).

5. Sensor Knowledge

The sensor knowledge file contains the on-line information from actual
measurements from the TMI-2 accident.'™!"" Each line represents information
gathered during onc time step. The first element is the time instant, and the
sublist contains the sensor data readings for each of the pertinent plant vari-
ables being monitored. In this case, the time is in seconds after the turbine trip
during the accident. The data is always read in the same order: PZR-P, PZR--
L. HLI-T, SGI1-P, SGI-L, QNT-P, SG2-P, SG2-L. CLI-T.

D. Inference Mechanism

DECA employs a data-driven forward chaining qualitative scheme. The
basic modules for deriving inferences are as follows:
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® Module for reading the sensor data and setting the severity indices of the
oob plant variables.

e Module for looking-ahead to prioritize and predict the possible disaster

scenarios and ranking them.
® Module for generating explanation and corrective actions.

A flow chart of the inference mechanism is shown in Figure 1. Initially the
sensor data are read. Upon detection of a malfunction, the inference mecha-
nism looks ahead at the possible scenarios and determines how w2l the criteria
for their occurrences are satisfied. In the event of having no close match, the
probable cause(s) of the malfunction are predicted, the priority levels of critical
plant variables are specified, and further actions for fault identification are
suggested. The above scheme could serve as a generic framework for monitor-
ing and control of dynamical processes in real time.

The inference mechanism of DECA is a data-driven forward chaining sys-
tem, and cxecutes the following major functions:

o | .ook-ahead mechanism and scenario evaluation.
e Solution Search.
¢ Context tree generation and scenario ranking.

¥

t Read input data

Nominal
Value
Parameter out Knowledge
of bounds 2 (dbase)
Yes
Look Ahead
Look ahead possibiities Knowledge
(dbase)
A
Rank parameters
Y
Generate context scenanos [*=® Context
Knowleage
rules
X (rules)
Rank Contexts
A

Explain and advice

Figure 1. Generic inference scheme for dynamic process control.
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The details of the modules of the inference scheme and the above functions
are discussed next.

/. Look-Ahead Mechanism and Scenario Evaluation

Upon detection of a malfunction. the inference mechanism looks ahead at
the possible scenarios and determines how well the criteria for their occur-
rences are satisfied. The scenario which is “*best"" satisfied is identified as the
malfunction as long as it is above a specificd level of confidence. In the event of
having no close match, the probable cause(s) of the malfunction are predicted,
the priority levels of vob plant variables are displayed, and further actions for
fault identification are suggested. The look ahcad mechanism is similar to
MYCIN's control structure.! For example, with the pressurizer pressurc
PZR-P being oob, the look ahcad mechanism would indicate that the scenario |
of pressurizer lcak (see Table 11) is a possibility. In this case the plant variables
SGI-P. SGI-L, SG2-P. and SG2-L should also be vob.

2. Solution Search

Having .identified the affected plant variables, forward chaining is em-
ployed to ascertain the severity of these plant variables by comparison with the
context trees. The confidence levels of individual diagnoses arc also generated
1o assess their relative credibility. If there is a reasonable agreement between a
scenario, its expected data, and plant variable criticality, then that scenario will
be the present context to be considered. Multiple choices arc often available for
scenario selection. In that case, plausible scenarios arc ranked from highest to
lowest confidence levels. An example for possible choices for scenarios in the
environment of the TMI-2 accident is given in Table 1V.

If no appropriate match is found. the plant variables that arc oob would be
listed in the order of highest to lowest priority. The precedure for prioritization
of a plant variable is dependent upon the confidence levels of the scenarios

Table IV, Confidence level of scenarios un-
der TM1-2 accident simulation.

Confidence Level

Scenario # (0O to 1)
8 5/6
5 4/5
] 2/3

12 3/5
11 3/5
10 3/5
2 477
6 2/5
4 1/3
3 1/3
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which involve this plant variable in accordance with the look-ahead database.
In the above example of TMI-2 accident, if none of the possible scenarios are
considered to have sufficient credibility, then the critical plant variables and
their respective priorities would typically be:

Variable: PZR-L.  QNT-P PZR-P SGI-L SG2-L CLI-T SG1-P
Priority: 10 10 10 9.3 9.3 8.6 8.5

In this case the pressurizer and drain tank are associated with the primary
coolant system where, incidentally, the mishap occurred. Nevertheless DECA
is able to point out the source of the problem even if it fails to generate a
solution.

3. Context Trees and Scenario Ranking
&

The context tree contains rules to check the status of individual plant
variables and their severity indices, if necessary. The objective is to judge how
well the available data matches with a certain scenario which is encoded into
the context trees as a pattern. DECA gives three levels of matching; High,
Medium, and Low. These three levels help DECA to further consider the
scenario that is being evaluated. High match implies a major consideration, and
a medium match results in a minor consideration. For a low match. the scenario
will not probably be considered. A finer resolution can be realized in the coding
whenever necessary.

III. IMPLEMENTATION AND TESTING OF DECA

DECA has been implemented on a Symbolics 3670 Lisp Machine using the
Symbolics Common Lisp Language and its object oriented extension Flavors.!?
This organization facilitated rapid prototyping and formulation of dynamic da-
tabases. Since the purposc of DECA is real-time monitoring of large plants, all
computations must be performed within the time interval between two conscc-
utive samplings of the sensor data. To meet these time constraints., the DECA
software must be deployed with fast hardware such as Symbolics computers,
Lisp on a chip micro-processors (ec.g., Symbolics Ivory, T1 Explorer Chip), or
32-bit high speed microprocessors (c.g.., Intel 80386, Motorola 68030). From a
purely implementation perspective, the Lisp environment offered sufficient
expressive power to cover the architecturc of DECA. and processing speed to
satisfy the constraints of real-time operations. Therefore, we did not experi-
ment with other programming languages such as Prolog and C.

DECA has the ability to use multiple databases for nominal points for
different plant operating modes. In TMI-2 test run on DECA the nominal point
database represented normal operations. Additional nominal point databases
need to be developed for other modes like shutdown and start-up, and could be
resident in several computers. Taking this one step further, the nominal point
database does not have to be an array of numbers. it could be an analytical
model which calculates these nominal points.

,

\&@ |
model:
interfau
other
DECA
call on
recomn

Th
the real
(TMI-"
test run
after th.
in Ref.

DI
rected t
block v
The stu
to drain
cated th
most in
located
variablc
ext
valve, d
ing thes
ca(s) of

The
load. Tt
block v:
draining
that wei
the real
two hou
averted
plant va
action o
operator

The
sensor dq
variable |
the aver:
was 15.0




DECISION SUPPORT SYSTEM 751

This implementation of DECA has the capability to interface with external
models and use databases from multiple sources. The provision of external
interfaces enhances the versatility of the software as it enables DECA 10 use
other information to arrive at its decisions. Another important feature in
DECA"s capability to hook into simulation models. For example, DECA could
call on a computer simulation to validate its conclusions before it makes a
recommendation.

A. Test Results and Discussion

The general framework of DECA and its efficacy have been tested using
the real-world problem of the Three Mile Island nuclear power plant number 2
(TM1-2) accident. (See Appendix B fora brief description of the accident.) The
test run consisted of nine time steps at 0. 15. 30, 45, 60, 75,90, 105, and 120 sec
after the turbine trip and reactor shutdown. Details of the results are available
in Ref. 18.

DECA completed the test run without any problem and consistently di-
rected the operators 10 scrutinize the subsystem(s) that include the pressurizer,
block valve, and drain tank. This is precisely where the problem was located.
The stuck-open block valve in the pressurizer was allowing the reactor coolant
1o drain out of the primary coolant systen. The test results consistently indi-
cated that the pressurizer pressurc and level (PZR-P. PZR-L) were among the
most important plant variables (i.c., highest priority). These (WO sensors are
located adjacent to the block valve. As DECA was only monitoring nine plant
variables (listed in Table 1) in this test run, it did not have the fine resolution to
extract the intricate nuances present in the plant operations. Since the block
valve, drain tank, and pressurizer directly affect each other, consistently locat-
ing these three plant components displays DECA’s ability to identify the ar-
ca(s) of importance. ,

The main problem which plagued the TMI accident was information over-
joad. The reactor shut itsclf down after a turbine tripped. and soon after, a
block valve opened and stuck open on the primary cooling system. With the
draining of primary coolant and other events going on, the number of alarms
that were being tripped in the control room caused the operators to overlook
the real problem—the stuck-open block valve. 1t was not discovered for over
two hours; by that time the damage had alrcady occurred. DECA could have
averted the TMI accident because it has the capability to keep track of many
plant variables, figurc out which are the most critical, and take corrective
action or give the operator a summary of its findings. With this knowledge, the
operators could have identified the problem in time.

B. Real-Time Processing Requirements

The DECA program execution consisted of loading in the knowledge base,
sensor data. evaluating the plant performance at cach time step, and writing the
variable log and derived conclusions on the disk. For this, DECA required, on
the average, 13.839 sec whereas the sampling time for sensor data collection
was 15.000 sec for all nine readings in the test run described above.
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The processing delays at different steps of the program execution were
obtained by use of a built-in function which also kept track of the time spent in
waiting for i/0 as well as the amount and type of lists manipulated internally.
DECA was tested under a variety of I/0 loads with the same set of data in order
to determine whee the bottlenecks occur during program execution.

The first test was a single run. The knowledge base data files were all
loaded. and then the sensor data were evaluated and the results were displayed
for a single time step. The elapsed time was 14.673 sec. Then this test was
repeated with no information display at the terminal. The elapsed time was
6.178 sec. This shows that the 1/0 for the information display takes about 8.500
sec. The results were consistent with repetitive runs due to the fact that the
Symbolics is a single user system and one does not have to wait for other jobs
unlike a time-sharing system. The next test run consisted of a single time step
evaluation without any 1/0 to the disk or terminal to determine the computa-
tional time for execution of the algorithm. The data processing time was evalu-
ated to be 0.120383 sec, that is, about 8.3 time steps per second. The time spent
in loading the TMI-2 data files was approximately 6 sec which can be climi-
nated by use of the active memory prior to the program execution. This will
make DECA practical for monitoring and control of processes that require a
turnaround time in the range of 0.5 1o 1.0 sec per cycle.

IV. SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS FOR
FUTURE RESEARCH

A diagnostic decision support system has been developed for real-time
control and monitoring of dynamical processes with the major objective of
supporting human operators in the process of decision making. This system,
known as Diagnostic Evaluation and Corrective Action (DECA), makes usc of
qualitative reasoning following the fundamental notions of Milne’s theory of
diagnosis.® DECA takes advantage of the existing quantitative techniques and
integrates them with qualitative reasoning for monitoring, diagnosis and control
of dynamical processes during both routine operations and time-constrained,
emergency situations where an immediate action is necessary to avoid cata-
strophic failure(s).

DECA can be viewed as a multi-stage system. Given the current state,
qualitative reasoning is used to diagnose the causes for any malfunction(s). For
a given diagnosis, rclevant variables arc identified as functions of the current
state so that any impending disaster can be avoided by effectively implementing
a set of corrective actions.

At the first level, the plant data are compared with the nominal point
database to identify the out-of-bound (0ob) variables and determine their sever-
ity indices. At the sccond level, the look-ahcad database is scarched for match-
ing various scenarios with the oob plant variables. At the third level. the plant
variable priorities and confidence levels of identified scenarios are evaluated in
consultation with the respective databases. DECA would attempt to identify a
specific scenario that most closely represents the malfunction(s). If unable to
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do so. DECA provides the operator with a list of the plant variable prioritics
and suggests which part of the plant is likely to be affected.

From the perspectives of control and monitoring of dynamical processes in
real time. the contributions of DECA are as follows:

Development and implementation of a novel architecture of a decision
support system.

Development of diagnostic capabilities to utilize qualitative reasoning.
e Integration of analytically derived models along with qualitative models.
Modularity and portability of the system software.

A. Implementation of DECA

The softwarc of DECA has been developed within a general purpose shell
which is capable of handling computer operational details while the human user
would concentrate on setting up a knowledge base for the particular application
at hand. In the hierarchical decision structure, DECA functions arc less auton-
omous at higher levels. DECA has a modular structure in the sensc that it can
be applied to a large class of dynamical processes without any major repro-
gramming, and integrated with existing software modules for performance en-
hancement. DECA can also be interfaced with the real-time opcrational envi-
ronments of simulators and plants under control. DECA has been implemented

on a Symbolics 3670 using common LISP in conjunction with Flavors.”?

B. Application of DECA

DECA is particularly suitable for dynamical processes where many plant
variables need to be monitored continuously. An cxample is the Space Station?
which will need constant monitoring of its vibrational characteristics and stabil-
ity. Another example is control of advanced fighter aircraft. While in a combat
situation, the pilot not only has to fly the planc, but also has to keep track of the
weapons systems and targets. DECA can be used to monitor all the rudimen-
tary lower level controls, allowing the pilot to concentrate on the immediate
danger at hand—the cnemy. Nuclear power and chemical plants can benefit
from DECA in a similar way.

C. Recommendations for Future Research

DECA is in the developmental stage. Initial results. generated from its
prototype, support the need for expansion of its capabilitics. Further research
and developmental work is recommended in the following arcas.

Use of Fuzzy Logic in quantifying the qualitative data. Plant variable prior-
ity and scenario ranking arc potential arcas for application of fuzzy mathemat-
ics." This could significantly increasc the resolution of the results. In the
current version, DECA ranks the scenarios into three categories: major. minor,
and improbable. More subtle points can be brought into consideration with
fuzzy mathematics.
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integration of Analytical Modules. Analytical models and simple simula-
tions of subsystems would complement DECA’s qualitative models. Several
analytical modules, running in parallel, can be integrated with DECA. For
example, predictive models could be used for forecasting catastrophic failures
or impending crises.

Source Code Translation. DECA is presently written in Lisp which pro-
vides for rapid prototyping and handling abstract concepts at the expense of its
computational overhead. Since the primary concern of DECA is real-time pro-
cessing, it will eventually be interfaced with physical controllers and sensors.
Therefore the second stage of DECA needs to be developed using a source-
level language like C that provides fast and efficient execution. The main prob-
lem to be addressed in this conversion is that the languages like C do not have
dynamic database capabilities like Lisp. Data structures have to be carefully
constructed to reduce the burden on the processor.

The authors acknowledge the benefits of discussion with Dr. James Stover of the
Applied Research Laboratory of the Pennsylvania State University.

GLOSSARY AND SYMBOLS

Glossary

Abnormal operation: A plant component is said to be in abnormal opera-
tion if its performance has degraded beyond an a priori defined threshold
relative to that of the normal operation. An abnormal operation does not
imply a failure.

Disruption: A plant component is said to undergo a disruption from the
normal operation if there are changes in onc or more parameters beyond a
priori defined threshold(s). A disruption may or may not cause an abnor-
mal operation.

Failure: A plant component is said to undergo a failure if it is unable to
perform the function for which it is designed. A failure is a gradual or an
abrupt deviation from the normal operation to an abnormal operation.

Malfunction: Any dctectable deviation from the normal operation of the
plant is classified as a malfunction. A malfunction of the plant can be
caused by disruption(s) or abnormal operation(s) or failure(s) of plant com-
ponent(s).

Plant: The plant is a collection of interacting components which are inte-
grated with the objective of fulfilling a certain objective. Examples are a

nuclear power plant, a spacecraft, and an aircraft.

Scenario: A scenario is the state of the plant as a result of malfunction(s).

[3S)

6.
. R.S

ni¢
Y I
0.
Pu’

. N

and
Cyi
S.R
Sysi
Sep

. F..

mat
tion

D.1

ngs

. H.I.

D
brid

. RUA

ics,

. Anu

(NS

. Supy

men
D.
Men

. AR

cont
Coni

. AR




t

~3
5
N

DECISION SUPPORT SYS'!‘}/:M )

Symbols

DECA Diagnostic Evaluation and Corrective Action

H High

HH Very high

HHH Extremely high

L Low

LL Very low

LLL Extremely low

Lisp List processing language
NPR Nominal point record
oop Out of bounds

OLl On-linc information

PCS Primary Coolant System
SCS Secondary Coolant System
T™I Three Mile Island
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APPENDIX A
MILNE’S THEORY OF DIAGNOSIS

Milne’s diagnostic scheme is composed of four interconnected levels: (1)

Structural; (2) Behavioral; (3) Functional; and (3) Pattern Matching. These four
levels are serially connected as depicted in Figure A.1. The first level of diagno-
sis makes use of the knowledge about the plant structure. The expert system
uses the structural knowledge about the process to simulate possible faults. On
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Figure A.1. Levels of diagnostic reasoning.
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the basis of the simulation results, forward reasoning is used to arrive at a
decision for fault diagnosis. This qualitative reasoning capability is not exten-
sive in the first stage, and the knowledge is rather general. The diagnostic
system that only uses the first stage is said to have shallow knowledge.

The second layer of Milne's architecture is the behavioral stage where the
process of abstracting information involves a hierarchical organization of the
relationship between a function and its structure. The idea is to organize an
intended function as a series of behavioral states of the device and demonstrate
how each behavior state transition can be understood as an interaction between
two or more components. The reasonings in the second stage are much more
complex than those in the first.

The knowledge deduced by the first two stages often suffices to diagnose a
local problem in a specific device or a subsystem but not a global problem that
may affect the entire plant. The third level of functional knowledge performs a
diagnosis in which the behavior of the device is examined at a higher level of
knowledge representation. This higher level knowledge generally relates the
interactions between a function and its structure. It can also be structured into
a hierarchical relationship between the subsystems. The last stage of pattern
matching is referred to as Deep Function Model-Based Diagnosis System
which allows the information to enter at any one of the four levels. utilize the
strengths of one or more level in arriving at a decision, and exit at any level.

APPENDIX B
DESCRIPTION OF THE TMI-2 ACCIDENT

The nuclear stcam supply system (NSSS) of the TMI-2 nuclear power
plant is equipped with a pressurized water reactor (PWR) and two once-
through stecam gencrators. Scenario of the accident that happened in March
1979 at TMI-2 is briefly described below:!"

The accident was initiated by a loss of feedwater to the stcam generators
resulting in a turbine trip. This instant of accident is denoted as + = 0. The
interruption of feedwater flow to, and of steam flow from the stcam generators
caused a reduction in heat removal from the reactor coolant system (RCS). The
RCS responded to this event in a normal manner which is described as follows:
RCS pressure increased because thermal energy was not being removed from
the RCS at a sufficient rate: the power operated relief valve (PORV), also called
electromatic valve, opened to relieve pressure; the reactor was automatically
shut down because of a high-pressure trip signal; heat gencration from the
rcactor dropped to the decay heat level; within a few scconds the RCS pressure
dropped to the normal level. Up to this point, normal reactor protection fea-
tures functioned as designed. At ¢ = 40 s, the stecam generator level dropped to
the point where automatic controls called for emergency feedwater to maintain
a minimum steam generator level. However, closed valves between the steam
generators and control valves prevented emergency feedwater being delivered
to the steam generators. (These valves were opened by the plant operator at 1 =
8 min) The opening of the electromatic relief valve in the event of a loss of
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feedwater transient, whether or not feedwater js available, is norma] in accor-
dance with plant design.

The electromatic valve, which relieved excess Pressure as intended,
should have automatically closed as pressure was reduced sufficiently, Instead,
it remained open, thereby allowing continued coolant discharge from the RCS.
and causing g further decrease in RCS pressure. At ¢ ~ 2 min, the safety
injection system became active in response to low pressure signal (1640 psig) in
the RCS. Because of the continuing flow from the electromatjc valve into the
drain tank, a safety valve on this tank opened at ¢ ~ 3 min and rupture disk on
the tank burst a1 ; ~ 15 min. This loss of the reactor coolant continued without
interruption for approximately 2.4 hours when the stuck-open valve was cven-
tually closed,

The above description summarizes the critjca] phenomena in the T™MI-2
accident. During the first (wo minutes after the accident, the key events are
listed below:8

® The turbine tripped automatically as a result of trip of both feedwater
pumps.

® Emergency feedwater pumps started automatically after the trip of feed-
water pumps,

® Reactor tripped on high reactor coolant system (RCS) pressure.

Electromatic rejjef valve opened to relieve RCS pressure but stuck open

after pressure was reduced,

RCS pressure continued to decrease.

Reactor coolant drain tank pressure steadily increased.

Both steam generators boiled dry on the secondary side.

High pressure safety injection was actuated on low RCS pressure.

During this two-minute period the operators were overwhelmed with too many
alarms while responding 1o the turbine trip, reactor trip, and complications in
the condensate and feedwater system,
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