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Integrated Communication and Control Systems (ICCS), recently introduced and
analyzed in a series of papers [1-7), are applicable to complex dynamical processes
like advanced aircraft, spacecraft, automotive, and manufacturing processes. Time-
division-multiplexed computer networks are employed in ICCS for exchange of
information between spatially distributed plant components as well as for coordi-
nation of the diverse control and decision-making functions. Unfortunately, an ICCS
network introduces randomly varving, distributed delays within the feedback loops
in addition to the digital sampling and data processing delays. These network-induced
delays degrade the system dynamic performance, and are a source of potential
instability. This two-part paper presents the synthesis and performance evaluation
of a stochastic optimal control law for ICCS. In this paper, which is the first of
two parts, a state feedback control law for 1CCS has been Sformulated by using the
dynamic programming and optimality principle on a finite-time horizon. The control
law is derived on the basis of a stochastic model of the plant which is augmented
in state space to take into account the effects of randomly varying delays in the
Jeedback loop. The second part |8 presents numerical analysis of the control law
and its performance evaluation by simulation of the flight dynamic model of an
advanced aircraf!.

1 Introduction

Integrated Communication and Control Systcms (ICCS),
recently introduced and analyzed in a series of papers [1-7],
are applicable to complex dynamical processes like advanced
aircraft, spacecraft, automotive, and manufacturing processes.
Time-division-multiplexed computer networks are employed
in 1CCS for exchange of information between spatially dis-
tributed plant components as well as for coordination of the
diverse control and decision-making functions. Unfortunately,
an 1CCS network introduces randomly varying, distributed
delays within the feedback loops in addition to the digital
sampling and data processing delays. The network-induced
delays degrade the system dynamic performance, and are a
source of potential instability.

A finite-dimensional model of the closed loop control system
of ICCS was developed in {1, 2] by taking into consideration
the effects of network-induced delays. A necessary and suf-
ficient condition for system stability was established for the
special case of periodically varying (non-random) delays. At-
tention was focused on control systems with identical sampling

!'This research was supported in part by: Office of Naval Rescarch under
grant No. N0O14-90-J-1513; NASA Lewis Research Center under grant No.
NAG 3-323: National Science Foundation under grant No. DMC-8707648.

Contributed by the Dynamic Systems and Control Division for publication
in the JOURNAL OF DYNAMIC SYSTEMS, MEASUREMENT, AND CONTROL. Manuscript
received by the Dynamic Systems and Control Division March 27, 1990; revised
manuscript received January 9, 1991, Associate Editor: A. G. Ulsoy.

604 / Vol. 113, DECEMBER 1991

rates for the sensor and controller. Although the sensor and
controller sampling periods are designed to be identical, a
certain difference between them always prevails due to man-
ufacturing tolerances in clock frequencies. This difference in
sampling periods causes a slowly varying time-skew, A, be-
tween the sensor and controller sampling instants, which may
significantly contribute to the network-induced delays and sig-
nal distortion due to vacant sampling slots, i.e., absence of
any signal arrival during a sampling interval. This aspect has
been discussed in view of ICCS design in [2]. One way of
circumventing this problem is periodic synchronization of the
control system components by which A, is maintained within
a desirable range by transmitting high-priority synchronization
signals via the network medium or by additional wiring. How-
ever, the control law still needs to be redesigned because of
network-induced delays.

An alternative approach to the above synchronization pro-
cedure is to deliberately assign nonidentical sampling periods
T, and T, to the sensor and controller, respectively, such that
A, does not remain within an undesirable range for a prolonged
period. This is achieved by making the ratio, 7,/7, not close
1o a positive integer. Another benefit of having non-identical
sampling is to reduce the occurrence of vacant sampling slots
at the controller, which results from mis-synchronization be-
tween the system components and varying data latency {1, 2].
The probability of vacant sampling can be arbitrarily reduced
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by selecting a sufficiently small value of the ratio, 7,/7,, as
presented in the Proposition 2.1 of {2}. Modeling of ICCS with
non-identical sampling has been reported in [3, 4] but design
of optimal control systems with non-identical sampling is a
subject of future research and is not addressed in this paper.

Luck and Ray [S] have proposed a delay compensator for
ICCS in which the sensor and the controller have identical
sampling rates with an arbitrary time skew between them, and
the sensor and the actuator are synchronized. The detrimental
effects of network-induced delays, especially signal distortion
due to vacant sampling, are alleviated by using a multi-step
predictor where the number of predicted steps in the observer-
based control system is determined from the sum of the pos-
tulated maxima of the sensor-controller and controller-actua-
tor delays. The key idea is to monitor the data when it is
generated and to keep track of the delay associated with it.
With this knowledge, the compensation algorithm is formu-
lated to keep the delay constant as seen by the controller.
Therefore, the closed-loop control system model is constrained
to be finite-dimensional, linear, time-invariant provided that
the plant, observer, and controller are linear time-invariant.
One major advantage of this delay compensator is that the
observer gain and the state-variable-feedback control gain can
be designed on the basis of the nondelayed plant model. How-
ever, the multi-step prediction makes the control system sen-
sitive to modeling errors, nonlinearities, and uncertainties as
revealed in the experimental results on a network testbed, Ro-
bustness of the delay compensator relative to structured un-
certainties has been analyzed, and the problem of loss of
observability under recurrent loss of data is addressed [6].

We propose, in this paper, a stochastic approach for com-
pensation of randomly varying distributed delays as an alter-
native to the deterministic method of multi-step prediction.
The objective is to derive an optimal (or a suboptimal) sto-
chastic control law to compensate for network-induced delays
under diverse randomly varying network traffic such that the
control parameters can be determined on the basis of statistics
of the network-induced delays and the plant model. The key
issue in this approach is that a controller designed for a non-
networked system may not satisfy the performance and sta-
bility requirements in the delayed environment of ICCS net-
works. We have represented the plant by a linear, finite-
dimensional, stochastic model [1, 4] in the discrete-time setting,
and the proposed optimal control law is synthesized by using
the principle of dynamic programming and optimality.

This paperis the first of two parts, and presents the stochastic
regulator problem for ICCS and formulation of an optimal
control law using state feedback. The second part concentrates
on numerical techniques for solving the difference equations
resulting from dynamic programming and presents the simu-
lation results. This Part ] is organized in four sections including
the introduction. Section 2 presents the status of research in
optimal control of delayed systems. The stochastic control law
is derived in Section 3. Summary and conclusions are given in
Section 4. The nomenclature used in both parts is listed in Part

11 [8].

2 Research Status of Optimal Control of Delayed Sys-
tems

This section focuses on a limited class of optimal control
problems for delayed systems, and is not intended to be a
survey of this field. Only those publications that have a possible
bearing on the synthesis of control laws for randomly varying,
distributed delayed systems such as those in ICCS are consid-
ered. In particular, we concentrate on the optimal control
methodology employing linearity of the plant model and quad-
ratic cost criterion as this approach is suitable for multivariable
systems, facilitates formulation of the performance cost and
selection of design parameters, and is likely to be mathemai-
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ically tractable. A reasonable amount of research effect has
been expended [9-22] on extension of the standard linear quad-
ratic regulator (LQR) theory to delayed systems in both con-
tinuous-time and discrete-time settings. Some of these results
are briefly discussed below.

2.1 Continuous-Time Control of Delayed Systems. A
survey paper by Banks and Manitius [9] reviewed time-delayed
optimal control problems by employing abstract variational
approaches. Manitius and Olbrot [10] proposed a concept for
linear systems design with (constant) delays in state and/or
control that yields a finite spectrum closed loop system. Since
the continuous-time systems under consideration only ad-
dressed constant delays, these results are not applicable to the
discrete-time control system with randomly varying delays.

Buckalo [11] presented the concept of controllability for
systems described by delayed differential equations, and dis-
cussed sufficient conditions for controllability in terms of the
system and input matrices. Although this approach can be
extended to multiple constant delays, it is not apparanetly
applicable to varying delays.

Soliman and Ray {12] reviewed their previous work on op-
timal control of multivariable systems having constant delays.
An optimal feedback control policy was derived in a linear-
quadratic setting for continuous-time systems. The delays in
the problem were presented as transport lags, and modelled
by auxiliary partial differential equations. The resulting equa-
tions were discretized and approximated by a large number of
ordinary differential equations (ODEs). Classical optimal feed-
back control theory was then applied to the set of ODEs, and
the limit was taken as the number of points of discretization
approached infinity. This method can be extended to deter-
ministically varying delays. Although the rigor of deriving an
optimal feedback control law by discretization of the delay is
still open to question, several successful applications were cited.

The problem of optimal control of continuous-time systems
with delays in the state and control variables was considered
by Koivo and Lee [13]. State and costate equations, obtained
by application of the maximum principle for optimal control
problems, were transformed into equivalent integral equations,
The presence of an integral equation in the optimal feedback
gain matrix results in a set of partial differential equations.
The feedback control law was numerica'ly obtained by dis-
cretization of the integral equation.

The concept of the papers Ly Soliman and Ray [12] and
Koivo and Lee [13] could lead to a design methodology for
optimal control of deterministically varying delayed systems
by solving additional partial differential equations. However,
neither randomly varying delays nor the impact of measure-
ment noise and modeling uncertainties were considered. Fur-
thermore, the control law was obtained in the continuous-time
setting which, if used in ICCS, must be discretized for imple-
mentation in the controller computer.

2.2 Discrete-Time Control of Delayed Sys-
tems. Augmentation of the discrete-time state-space model
is a commonly used approach for taking the effects of delays
into account. (This approach has also been used in finite-
dimensional modeling of ICCS in [1-4].) Diduch and Dorais-
wami [14] investigated MIMO sampled data systems where
delays were modeled as a discrete-time, augmented state rep-
resentation. Delays were divided into an integer part and a
fractional part relative to the sampling time. Whereas the in-
teger part was modeled by augmenting the original state with
delayed inputs and outputs, the fraciional part was treated via
the state transition equation. The conditions for controllability
and observability of this augmented discrete-time model were
derived by using the Popov-Belevitch-Hautus tests, i.e., the
pair (4, B) is completely controllable iff rank([z/,~ 4 | B]) = n.
Necessary and sufficient conditions for controllability and ob-
servability of the delayed systems were shown to be: (i) a similar
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systemn that is subjected to delays less than the sampling period
is controllable and observable, (ii) identical number of inputs
and outputs, and (iii) no transmission zero at the origin. Con-
trollability and observability conditions for varying delays were
not addressed, and no algorithms for optimal control or es-
timation were presented.

Chyung [15] has pointed out the problem of potential loss
of controllability due to incorporation of additional states. As
a recourse to augmentation of the plant model, a discrete-time
version of the maximum principle was used for synthesizing
the optimal control law for delayed systems. The resulting state
and costale equations are analogous to those encountered in
the two-point boundary value problem of continuous-time op-
timal controller design. However, no effective computational
technique was prescribed. Furthermore, since the control input
u (k) is not specified as a function of state x(k), it cannot be
conveniently implemented in the feedback form.

Drouin et al. [16] proposed a decomposition-coordination
approach for controller design in linear discrete-time systems
with constant delays in both state and input variables. It has
been shown that, by an appropriate decomposition of the per-
formance cost, a control law with partial state variable fecd-
back can be formulated. For example, the performance cost
can be decomposed as:

N
J= Z[Xk+ 1TQXk., 1+ ukTRuk](w.r.l.ka = Ax; + Buy)

k=0
N
Ty T a Ty T
= (s Quutu Ry + Q) (Xpar Qxpo1 U, Rup)
p=0, p2j
— I. "
=J;+J";

Then, for optimality of u;, it necessitates that, on the optimal
trajectory,

aJ/allj=6[;/8uj+aJ"j/311j=an/8zlj+pj=0 Vj

Since the coordination vector p; depends on future p,, p>J,
it is necessary to use an iterative procedure to compute the
optimal value of p,. The resulting control law feeds back the
current state and the open loop correction term p;. Although
this method is good for large systems and can handle con-
strained control problems, the time needed for convergence of
the coordination vector may be too long for on-line applica-
tions. Furthermore, varying delays cannot be handled by this
approach.

Arthur [17) used an augmented model to deal with delays
in state and control variables in a discrete-time setting, and
employed the principle of dynamic programming and opti-
mality for synthesizing the control law. The resulting feedback
control depends on the solution of matrix Riccati difference
equations, which is analogous to thatin continuous time. These
equations were obtained by partitioning the augmented state
matrix according to the original state and contro! variables.
This serves to avoid operations on large matrices of the aug-
mented system and provide a better insight into the structure
of the delay problem. Apparently, this approach is restricted
to delays that are integer multiples of the sampling period, and
its extension to randomly varying delays is not straight-for-
ward.

Now we study discrete-time systems with stochastic param-
eters with the objective of formulating a control law for ran-
domly varying delayed systems. The majority of publications
in stochastic control [18, 19] deal with additive noise where
the system, input, and output matrices are deterministic. Since
these matrices in the ICCS model [1, 2, 4] contain stochastic
elements, the standard techniques for deriving stochastic con-
trol laws cannot be readily applied. Bitmead and Anderson
{20] investigated sufficiency conditions for exponential sta-
bility of linear difference equations with random coefficients
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via the Lyapunov technique but no systematic approach to
selection of a candidate Lvapunov function was prescribed
De Koning [21] has reported a scries of rescarch publications
on discrete-time systems with stochastic parameters. The sys-
tem, input, and output matrices were assumed to be sequences
of independent random matrices in addition to the additive
white noise in the state and measurement equations. Defini-
tions of stochastic stability, controllability, and observability
were given in the sense of mean square convergence. Theorems
for solutions of optimal control and optimal estimation prob-
lems were given for the infinite-time horizon case. Finally, a
set of Riccati-type matrix equations was derived for the optimal
compensation problem, i.e., combined control and estimation.
However, this algorithm intends to provide a steady-state so-
lution derived from the Hamiltonian based on the expected
value of a quadratic cost function. Apparently, the existence
of a solution of the resulting set of coupled nonlinear algebraic
equations has not been established, and these equations are
difficult to solve numerically. Further discussions on control
of systems with stochastic parameters can be found in [21, 22].

The control law, proposed in this paper, is derived by mod-
eling the ICCS as a discrete-time system where the sensor and
control data are subjected to randomly varying delays. The
matrices in the augmented state-space model are stochastic with
randomness occurring in the system, input and output matrices
instead of being restricted to additive noise. In contrast to the
Pontryagin’s maximum principle as proposed by De Koning
[21], we have adopted the dynamic programming approach 1o
synthesize the stochastic optimal control law via a recursive
relation which is not difficult to sclve numerically. Concep-
tually, dynamic programming is more suitable for stochastic
problems than deterministic techniques such as calculus of
variations and Pontryagin’s maximum principle for which a
single optimal state and control trajectory ideally exists. The
application of dynamic programming in the augmented plant
model in our approach is, to some extent, similar to that
proposed by Arthur [17)in a deterministic setting.

3 Formulation of the Stochastic Optimal Control Law

Following the previous work on modcling of ICCS [1-4],
the network-induced delays are defined below for development
of the stochastic control law.

8, Sensor-controller latency, defined as the timeinterval from
the instant of the sensor sampling to the instant that sensor
data arrives at the controller receiving queue.

0, Sensor-controlier delay, defined as the interval from in-
stant of the sensor sampling to the instant that data starts
to be processed in the controiler.

... Controller-actuator latency, defined as the time interval
from the instant that the controller command is generated
to the instant that the controller command arrives at the
actuator receiving queue.

O, Controller-actuator delay, defined as the interval from
the controller command generation to the instant that
data starts to affect the actuator.

For derivation of the control law, the statistical character-
istics of 85, Oser 8car 2N O, are assumed to be available via
analysis of the network performance. The plant dynamics are
represented by a finite-dimensional, linear, time-invariant,
continuous-time model:

de(t)/dr=at(ty+bu(t) 09
y()y=ck&(1) (2)
where £€®”, ue®"™ and ue®R’. The problem is to formulate a

state-feedback control law in the discrete-time setting on the
basis of the following assumptions:
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1. The sensor and controller havs rdentical sampling pe-
riods, 7.

2. The discretized version of the plant model in (1) is both
reachable and observable.

3. Thesamplerisideal and a zero-order-hold (ZOH) is placed
between the digital controller output and the plant input. .

4. The skew, A€(0, T}, between the sensor and controller
sampling instants is a slowly varying parameter to be period-
ically reset [1, 2] and therefore may be treated as a selectable
constant parameter.

S. The actuator operates as a continuous-time device, i.e,
the control input acts upon the plant immediately after its
arrival at the actuator terminal.

6. Network-induced delays, [6,*] and (0,"), are bounded,
mutually independent, white sequences with identical and a
priori known statistics. (The stipulation is that the number of
network users is relatively large with diverse requirements for
utilization of the communication medium, and that the offered
traffic bears a safe margin relative to its critical value [23, 24].)

7. Statistics of plant disturbances and sensor noise are in-
dependent of those of 0, and 0, .

8. The probability of data loss, due to noise in the com-
munication medium and protocol malfunctions, is zero. m

The proposed control synthesis procedure for ICCS is de-
veloped according to the steps outlined below.

® Development of an augmented state-space model of the
plant to account for the randomly varying delays.

e Formulation of a suitable performance cost that is mini-
mized to obtain the control law.

® Derivation of an optimal control law based on dynamic
programming.

e Construction of an estimator for prediction of the delayed
states,

3.1 The Augmented Plant Model. Becauﬁe of the varying
(but bounded) controller-actuator delay 0., the input u (1)
te the plant is piccewise constant during a sampling interval
[T, (k+1)T) whcre the changes in u&!) occur at the random
instants KT+ 1%, i=0, 1, , 6, and (>, " as illustrated in
Fig. 4 of [1]. On this basns the continuous-time plant model
in (1) is discretized to yield:

¢
brar=asbi Zbikuk-i
i=0 (3)
Yi=ck
where
A
a;: =explaT], b = Srk exp[—a(T-7)}d7b, and

=T and ¥ =0.

We proceed to take into account the effects of the controller-

actuator delay 6" and sensor-controller delay 0, at the kth
sample following the modeling methodology proposed in [1].
Since the delays are assumed to be bounded (see assumption
#6 earlier in this section), 3= 2 and p = 0 such that the following
conditions hold:

0, <pT+A, and 0, <(¢—1)T vk with probability 1. (4)

The first condition in (4) suggests that the sensor data y, may
undergo (p+1) discretely random delays, i.e. o,k
=p(k)T+4,, where p(k)efo, 1, ---, pl and
plk+1)=(p(k)—1) vk. This means that the sensor data,
Y- pth) collected at the (£~ p(4))th sensor sampling period,
is used to generate the control input u,. The second condition
in (4) implies that there are at most { new control input data
arrivals at the actuator terminal during any sampling interval
KT, (k+1)T).
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Following the modeling methodology given in {1,
discretized model (3)
effects of 6,

4], the
is augmented to take into account the
. The augmented plant model is presented below.

Xpy 1= Ap X+ By (5)

,‘w”here u€®R™ represents u(r) as defined in (1),

xio=1ET e T ue [V e®Y; L= (n+om),

ag b* bt - b bf bq
0 0 0 --- 0 0 I
Agy=101, 0 --- 0 0| and Bi:=| 0
o0 0 - I, 0 0
Remark 3.1: During the kth sampling period, w;_q -+,

u; -y may affect the plant state £, , in addition to u;. However,
since uy .y, + -+, U;_¢are already generated by the controller,
they are available at the Ath sampling instant. =

Remark 3.2: The elements b} of matrices, 4, and B, in
(5) are stochastic processes because the time epochs, {1}, that
form the limits of the integration in (3) are random. Therefore,
Ar=Ai(w), Bi=Bi(w), Xy =x(w), and uy=u;(w) where w
is a sample point of the random sample space Q. =

3.2 Formulation of the Performance Cost. A standard
procedure [18, 19] for obtaining an optimal, linear, state-feed-
back control law [u;] for the discrete-time plant model (3)
would be to minimize the performance cost J” over a finite
time interval from the Oth up to the Nth sampling instant as:

N-1
"= 1/2E{<MP”&~+ 2ETQ e+ uR "ud)} (6)
k=0

where P” and Q" are positive semi-definite symmetric matrices
and R” is a positive definite symmetric matrix, the final time
Nis selected by the designer, and the expectation is with respect
to the statistics of network-induced delays.

The above performance cost J” needs to be modified to
include the augmented plant model (5) by modifying the
weighting matrices. The revised performance cost is:

N-1
Jy"i= 1/2E{x,fpx~+ Z[kawa ukTRuk]} )

k=0

R O L
N

Remark 3.3: Thestructure of Pand Q matricesin (7) allows
the optimal control law u; to be formulated as a linear, de-
terministic function of the plant states £, and the delayed
control inputs, uy_y, ***, Up_p B

Similar to the standard linear quadratic regulator [18], we
propose to formulate an optimal control law for delay com-
pensation on the assumption of availability of the augmented
state vector, x;. The first n elements of x; are the plant state
£, which is readily available if all states are directly measurable
(i.e., r=n in (1)) and the sensor signal-to-noise ratio is ac-
ceptable; otherwise, a filter [19] is necessary to provide an
estimate of £, using the measurement history, and this estimate
must be used in lieu of the actual state £, in the optimal control
law. This requires the use of the separation property [18] which
is valid because of the assumptions #6 and #7 stated at the
beginning of this section. (The design of such a state estimator,
which must account for the delayed control inputs to the plant,
is addressed in Section 3.4.) The remaining elements of x;,
namely, uy_y, - -+, Up_g, of X, are already computed and stored
at the controller. At the sampling instant &, a realization of
the delayed augmented state x;_,, is necessary to generate

where
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;. The following notation for the delayed augmented state is
used for brevity:
et =Xk - p(k) (8)
where p(k)€{0, 1, ---, £} may be random. The practice of
ICCS nerwork design mandates the offered traffic to bear a
safe margin relative to its critical value [23, 24). Therefore,
we address the problem of control synthesis under the stipu-
lation that &,f< T vk with probability 1. This implies that
p(k)e{0, 1} vk, and p(k) =0 iff 6, < A,. We consider, in the
sequel, the operations of ICCS having 8 < TVk,i.e,p(k)e(O,
1]. Therefore, if Pr{p(k)=0) =« Vk, then the expected value
of z is:
Elzy) =cElx )+ (1 ~a)Elxg-1} %

and the conditional expectation of x; given z is predicted using
the augmented model (5) as:
Elxlz) = {Ak ot =0 , (10)
E{Ag-1Jxi 1 +E(Bioy iy il plk) =1

Since the objective is to find an optimal state-feedback law
{1} by minimizing the performance cost in a stochastic set-
ting, dynamic programming and optimality principle {18] are
considered to be more appropriate than deterministic methods
such as the calculus of variations and Pontryagin’s maximum
principle [19]. For application of dynamic programming, the
unconditional expectation in the performance cost [7] needs
to be changed to the conditional expectation based on the
measurement history. The rationale is that the control per-
formance at any instant is optimized by utilizing the ensemble
of all available measurements up to this instant.

To obtain the optimal control {ug, k=0,1, -+, N-1] that
minimizes the performance cost J via dynamic programming,
it is necessary to formulate a backward recursive relation start-
ing from the stage N. Evaluation of uy with one step at a time
is possible because of the Markov property of the state-space
model. To this effect, the performance cost in (7) is further
modified as follows:

i
Sl zZpy ug) = E{ (’2‘ (%" Oxi + u Ruy)

+J.k+1(zk+l)>12k} if k<N (11)

where J*4 (24): = Ji (24, ) and u”y is the optimal state fecd-
back law at the Ath sample, i.e., in [kT, (k+ 1)T). Fork=N,
the terminal state is reached and there is no need for any
control. Therefore,

1
J w2t = Inzm uN) =5 E (xn"pnxn) lzn) (12)

where py is set to P. The next objective is to determine an
optimal control law 1°; as a function of z, by minimizing the
performance cost (i1).

3.3 Derivation of the Optimal State Feedback Control
Law. Now we present the following proposition to arrive at
an optimal state feedback control law {u*, k=N-1,N-2,
.+ -} via a recursive relationship.

Proposition 3.1:  Let the stochastic matrices A, and By be
independent of (A4, j=k-1, k=2, -.+} and (B, j=k-1,
k-2, ---}. Then, given the statistics of the network-induced
delays, the optimal control law at the kth stage is:

u*(zx) = = Fr Elxlzi) for k<N (13)
and the resulting minimum performance cost is
1
Iz =5 [Ebaperl i) + 2 SiE Ll 2] (14)

where
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Fi:=[R+E(B py . Bi)
+E(By Sk, B} [E(B pis 1Ak} + EEBY Sc1Ac])
pii = O+ ElA pis A} + E(ASia A with pu=P1
Sgi= = [E{Ax pke1Bi) + E{ALSks By ] 1Fy with Sy=0;
A =adr+(—a)E(A) and By =aBy+ (1 - 0)E(Bi};
a=Pr{p(k)=0) and (1-)=Pr{p(k)=1}; and
each equation is evaluated backward from K=N-1, N-2,

We need the following lemma to prove the above proposi-
tion,

Lemma3.1: EVE[f(x:) 1z 12y} =Ef(xx) 124 - 1] where
Jf(+) is piecewise continuous with at most countable number
of discontinuities.

Proof of Lemma 3.1: Since [x;) is a Markov sequence
and z; = Xy - (k) Where p (k) isa non-negative integer, it follows
that E{f(xx) tzx) = ELf(xx) 12k, 2k-1 )} where the expectation is
relative to z;. The proof follows by using the relationship
E|EIZ\X, Y} Y}=E{ZIY] for conditional expectation. &

Proof of Proposition 3.1:  Starting at the (N = 1)th stage,
the performance cost in (11) is:

1
Inizn-n un-) =El (E (Xn-1  Oxnoy

Uy TRun_ )+ () Tzna ) (15)
Using lemma 3.1 and the state relationship (5) in (15) yields

1
In-r(Zn-ty un-1) =5El (N1 TOXN-y + iy Rin-)

4 (A Xnm1 + Byt ) pn(An-iXnor+ Byoatin-1)) 12w ]
(16)
The optimal control for the (N—1)th stage is obtained by
minimizing the quadratic equation (16) with respect to un-1.
Setting
SN\ N(TN=1y Un-1) /Bty
=E{(Rup-y+Bn-\"pn(An-1Xn-1+ By-tin-1))lzn-11 =0,
the optimal control law is derived as:
Wi {zya) = = Fuoy Elxnolzn-y) an
where Fy_ 1= [R+E[BN—ITPNBN~I 1! ElBN-—ITPNAN—-l }.
The following facts have been used in the above derivation:

o Ay_; and By., are independent of xy_; and zy_, on the
basis of the condition laid out in the proposition and the
notation in (8).

 uy_; is a deterministically structured function, i.e., if its
argument is deterministic, then its value is also deterministic.

The optimal performance is then obtained by substituting (17)
in (16).

T noi(an-1)i=Inaa (@ Win-a)

=%IE[ (Xne1Tpn=1Xn-1) lzn-1)
+E{xyoyTan- 1} SvorElxn-rlzn-1]]l (18)
where py_1i =0+ E(An- pnAn-1)
Snor:=E(An-1" pNBNn-1}Fn-
Note: Sy has been simplified from the expression
FnoTIR+EBn_1TonBn-11)FN-1 = Fn-1"E(By_\TpnAn-1]
—E(An-1"pwBN-1)Fn-1-

Now we step back to the (N—2)th stage in order to find
the required recursive relationship. Steps similar to those in
the (N - 1)th stage were not followed because of the difficulty
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in evaluating E{J*y-(2v_1))Zn-2) Where the conditional ex-
pectation cannot be readily simplified as explained later. Since
p(k) is independent of p(j), j=k-1, k-2, -+, and is also
independent of plant dynamics (following the assumption #6
and #7 at the beginning of this secticn), the conditional ex-
pectation in (10) can be expressed as:

Efxilzg) = o+ (1 —)[E( Ak ko1 + E{ By -y Jug 1]
= Ay Xk 1+ Bio 1]

+ (1= )E{Ak-1}xi-1+ E{Br-1]un-2]
or
Elxilze) = Ao iXe-y + Brote oy (19)
where
Ap=cAi+ (1 —a)E[Ay), Bii=aBy+(1—-a)E{B] (20
The performance cost at the (N - 2)th stage follows from (11)
as:

1
In-2(2n-2s Un-2) =E{[E (Xn-2"QXno2 + Un-2 Run_3)

+J N1 (ZN—l)j! |ZN-2]
1
= [Elxn-2"OXn-z+un-2 Run.21Zn.2)

+ ELE(n-1 p—1Xn-1 121} Fan-2)
+E(E(Xn- TV v VS Bl lzv- ] lzn-2)] - 21)

The second term in (21) is expressed by using lemma 3.1 and
the state relationship in (5) as:

ELE(xn-1"pn-1Xn-112Zn-1] Zn-2)
=E{(An-2Xn-2+ Bn-atn-2)Tpn-i
X (An-2Xn-2+ By_alin-2)lznoa)  (22)

The result of lemma 3.1 cannot be applied to simplify the
third term in (21) because of the quadratic expression involving
two conditional expectations. This problem is circumvented
by using (19) as follows. '

E(E{xn-1 1zn-1 ) Sno 1 E(xv-1 1 2Zn-1 1] -2)
= E{(An-2Xn-2+Bnoatin-2) "Sno)

X (An-2Xn-2+ By-atin-2) 1Zn-2)
=E(xn-2 E{An-2"Sn-1An-2)Xn-2l2n-2)
+E(xn-2" 12n-2) E{An-2"Sn-1BN-2)Un-2
+un_2 E{By-2 Sn-1An-2) E(Xn-212n-2)

+un-2 E(By_2’SnoiBr-2lun-y  (23)

Now Juy_, can be obtained by combining (22) and (23) in
(21). Following a similar procedure as in the (N - 1)th stage,
the optimal control law at (N —2)th stage is obtained by min-
imizing the quadratic equation of Jy_, with respect to uy.».
Setting

8- n(ZNo2s Un-2) /BN -2
=Run_2+E(Bn-2 Pn-1An-2)Elxn_2lzn-2)
+E{Bn-2"pn-1Bn-2)un-2
+E(Br-2"Sn-1An-2) E{xn-2lzn-2)
+E(By-2"Sn-1By_2)un-2
=0, the optimal control law is derived as:
W n-2(2neg) = —FnooEf{xn_2lzn-y)  (24)
where
Frn_2:=[R+E(Bn-2"pn-1Bn-2) +E{By_2"Sn-1Bry-2] "'
X|E(Bn-2"pv-1An-2) + E(Bn-2"Sn-1An-2]]; and
pv-1 and Sy_ are as defined in (18).
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The minimum cost J*y_, is obtained by substituting the
expression for #°,_, in Jy_, as follows.

1 _
J*nv-a(zZn-2) =5 [Elxn_2"OQXn->

'+E{XN~2T|ZN—2}FN-—JBFN'—ZEIXN—NZNJl lzy-2)
+ E{ (An-2n-2~ Bn-2Fn-2E{xn-212n-2}) Tpno1 (An-2Xn-2
—Bn_2FnaE{xn_alan-2)) + (Av-2Xn-2
~ By oFn_2E(xn-212v-2)) SNo)
X (An-2Xnv-2—By_2Fn2Elxn_2lzn-a}) lzn-2)]

Expanding the above equation and collecting coefficient mat-
rices for similar terms yield

1
Jn-2(Ty-2) =3 [E(xXn-2 pn-2Xn-212n-2)

+E{xn-2" Ino2)Sn-2Elxn-2lzv-2)]  (25)
where

o2t =0+ E{An_2 pn-1AN-2) +E{An-2"Sn-1AN-2);
~[E{AN-2"Pn-1Bn-2) + E{An_2"Sn-1By-2)1Fn-2

The proof is now complete by applying the method of induction
using the results in (24) and (25). &

Snogi=

Remark 3.4: The condition that A, and B, are independent
of {A;, j=k—-1,k-2,---}and {B), j=k~-1,k=-2,---],as
laid out in Proposition 3.1, holds if the time skew A;=0 or if
A, is a random parameter, i.e., an unknown constant. A weak
correlation may exist for a known, non-zero, constant value
of A,. In that case, the control law derived in Proposition 3.1
should be sub-optimal. @

Remark 3.5: Using (20) the second order statistics of A,
and B, in (24) and (25) can be expressed in terms of a, Ay,
and B, as follows:

E(ASkc1Ar) =P E(AL Skar Ax)
+ (1= eE{A ) Sis E{AL)s

E{A:"Sis1Bi) =a? E{ A" Ssy Bi)
+(1=a®) E[ AT} Sk E B}

E(Bi" Sp4\By) =a? E[By” Sks1 By}
+(1=c)E(B Sk E(Bi).m (26)

Remark 3.6: The proposed stochastic regulator algorithm
does not guarantee an almost sure performance. This implies
that, at certain sample points, the control system performance
may not satisfy the specified requirements, and the probability
of the ensemble of these sample points may not be zero. How-
ever, we have not encountered any such situations in extensive
simulation experiments. Some of the simulation results are
presented in Part Il {8]. m

Randomness of the sensor-controller delay, 6, can be elim-
inated by adjustment of the skew A; between sensor and con-
troller sampling instants. If A;>Sup 6, then p(k)=0 vk,
which implies that the sensor data always arrive at the con-
troller on time. On the other hand, if A;<Inf é, then p(k) =1
vk which implies that the sensor data are always delayed by
one sample. The optimal control laws under these two con-
ditions are presented below.

Corollary 1 to Proposition 3.1: 1f p(k) =0 vk with prob-
ability 1, then the optimal control law becomes

u*i(xp) = —Frxy for k<N 27)
and the resulting minimum performance cost is
1
T k() =2 E (" L) (28)
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where
Fi=[R +E(B Lyv1Bi)1” "E(Bi Lx1Ax)
Lu0=0+E{ALiy 1 (Ax— ByFy)) with £y=P; and
each equation is evaluated backward from
k=N-1,N=2, -+,
Proof of Corollary 1: Since p(k)=0 vk with probability
1, we have a=1 and z;=Xx; Vk, which imply that A=Ay,

B, = By, and E{x; 1z} =x; vk. The proof is completed by using
these results in Proposition 3.1 and setting £y = (px+ Sk). ®

Corollary 2 to Proposition 3.1: 1f p(k)=1Vk with prob-
ability 1, then the optimal control law becomes

u*p(xpoy) = — Fe Elxelxeoy) for k<N (29)

and the resulting minimum performance cost is
. 1 T
J k(xk-—l):'z'[E(xk peXelxe 1)

+ E(x ) SkE{x )1 (30)
where
Fii=[R+E(Bypx+1Bi)

+ E(B Sk E{B) T [E(BL prs 1 Ak)
+E!BkT]S/:uE{A/:]]
pri =0+ E{A prs1Ax) +E{A) Sk 1 ELAg) with py=P;

Sii=— [E{A pr+1By)
+ E{AT)Sk 1 E(Bi))Fy with Sy=0; and

each equation is evaluated backward from A=N- 1, N-2,

Proof of Corollary 2: Since p(k)=1 vk with probability
1, we have o =0 and z; = x; - | Yk, which imply that Ay =E[A;}
and B,=E(B,] vk. The proof is completed by using these
results in Proposition 3.1. &

Corollary 3 to Proposition 3.1: Both p; and the sum
(px -+ Sk) are positive semi-definite vk.

Proof of Corollary 3: The optimal cost J*; in (12) can be
expressed in terms of traces of matrices as:

1
J* i (z) =§[E[XkTkaklzk} + E{x 12k SkE [ xic1 24 ))

TripeE (e 2} + SkE (xi 2 E (x4 124

B 1 —

Tripk (E{ (X = E(xe124)) (= Efxi126)) T 2i)

_l

T2

+ Elxd 2 ElxT 1zi)) + SiELxe 2o E LT 124))
1

=3 TripeEl (= Elxi2e)) (o= E{xe126)) Thze)

+ (p+ SOE{xi 2 ) Elx T ze))

Since the optimal cost in (11) and (12) are the expected values
of quadratic terms, J*;(z;) =0 for any given initial condition
zx in the above expression. Therefore, both py and (p+ Sk)
must be positive semi-definite. B

Remark 3.7:  The results (27) and (28) show that if the time
skew A, is adjusted [2] such that A;>Sup &y, then the optimal
control law can be directly obtained from x; at the expense of
the transport delay introduced by A; in the feedback loop. On
the other hand, if the above transport delay is avoided by
setting A, to zero, the results (29) and (30) are applicable where
the control law is derived from E{xglxe-]}. =
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3.4 Construction of an Observer for State Estimation. In
the previous sections, the optimal control algorithm is derived
in a linear state feedback form. A state estimator is needed
unless all plant states are measurable and the sensor signal-to-
noise ratio is acceptable. The state estimator can be designed
by utilizing the knowledge of the system input and output
provided that the system is observable. Although the state-of-
the-art in this field and the attendant task of robustness analysis
are relatively well known, the presence of (network-induced)
randomly varying delays in both input and output complicates
the problem of state estimation. We discuss in this section how
the information available in the communication network can
be utilized to solve the problem of state estimation via existing
analytical techniques.

To illustrate the concept of observer design, we consider a
discretized version of the linear, time-invariant model of the
plant as set forth in (3).

!
Erar=ask+ Zbikuk~i
i=0 (31
Yk+1= cky

If the sensor and plant are subjected to additive noise and
disturbance, then the state and measurement equations should
be appropriately modified by including the noise terms. The
basic structure of a deterministic (or the steady-state version

of a stochastic) observer for the above can be expressed as:

¢
Mot =t L= omd + D bF ue (32)
-0

where 74 is an estimate of the plant state £, and L is the
observer gain matrix.

Since the pair [a;, c} is observable by the assumption #2 at
the beginning of Section 3, the estimated state n; should asymp-
totically approach the actual state £ (or its expected value) in
the absence of any modeling errors provided that the input
matrices are exactly known. To implement this observer, the
control input u, and measurement y; need to be known up to
the kth instant. Since the control and sensor data, {u,] and
{y¢], are subjected to random delays in ICCS, the observer
needs to be implemented as described below.

The observer can be constructed if (i) the sensor and control
data, albeit delayed, are not lost during transmission, (ii) the
exact value of the random delay p(X), along with the sensor
data yi_pk), is available at the controller at every sampling
instant k, and (iii) the arrival instants {tj"] of the control data
at the actuator during the kth sampling interval are known to
the observer. The first condition is equivalent to the assumption
#8 given at the beginning of Section 3. The second condition
is easily accomplished by appending the sensor data message
with the counter reading of its sequence number modulo p,
where p is an upper bound of p(k). The third condition can
be achieved if the instant of completion of transmission of
each control data uy is accurately monitored and the constant
delay due to signal propagation from the controller to the
actuator and software execution at the actuator is known. Even
though the queueing delay is random, the instants of arrival
of u; at the actuator are exactly known at the controller. Since
the observer is located at the controller, the input matrices
{b¥} and [y} in (32) are known.

Having known [b} and (]}, the estimate 5. is correct
if the sensor data is available up to the kth instant in the correct
sequence regardless of any delays. Seen at the controller ter-
minal at the sampling instant &, if the sensor data is delayed
by p samples, then n4_, is guaranteed to be available at the
controller, and then the control command u, can be generated.

Remark 3.8: A major factor in the implementation of the
observer is the computation load because the observer in (32)
requires each of the input matrices {b¥) to be computed on-
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line by integrating the matrix exponential in (3) whose limits
are ffand 7, \*. =

4 Summary 2nd Conclusions

A state feedback control law has been synthesized by using
the dynamic programming and optimality principle on a finite-
time horizon. The stochastic control algorithm has been spe-
cifically developed for Integrated Communication and Control
Systems (ICCS) [1-7] where random delays are induced by the
network for exchange of information between the system com-
ponents. The control law is derived on the basis of the plant
dynamics and the statistics of randomly varying network traffic.
Specifically, the plant model is augmented in state space to
take into account the effects of the delays in the feedback loop.

In general, the proposed method can be used for synthesis
of sampled data control of dynamics systems with random
parameters in their governing equations. The resulting control
algorithm apparently satisfies the property of separation (i.e.,
the state feedback control law can be separately formulated
from state estimation) under the assumptions #6 and #7 at the
beginning of Section 3. However, this concept may not comply
with the principle of certainty equivalence [18} which alinws
optimal design by separately considering the controller and
observer based on the deterministic part of the plant model.
That is, the optimal control law could be different if an equiv-
alent deterministic model, Elx;, ] =L[A,] Elxd + E[By) uy is
used instead of the stochastic model in Eq. (5).

If some of the plant states are not measurable or if the sensor
signal-to-noise ratio is unacceptable, the proposed controller
shall require a state estimator like any other state feedback
controller. However, the task of state estimation in this case
is more complex than that under the non-delayed environment
of conventional state feedback control systems because of ran-
dom arrival of contro! commands at the actualor. Although
an observer that is locu: -d at the controller can be constructed
for state estimation, its implementation may impose a signif-
icant amount of real-time computation at the controller com-
puter.
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