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1 Introduction

Integrated Communication and Control Systems (ICCS) uti-
lize time-division-multiplexed computer networks to exchange
information between spatially distributed plant components
for executing diverse control and decision-making functions.
A major problem in ICCS design is to compensate for the
randomly varying distributed delays that are induced by the
network. To this effect, a state feedback control law has been
formulated in Part I [1] of this two-part paper on the basis of
an augmented plant model [2, 3, 4] that accounts for the
randomly varying induced delays. The stochastic control ai-
gorithm is derived in a recursive form using the principle of
dynamic programming and optimality. One of the major as-
sumptions in the control law formulation is that the network-
induced delays are bounded by the sampling interval which is
identical for the sensor and controller in the present context.
This assumption is justified in view of the fact that the common
practice in ICCS design is to maintain a safe margin between
the offered traffic and its critical value [5, 6). The control law
can be simplified if the sensor and controller sampling instants
are synchronized such that the respective skew A, is maintained
above the specified threshold of max (see the nomenclature).

This paper, which is the second of two parts, presents a
numerical procedure for synthesizing the above control law
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A Stochastic Regulator for
Integrated Communication and
Control Systems: Part il—
Numerical Analysis and
Simulation’

A state feedback control law has been derived in Part I {1} of this two-part paper
on the basis of an augmented plant model 2, 3, 4] that accounts for the randomly
varying delays induced by the network in Integrated Communication and Control
Systems (ICCS). The control algorithm was formulated as a linear quadratic reg-
ulator problem and then solved using the principle of dynamic programming and
optimality. This paper, which is the second of two parts, presents (i) a numerical
procedure for synthesizing the control parameters and (ii) results of simulation
experiments for verification of the above control law using the flight dynamic model
of an advanced aircraft. This two-part paper is concluded with recommendations

(i.e., synthesis of the optimal feedback gain matrix), and the
results of simulation experiments for its verification. The sta-
bility of the numerical procedure is established via a propo-
sition which shows convergence of the feedback gain matrix
to a constant matrix when the time horizon approaches to
infinity. The above numerical procedure is based on the fol-
lowing information: (i) a plant dynamic model; (ii) known
statistical characteristics of the network traffic; and (iii) spec-
ifications of the network access protocol. Performance eval-
uation of the proposed control algorithm is done by simulation
of the longitudinal motion dynamics of an advanced aircraft.

The paper is organized in five sections including the intro-
duction. Section 2 describes the procedures for numerical anal-
yses including solution of the matrix difference equations and
computation of the associated expected values of integrals with
stochastic limits. Section 3 discusses stability and robustness
of the proposed control algorithm. Section 4 presents simu-
lation of the flight control system of an advanced aircraft.
This two-part paper is summarized and concluded in Section
5 with recommendations for future research.

2 Numerical Procedure for Control Synthesis

The control algorithm, derived in Section 3 of Part I [1], is
expressed in terms of vector-valued difference equations for
which no closed-form solutions apparently exist. Therefore,
numerical techniques are necessary to solve these equations so
that the pertinent parameters can be evaluated for the control
system synthesis. This would require computation of the ex-
pected values of integrals whose limits are stochastic processes
and integrands contain matrix exponentials. Specifically, the
tasks of numerical computations are directed toward evalua-
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tion of: (i) probability distribution functions of network-in-
duced delays; and (ii) elements of the optimal feedback gain
matrix. A flow diagram of the numerical procedure for off-
line design of the proposed stochastic regulator is given in Fig.
1.

2.1 Numerical Evaluation of Probability Distribution
Functions. Although analytic evaluation of the first moment
of network-induced delays in ICCS has been reported [7) under
certain restrictions, their probability distribution functions are
difficult, if not impossible, to derive because of the general
distribution of data traffic and complexity of the communi-

cation protocol. Therefore, numerical techniques are the only
recourse to identification of the probability distribution func-
tions of the network-induced delays. To this effect, a database
of random delays should be generated via discrete-event sim-
ulation {8] of the network traffic and the communication pro-
tocol. Finally, the distribution function is numerically generated
from the histogram of the delays in the database. This pro-
cedure does not require the assumption of ergodicity of the
delays because a number of simulation runs can be conducted
with several seed numbers in the random number generators,

which are equivalent to different sample points.
One or more likely scenarios of network traffic are required

in the above off-line design procedure for identification of a
probability distribution function. If these scenarios are diffi-
cult to generate, then it is logical to synthesize the control
system on the basis of postulated probability distributions of
the induced delays due to the heterogeneous traffic in the
network. For example, in the simulation presented in Section
4, delays are assumed to be uniformly distributed in (0, 7] and
the step of numerical evaluation of the distribution functions
is bypassed as seen in Fig. 1. (Note: The assumption of uniform
distribution is somewhat conservative in the sense that the
probability density function of network-induced delays is
largely a decreasing function of its argument in an ICCS net-
work.)

Remark 2.1: The control parameters, obtained from off-
line design, could serve as default values. The network man-
agement module may continuously monitor the traffic and then
numerically generate the probability distribution functions of
induced delays on the basis of collected data under the as-
sumption that these delays are ergodic processes. This step
does not require a discrete-event simulation but there is always
a waiting time for data collection and identification of the
distribution function from the histogram. If the changes in
network traffic characteristics are slow compared to the process
dynamics, then the above operations can be executed on-line,
The control parameters can then be updated using the current
statistics of delays, and this procedure is essentially analogous
to the well-known practice of gain scheduling [9] for adaptation
to relatively slow process dynamics. m

Nomenciature (For Parts I and II)

a = plant system matrix (nXxXn)

in continuous lin_“? £ = cost matrix for the case u = plant input vector (mx 1)

a, = plant state transition matrix plk)=0 vk x = augmented plant state vector
(nxn) L = observer gain matrix (nXxr) (n+om)yx1)

A = a}xgmented plant state tran- p = maximum delay (# of sam- y = plant output vector, i.e., gen-
sition matrix (n x &m) ples) of sensor data arrival erated sensor data (rx 1)
X (n+fm) N = time horizon (# of sampling z = delayed output vector (rx1)

b = plant input matrix (nxm)in
continuous time

periods) over which the per- « = probability of sensor data ar-
formance cost is evaluated

rived on time, i.e, p(k)=0

k ; ; ; . .
bi = plantinput matrix (nXm) in p(k) = sensor delay index (# of sam- n = estimate of plant state vector

discrete-time

B, = augmented plant input ma-
trix (n+fm)xm in convo-
luted form

¢ = plant output matrix (rxn)

Uk-pek)

ples), i.e.,

P = augmented terminal state
weighting matrix
cost matrix

(nx1)
¢ = plant state vector (nx 1)
A, = time skew between the sensor
and controller sampling in-
stants

yi to be used for

P =
F, = feedback  gain  matrix PQ = augmented state weighting 8., = controller-to-actuator data
mx (n+6bm) matrix latency
J', J" = performance cost R = weighting matrix for control Smax = supremum of sensor-to-con-
J* = optimal performance cost Sy = cost matrix troller data latency
. W.LL. lug} T = sampling period Omin = infimum of sensor-to-con-
J*' = optimal performance cost T. = controller sampling period troller data latency
w.r.t. (ug} and A T, = sensor sampling period dsc = sensor-to-controller data la-
¢ = maximum # of delayed ac- r*; = instant of ith contro] data ar- tency

tuator command in one sam-
pling time
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rival at the actuator during
the kth sample

O,, = sensor-controller delay
6., = controller-actuator delay
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2.2 Numerical Evaluation of the Optimal Feedback Gain
Matrix. The optimal feedback gain matrix is numerically
evaluated in the following three steps:

Step 1: The most critical part in the numerical procedure
is accuraie and efficient compuiation of the matrix exponential
exp(aT) and integration of exp(a(7~7))b. They are needed
- for generating the matrices A, and B; in the augmented plant
model. Especially the matrix integration may have to be carried
out at every sample k. Advanced numerical techniques for
evaluating the above functions are reported in [10, 11]. How-
ever, if the matrix dimension is small as it could often be for
individual feedback loops in ICCS, then the integration can
be obtained by direct power series expansion followed by ap-
propriate truncation of high order terms:

!

gexp[m]drb= (1+012/2!+a2r“/3!+ se)b H
Yo

In the simulation experiments reported in Section 4, the mat-

rices are of small dimensions and therefore the power series

method has been adopted. m

Step 2: The next step is to numerically evaluate the ex-
pectation of the stochastic matrix product AkrpkBk where the
individual matrices are defined in the nomenclature as well as
in Section 3 of Part I [1]. p; is time-dependent and determi-
nistic, and A and B, are correlated. However, since { Ay} and
{B;] are identically distributed for every k as a consequence
of the assumption #6 in Section 3 of Part I, the numerical
integration for evaluating the expectations of Ay, By, and
/‘ikTpkBk needs to be carried only once at the beginning. This
matrix product requires a manipulat:on by using the concepts
of Kronecker product ® and stacking operator 9(+) [12] which
are defined below.

370 20NN TFS SEREERE TP 4

du¥ ¢V - du¥
P@V:=| - : : -,

¢ml‘P d’m2q’ : d’mn\y

and (@):=[&," @, ¢,

where [@,;] are clements of ¢ and {®,) are columns of ¢. The
following relationship based on 4(<) and @ holds:

YY) = (¥ @) (pr) @

The quantity E[B."®A,] needs 10 be evaluated only once and
then stored in memory. Later E(AkrpkBk} is calculated vk
using (2). An appropriate numerical integration routine such
as the Gaussian method [13] can be used for evaluation of
quantities like E{A,}, E{Bi], and E[AkTpkBAl. Since the
Gaussian algorithm is basically a weighted sum of the values
of the function to be integrated at specific points, it does not
pose any difficulty after the matrix exponential term, its in-
tegration, and the distribution function of delays are available.

Step 3: The recursive calculations of the cost matrices {ps]
and [S;]} and the feedback gain matrix {F,} are computa-
tionally straight-forward after the augmented plant model and
the associated expectations are obtained as described above.

Remark 2.2: 1f the skew A, between the sensor and con-
troller sampling instants is maintained above the threshold of
Smax, then p(k) =0 vk, i.e., the kth sensor data are always
available for computing the control signal ;. In that case, the
results of Corollary | to Proposition 3.1in Part I [1] are directly
applicable, and the computational requirement in the above
Step 3 is significantly reduced. m

2.3 Numerical Evaluation of the Optimal Skew A,
Remark 2.2 above justifies the need for maintaining A, (which
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is slowly varying relative to process dynamics [2, 3]) above the
threshold level. However, since A, introduces a transport delay
that degrades the system dynamic performance, it is logical to
optimize A, by minimizing the performance cost as:
J*"olzg) = min J*o(2o) 3)
Ay

where the superscripts * and T denote optimality relative to
{u,] and A,, respectively, and J*((zg) is obtained using the
result derived in Section 3.3 of Part I [1]. Because of the
complexity of the dependence of J*((zp) on A, an analytical
relationship for obtaining J*to(z,) in (3) is apparently un-
tractable. Instead, a direct numerical search is a viable ap-
proach to achieve this goal. A procedure is outlined in the
following.

If the initial value of the sensor delay index p(0)=0, then
Zo=xp. For a given A, and x,, the optimal cost at k=0 as
defined in Eq. (28) of Part I {1} is:

J*0(X0) = 172" (po+ So) X (4)

We assume that the time horizon N is large enough such that
the backward difference equations in the control algorithm
converge. (Criteria for convergence are presented later in Sec-
tion 3.) With py=p and Sy=S and the initial condition being
arbitrarily specified, the optimal performance J*fo(x,) with
respect to A, is obtained by substituting (4) in (3).

The above task of optimization can be recast as a minmax
problem where the norm (spectral radius) of the cost matrix
(p+S) serves as a general measure of the size of the cost. The
optimal cost J*(xp) in (4) is a monotonic function of skew
A, due to the fact that inclusion of the modei-based prediction

E[Ag)xgr+ E[ByJug- if p(k) =1

in Eq. (10) of Part I [1] overcomes the disadvantage of a small
skew causing the sensor data to be delayed by one sample;
otherwise, the skew should be optimized to reduce the detri-
mental effects of the loop delay at the minimum. The latter
option to avoid the model-based prediction is attractive from
the point of view of robust controller design in the presence
of disturbances and plant modeling uncertainties as well as for
avoiding additional real-time computations. This subject is
further discussed in Section 5 as the topic #4 of future research.

Remark 2.3: 1If all plant states are measurable and the
sensor signal-to-noise ratio is acceptable, then the model-based
prediction is exercised only when the sensor data are delayed,
i.e., p(k)=1. Therefore, the proposed algorithm should be
less sensitive to modeling uncertainties than the multi-step com-
pensator proposed by Luck and Ray [14, 15].

3 Stability and Convergence of the Numerical Proce-
dure

The proposed stochastic regulator algorithm [1) has been
formulated as a finite-time problem. Therefore, its properties
as the time horizon N— o need to be evaluated for stability
investigation. Since the matrices A, and By in the augmented
plant model (see Eq. (5) in Part I) have stochastic elements,
conventional definitions and concepts of deterministic stability
do not hold. Several concepts of stochastic stability [16] were
examined to this effect. For example, the almost sure (a.s.)
stability concept would possibly provide sufficiency conditions
[17] that are apparently too restrictive to be useful for ICCS
design. We adopted the mean square (m.s.) stability concept
which is mathematically tractable and yields stable numerical
solutions for the controller parameters. The objective is to
establish the criteria for convergence of the cost matrices p and
S which are the key elements for numerical evaluation of the
feedback gain matrix F.

Definition3.1: A homogeneous system Xy, | = A, X, is mean
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square stable if E{lIxI*}—0 as k—oo for all x, where I+l
indicates the natural norm. =

Definition 3.2: A system x; .= Ay Xy + By 1 is mean square
stabilizable if 3 a gain matrix F such that x;, = (A, — ByF)xx
is mean square stable. B

Now we proceed to establish sufficiency conditions for the
cost matrices pg and Sy to converge as the time horizon N— oo,
The following proposition is based on De Koning’s work [18].

Proposition 3.1: Cost matrices pg and S, converge to the
limit matrices p and S, respectively, as N— oo in the proposed
stochastic regulator algorithm [1] if: (i) the augmented plant
model x; ., = A; xi + By Uy is mean square stabilizable; and (ii)
{A;) and { B} are sequences of independent and identically
distributed (i.i.d.) stochastic matrices.

Proof of Proposition 3.1: Let L" denote the linear space
of nxn real symmetric positive semi-definite matrices where
nis the dimension of the plant model. We define the following
transformation in terms of a constant matrix F:

=: Z"—L" such that EM: = E| (A
—BF)T M(Ay— BiF)) vMeL"

Since [A,) and {B;} arei.i.d. and Fis constant, X is invariant
relative to k. It follows from Definition 3.1 that
Xpo1= (Ay — BiF)x; is mean square stable if and only if p(Z) < 1
where p(<) is the spectral radius. The following lemma is needed
to prove the proposition.

Lemma 3.1: The performance cost in Eq. (1) of Part Im
is bounded, i.e.,

N
J*0(z0) =E{Z(X,'TQX,*+ ll,'TRu,') IZ;\} <

i=0

Proof of Lemma 3.1:  Since the plant is mean square sta-
bilizable, 3 F such that (4, — BxF) is mean square stable, i.e.,
p(Z)< 1. The first part of the above performance cost involving
X, 1s bounded because

=x, 10+ E{ (Ax=BiF) Q(Ar— BiF) + ((Ax
—BF))2Q(A— BiF) + -+ Jxp< o Vg

Since uy: = — F xy, the infinite summation involving w, also

converges. Therefore, the cost J*o(Zo) is bounded.
Following Eq. (14) of Part I, the expression of the optimal

cost is:

J*o(z0) = 1/2[E (% poXol 20} + E(Xo" 120} SoE (X 20]

= 1/2TrpoE [ (xo— Elx0120}) (xo— Elx0120))7120)
+ (po+ So)E(Xolz0) E{xo" 1 20)]

Since both po and (po+ So) are positive semi-definite by Cor-
ollary 3 to Proposition 3.1 in Part | and Jg* is bounded by
lemma 3.1, po and (po+ Sp) form bounded sequences of non-
decreasing matrices as /N increases. Therefore, po and (po+ So)
converge as N— oo, Consequently, Sp must converge. &

A consequence of Proposition 3.1 is that the cost matrices
converge if the augmented system is mean square stabilizable.
In this case, the limits p and S of the cost matrices can be
evaluated by substituting them on both sides of the recursive
relations that define these matrices in Part 1. Thus p and S can
be evaluated either by directly solving these simultaneous ma-
trix algebraic equations or via the recursive relations until a
desired convergence criterion is satisfied. Once p and S are
obtained, the steady state feedback gain matrix F can be eval-
uated accordingly. Then the mean square stability can be ver-
ified by checking that p(Z) < 1. If this condition is not satisfied,
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then the procedure is repeated with a new set of weighting
matrices as shown schematically in Fig. 1.

4 Simulation of a Flight Control System

The proposed control algorithm has been verified by sim-
ulation of the longitudinal motion dynamics of an advanced
aircraft. The flight dynamic model is similar to that reported
in [5] except that the flight controller has been replaced by the
control algorithm developed in Part 1 [1]. The state-variable
model of flight dynamics in continuous time is described below.

Plant Variables and Parameters:

5, = elevator command, i.e., input to the actuator (radian)
5, = elevator deflection, i.e., actuator output (radian)
W = normal component of linear velocity at the center of
mass (ft/s)
g = pitch rate about the center of mass (radian/s)
a = angle of attack (radian)
A, = normal component of linear acceleration at the sensor

location (units of g)
= acceleration due to gravity = 32.2 ft/s® (9.81 m/s?)
The dimensional stability derivatives [19] for longitudinal mo-
tion dynamics were selected as:

Z4e=(32/38,)/m = —202.28 fu/s* (—61.655 m/s?),
Z,;=(3Z/8q)/m = —16.837 ft/s (=5.132 m/s),

Z.,=0Z/0Wy/m = -3.1332s7),
Mo = (8M/85,)/1, = —40.465 572,
M, =(3M/dq) /I, = —2.6864 57",

Wi

~0.01429 (s-ft) "
(- 0.04688 (s-m)™ "),
~0.00115 ft"' (=0.00377 m™").

M, =@M/ W) /I,

Mgt = (IM/OW) /1, =
where
M is the pitch moment (ft® Ibm $™%) (m? kgm s72);
Z is the normal component of the aerodynamic force (ft
lbm s72) (m kgm s~ 2);
m is the lumped mass of the aircraft (Ibm) (kgm); and
Iy is lpe moment of inertia about the pitching axis (ft* 1bm)
(m~ kgm).

Qther constant parameters were:

¢ = distance between the center of gravity of the airframe
and the accelerometer (12.268 ft) (3.7393 m)
7 = (actuator time constant (0.05 s))
U, = reference flight speed (1005.3 ft/s) (306.42 m/s)

Longitudinal Motion Dynamics in the Continuous Time Do-
main:

dt/dt=ak+bu;, y=ck (5)
where £ =[5, W q)7, u=6,, y=Ia 4, q)", and
-7 0 0 7!
a=| Zg Zuw Sol|,b=| 0 |,
S S S 0
0o U< 0
c={-8s =S =S¢,
0 0 1
Su=(Zy+Uo),  Sii= (Maet MugZye), Sat = (Mt MuiZ.),

Syt = (Mg +MuqSo), St = (Zae +£51) /8, Ssi=(Z,+15:)/8,
Se:=(Z,+1S;)/¢g.

The discrete-time realization of the above continuous-time
model for a sampling time 7 and arrival instants (%) of the

controller data at the actuator is:

f
Eear =0, B+ 0 bl (6)
izo
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where

k
i
a;: =explaTl, bk = Sk exp[—a(T—7)ldr b, and
fi
t-lk: =T and tpk: =0.

We assume that the data latencies, (6.,X} and (6,%), are
white sequences that are mutually independent and uniformly
distributed in the interval (0, T]. This implies that £=2 and
p(kYe(0, 1} vk. Next, the modelin (6) is augmented to account
for the controller-actuator delay as follows:

Xga1 = Arxy+ Bry (7)
where x; 7z = [Ekrluk~,|uk_2]r,
a, b b bo
Ag=10 0 0}, and Bpi=11
0 1 0 0

The quadratic performance cost is selected to minimize the
deviation from the zero state and control effort:

N-1
I"i= I/ZE{ENTP” g+ ), (570" E+R uf)}

j=0

N=1
= I/ZE{XNTPXN+ > (ijij-*-Rujz)} ®)

j=0

Pfi 0 /Q,, i
P:= ,and Q=
0 0 0 0
The optimal control law that minimizes the above performance
cost is given by the following set of equations [1]:
u e (z) = = FrE{x lzi) for k<N )
and the resulting minimum performance cost is
T elze) = 1720 (i peci | ze) + ELxT 2} Se E el zid] (10)

where

where

T =Xk plh)s
Fii=[R+E[B piBy) + E(BSiBi)] ! .
_ 1 T{BkTP.A-Ak} + E{BSiAk)]
pii=Q+E{ A pra1Ax} + ELAL Siv 1A} with py=P;
Skt =[E(A pra 1B} + E[Ax"Sk+ 1B} ]Fg with Sy=0;
A =aAg+( -a)E[(Ay) and By =aBi+ (1 —)E( B,
a:=Pr{p(k)=0} and (1 —a)=Pr{p(k)=1};
pl{k) =0 if kth sensor data arrives at controller on time;
p(k) =1 otherwise.

The estimator for generating E{x;!z,} is formulated through
the state transition Eq. (7):

2k if p(k)=0

11
E(Ayor)2e+ EBer )iy ifp(ky=1 D

E{Xk|lk]={

4.1 Simulation Results and Discussions. In the simula-
tion experiment, the following parameters were used for de-
signing the feedback control system:

T=0.025s; P"=0; Q" =c’c; R=[0.01]; and N=40.
The feedback gain matrix sequence [Fi: k=N—-1,N=2, ---]
was computed using the above data with A as a constant

parameter for the flight dynamic system subject to the follow-
ing four scenarios of delays:

Case #1: Distkributed random delays derived from (6,5} and
(65 )

Case #2: No delays;

Case #3: Constant loop delay of one sampling period;

Case #4: Constant loop delay of two sampling periods.
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The feedback gains for above four cases were employed in the
simulation of the flight control system where the feedback
system was subjected to random delays. The schematic diagram
for the closed loop control system simulation is represented in
Fig. 2. The initial condition was set to xo={000.1 0 0y, i.e.,
the pitch rate g had an initial value of 0.1 rad/s while the other
state variables and past control inputs were set to 0.

With A,=0, i.e., perfect synchronism of the sensor and
controller sampling instants, the transient responses of pitch
rate are given in Fig. 3 for the three feedback gain matrices
obtained under the cases #1, #2, and #3. The response for the
case #4 is omitted because of immediate divergence. For com-
parison we have also plotted the response of the ideal situation,
i.e., the nondelayed system with the gain matrix under the case
#2, which is essentially the linear quadratic regulator (LQR)
problem in a deterministic setting. Figure 4 presents the tran-
sient responses of pitch rate under the same conditions as in
Fig. 3 with the exception that A;=0.67 was used in the deri-
vation of the gain matrices as well as for simulation. Again,
the responses when putting matrices obtained from cases #3
and #4 are omitted because of immediate divergence. The sto-
chastic controller derived under case #1 also yields a less os-
cillatory response than others at other values of A;.

The simulation results show that, although the LQR con-
troller performs very well in the absence of delays, it yields a
poor performance (in the sense of being oscillatory or even
unstable) for different values of A; when the plant is subjected
to random delays. On the other hand, if a conservative strategy
is adopted to obtain the feedback gain matrix assuming a
constant delay amounting to the maximum of the stochastic
delays, then also the control system performance is unsatis-
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Table 1 Feedback gain matrices for the flight dvnamic system

Description of Steady-state values of the {1 ¥ 5)
A/T

Synthesis feedback gain matrix

E;‘;ﬁ‘gﬁgf 0.6 1.8880 —0.00328 —0.92285 0.89091 0.16988
f;(?dkel‘:iy‘h 0.6 3.8057 —0.00767 —1.8636 - 1.1409 -0.00000
};S;}cm‘;’yr 0.6 3.8129 -0.00661 —1.8619 1.9027 1.1436
LQR with 0.6 2.0247 —0.00313 —-0.98532 1.0080 1.0124

loop delay 2T

0 10—
deal Siluation (no delaysh
0 05~
- )
£ Sushasic ol {Gase L)
g
v ]
o 0 00~ B . S
.“'
\\Gontalint with Zeto Delay (Gase 2)
B S
0 5 10 15 20 25

Time In Units of the Sample Penod T{-0.025 sec)

Fig. 4 Transient response of the flight control system for A,/T=0.6

factory. The situation is further aggravated under the case #4,
i.e., if a delay of 27 amounting to the sum of the maxima of
two delays is considered. In contrast, the performance of the
delayed system is vastly improved for all observed values of
A, if the feedback gain matrix is obtained via the (proposed)
stochastic regulator algorithm in the sense that the resulting
responses are very close to the ideal situation of the nondelayed
plant controlled by a conventional LQR.

Poor performance of the deterministic controllers accrues
from the fact that the LQR algorithm is sensitive to parameter
variations. If the model does not closely match the real system,

the feedback gain matrix fails to assign correct weignts for
each state resulting in poor performance. A comparison of the
steady-state feedback gain matrices for all four cases for
A,=0.6Tis given in Table 1. (The feedback gain matrices were
obtained at N=40 when the steady state was practically
reached.)

The stochastic nature of the control system is illustrated by
a collection of transient responses of the pitch rate for A;= 0.6T
in Fig. 5 under different network-induced delays that are gen-
erated as uniformly distributed random sequences with dif-
ferent seed numbers, i.e., at different sample points. However,
any individual response is not guaranteed to be bounded within
a fixed envelope since the performance cost being minimized
is just the expected value of the quadratic form of the aug-
mented states. Although these responses are dissimilar for dif-
ferent seed numbers, each of them converges to the same steady-
state value because of the mean-square convergence.

As seen in Eq. (4) in Section 2.3, the performance cost J* (4;)
for an arbitrary initial condition x, can be measured in terms
of the norm (spectral radius) of the matrix (p+5). Figure 6
shows a plot of this norm, denoted as p(p+S), versus A;.
Because of monotonicity of p(p+ S), the performance cost J*
is also monotonic relative to A,. The rationale is that the per-
formance cost is constructed to minimize the control effort
and the deviation from the target state. Since the loop delay
increases with A,, the delayed response to the control command
causes the performance cost to increase.
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Remark 4.1: 1t is well known that, for a nondelayed plant
under control of a LQR, the system response can be adjusted
10 satisfy any desired specification if the wc'ghting matrices
are appropriately chosen and if there is no constraint on the
control effort. In view of this fact, the first step in off-line
design of the proposed controller via simulation experiments
is to select a set of suitable weighting matrices for the non-
delayed system. The same set of weighting matrices could be
used to calculate the feedback gain matrix for the randomly.
delayed system. Later these gain matrices can be fine-tuned
on the basis of simulation results. &

5 Summary, Conclusions, and Recommendations for
Future Research

This two-part paper presents the concept, formulation, and
performance evaluation of a delay compensation algorithm
under randomly varying, distributed delays that are induced
by computer networking in Integrated Communication and
Control Systems (ICCS) {2, 3]. The proposed delay-compen-
sation algorithm is suitable for large-scale processes like ad-
vanced aircraft, spacecraft, modern automobiles, autonomous
manufacturing plants, and chemical plants. The communi-
cation network, that interconnects the individual subsystems
and components of the ICCS, should be designed such that
the offered traffic in the network is bounded within its critical
value [5, 6] relative to a specified confidence interval.

The first part [1] deals with the concept and formulation of
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the stochastic regulator that uses a linear deterministic function
of the plant state or its conditional expectation. Specifically,
the plant dynamic model is augmented in state space to account
for the random delays. Then, the linear state feedback control
law is synthesized on the basis of this stochastic plant model
by using the principie of dynamic programming and optimality.
This second part presents a step-by-step procedure for nu-
merically solving the backward difference equations in the
control algorithm to evaluate the feedback gain matrices. Con-
ditions for stability and convergence of the cost matrices have
also been established. It might be possible to update the control
parameters on-line for adaptation to changes in network traffic
statistics which are expected to vary slowly relative to process
dynamics. The proposed control algorithm has been evaluated
by simulation experiments using the flight dynamic model of
an advanced aircraft.

The results of simulation experiments show that if a ran-
domly delayed plant is operated under a controller designed
on the basis of the nondelayed plant model, the system dynamic
performance would be degraded possibly to the extent of inst-
ability. On the other hand, if the random delays are replaced
by their maxima and the controller is conservatively designed
on the assumption of these constant delays, the system per-
formance is still inferior to that under the proposed controller.
Apparently this stochastic regulator performs better than other
controllers when the plant is subjected to randomly varying
delays. However, this is not a final conclusion because ro-
bustness of the control system is yet to be investigated under
noise, external disturbances, and modeling uncertainties in
both plant dynamics and network-induced delays. Further re-
search is needed beyond the analysis presented in Part I [1].

Possible areas for future research in the evolving field of
Integrated Communication and Control Systems are innu-
merable. Some of the topics related to the research reported
here are furnished below.

Research Topic #1: Compensation of Data Loss: The pro-
posed stochastic regulator algorithm does not take into account
the effects of recurrent loss of sensor and/or control data due
to persistent noise corruption in the network or protocol mal-
functions. The control system is expected to perform in a
gracefully degraded mode if observability and reachability con-
ditione still hold under recurrent loss of data [20]. Given the
delay statistics and plant model dynamics, the problem is to
find an upper bound of the probability of data loss that will
still satisfy the performance and stability specifications. =

Research Topic #2: State Estimation and Randomly Delayed
Measurements: 1f some of the states are not measurable or
if the sensor signal-to-noise ratio is unacceptable, a stochastic
filter of special design is needed for state estimation where the
sensor delay index p(k)€(0, 1} is random. The problem is
formulated as follows:

Epar=Axki+ Bt + 1
Yie=Cibk+ Uk
where the plant and measurement noises, n; and vy, are as-
sumed to be white, mutually independent, and of covariances
QO and R, respectively. The delayed sensor data wy, as input
to the filter, is represented as: Wy =p{k)Yk-pii) + (U =plk)) Y-
The objective is to obtain an estimate 7, of the state £, which
minimizes the performance cost

J=E{&c—nd" MU= nd W)

where W, is the collection of all past measurements {wo, Wy,
<, wi), El+1 W] is the conditional expectation given Wi,
and M is a positive definite weighting matrix.
In the case of missing data, a filter based on the proposed
formulation may yield better results than that obtained by

Sawagari et al. [21], which may not be effective if £ is under
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steady state conditions because, assuming that vy is small, wy
would oscillate between 0 and Cyx,. In contrast, w, can vary
only between Cy_1x;-; and Cixg in the proposed formula-
tion. &

Research Topic #3: Robustness for Compensation of Mod-
eling Uncertainties: An important factor in the controller
design is robustness which, in general, means how well the
control system would perform in the presence of noise, mod-
eling errors, and parametric and non-parametric uncertainties
[22]. Robustness of the control algorithm derived in Part ] can
be investigated by including additive noise and disturbances
in the plant model. In addition to the usual problems, such as
Joss of gain margin associated with linear quadratic regulators
(LQR), robustness with respect to the mismatch in statistics
of network-induced delays needs to be investigated. Imperfect
knowledge of statistics will cause errors in the expectations
and covariances of the plant matrices A, and By, which in turn
affect the cost matrices and the feedback gain matrix. To
summarize, the robustness problem must address the existence
of imprecisely known statistics of network traffic coupled with
structured and unstructured uncertainties in plant dynamics. ®

Research Topic #4: Simultaneous Optimization of Con-
troller and Network Parameters: 1f all plant states are avail-
able, model-based prediction to obtain E{xilx;-,) is needed
only when the current sensor data are not available at the
controller. As pointed out in Section 2.3, robustness of the
control system is likely to be improved if this model-based
prediction can be avoided. In that case, it is necessary to for-
mulate a control law which will use the most recently available
sensor data. Accordingly, the feedback gain matrix should be
re-evaluated by minimizing the modified performance cost with
respect to both {u,} and A,. The optimal A;* would minimize
the detrimental effects of the increased controller-to-actuator
delay by decreasing sensor-to-controller delay. In contrast to
the simulation results in Section 4, A;" in this design should
not be zero since there is no estimator to overcome the effects
of the delay in sensor data arrival. A briel discussion on how
to obtain A" is presented in the following.

The sequences (A} and {By] of matrices in the augmented
plant model are implicitly dependent on A, because the matrices
b)) are functions of the arrival instants, (%), of control
inputs ai the actuator terminal, and cach ¢/ is directly affected
by A,. Therefore, the optimal cost J* minimized with respect
to {ux) is an implicit function of A;. For a given time horizon
of N samples, the optimal cost with respect to 4, can be found
by a one-dimensional search method over the interval {&min,
min(max, 7)) (Note: we have assumed 8 < 7 in this design
procedure.) However, in the above search, each individual
guess of A, would require re-evaluation of the cost function,
J*, and the matrices, p and S, that are obtained by a set of N
recursive computations. This is not considered to be a problem
for off-line design unless the dimension of the plant model is
large (which is unlikely for individual feedback loops in ICCS).
However, on-line updating of A, (as a consequence of changes
in the statistics of network-induced delays) might be a concern
even though it is not expected to take place frequently. This
procedure suggests the need for an analytical method to predict
an initial guess of A, which is sufficiently close to its optimal
value. The method proposed in Section 4 of [3] where the
augmented model includes the controller is apparently a viable
approach. &

Research Topic #5: Regulator Design for Nonidentical Sen-
sor and Controller Sampling:  So far we have investigated the
case of identical sensor and controller sampling. An alternative
procedure for ICCS design is to deliberately make the sensor
and controller sampling periods different, i.e., Ts# Te. The
advantages of this approach have been discussed, in detail, by
Ray and Halevi {3] and Liou and Ray [23]. The research prob-
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lem is to design a stochastic regulator and simultaneously iden-
tify an optimal e: = 7,/T.. This would require minimization of
a specified performance cost such that stability of the closed
loop control system is guaranteed under given network traffic
statistics, plant dynamics, and a fixed controller sampling pe-
riod 7. &
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