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Twin-bus-controller protocol
for fibre optic networks

Ron Yu, John ] Metzner* and Asok Ray’ propose a Data Link Layer
protocol for fibre optic networks with unidirectional bus topologies

A new Data Link Layer protocol, named the Twin-Bus-
Controller (TBC) protocol, is proposed for a fibre optic
network with unidirectional bus topology. The TBC
protocol operates on a contention-based, time-division
multiplexing scheme, and is managed by two centralized
bus controllers. These controllers, which also function as
network managers cooperate with each other to control
and coordinate the activities on the twin bus. The TBC
protocol has the capability to perform at a very high
network utilization, and uses simple hardware at all
stations except the two bus controllers. This arrangement
provides a relatively inexpensive means to accommodate
a large number of stations. Heterogeneous data consisting
of real-time sensor and control signals, voice and video
data, and non-real-time data such as those due to
accounting and administration, can be simultaneously
handled by the TBC protocol. The TBC protocol maintains
global queues for all different types of data, and each class
of data has a bounded delay. Furthermore, any new type of
data can be added easily to the network without shutting it
down or affecting those stations that are unrelated to the
new data. A finite-state-machine model has been used to
describe the TBC protocol. Performance of the TBC
protocol has been evaluated by statistical analysis as well
as via simulation for multiple classes of data traffic.
Performance of the TBC protocol has been compared with
that of Buzznet and Fasnet. The TBC protocol can be
directly applied to diverse computer communication
systems, e.g. office, manufacturing and banking environ-
ments.
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A fibre optic-based network should be able to accommo-
date a large number of stations having heterogeneous
traffic consisting of both real-time and non-real-time data.
Real-time data includes voice, video and sensor/control
signals. Control-and sensor data transmission under
scheduled deadlines are extremely important in factory
automation for computer-integrated manufacturing
(CIM)'2, but is rarely mentioned in most of the reported
fibre optic network protocols®. Normally, controller-
sensor data require much stricter delay bounds than those
for voice and video communications, and violation of
these bounds may have serious impact on the controlled
process resulting in potential instability. Voice communi-
cations can tolerate typically up to 300 ms delay; whereas,
the control-sensor data for a manufacturing robot may
have to be periodically updated with a sampling time in
the order of tens of milliseconds. it is an important and
critical issue for the communication network to meet the
deadlines for processes that are scheduled in real-time. In
addition to serving subscribers with heterogeneous data,
an integrated network must also accommodate a large
number of stations. Fibre optics provides high capacity,
high data transmission rate, immunity to noise corruption,

~and other attractive features®. Therefore, a fibre optic

network can serve a local area, and is capable of being
expanded to be a metropolitan area network.

The proposed protocols for fibre optic networks
have their own merit and demerit. For example, Express-
net>® suffers from the limitation to integrate a large
number of stations because of its folded topology, and
the existence of only one controller limits the failure
detection and recovery capabilities. Fasnet” % uses a
single locomotive generator to control the ‘fixed timed
slot’; problems arise due to dependence on a single
controller and the use of a fixed data slot. Furthermore,
the data travels around the network in Fasnet and can be
removed by the locomotive station which potentially
reduces the network utilization. Distributed Queue Dual
Bus (DQDB)? uses a fixed size slot in data transmission,
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and the data is divided into short segments and
desegmented at the destination station. In other words,
data is transmitted in a frame relay manner. Although this
approach is convenient for providing reserved connection-
oriented slots, it has disadvantages for bursty traffic with
duration of multiple slots. To provide fairness to all
subscribers under distributed control, it is necessary to
have rather complex request-counting procedures which
may require extra hardware and/or software at each
station. Furthermore, a station may have to issue many
requests and have its message segmented into small
packets that would arrive at the destination at irregular
intervals. Consequently, the percent overhead becomes
higher than necessary, and the efficiency and reliability of
acknowledgement schemes are degraded. Another
popular protocol, Fibre Distributed Data Interface
(FDDI)'® 1" is basically a token ring in which the token
rotation time monotonically increases with the number of
integrated stations, and thus becomes a source of
unavoidable delay for real-time scheduling. Furthermore,
hardware complexity (e.g. construction of token rotation
times) is another problem for FDDI to handle hetero-
geneous traffic in a single communication channel.
Buzznet'? is a hybrid token/random access scheme that
performs a random access mode duringa light load status
and switches to controlled access mode (virtual token
mode) whenever collision occurs. If the traffic is bursty,
the stations with higher priority jam both buses whenever
they have data to transmit, and the jamming will force
both buses to switch to the controlled access mode.
Once the switching between the random access and
controlled access modes become frequent, the perfor-
mance of the network significantly degrades. Moreover,
network utilization is inherently low in the Buzznet
protocol because each datais transmitted simultaneously
in both buses (this problem has been addressed by
Ayyagari and Ray', but no specific solution is provided). If
there are multiple classes of data, then the jamming
sequences or patterns become a complex issue for
Buzznet. In general, complexity of the protocol operations
may restrict Buzznet's productivity and capability.

To integrate a large number of stations and hetero-
geneous traffic, the protocol should be easily imple-
mented. Furthermore, the network management must be
as simple as practical, and the induced delay should be
bounded such that real-time data can be accommodated.
Once these requirements are satisfied, a fibre optic
network protocol can be applied to any environment that
includes real-time communications. Based on the above
discussion, the proposed Twin-Bus-Controller (TBC)
protocol is designed and evaluated. Perfformance of the
TBC protocol has been compared with that of Fasnet and
Buzznet by statistical analysis and discrete-event simu-
lation.

TBC PROTOCOL

The TBC protocol uses a dual-unidirectional bus topology,
as illustrated in Figure 1. Two active end stations serve as
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Figure 1. TBC protocol topology. M1: bus controller

(left); M2: bus controller (right); A, B, C: remote terminals
served by the network

bus controllers, and also function as network managers.
Each bus controller controls the activity on one bus and
monitors the activity on the other bus.

Functionally, any station with waiting data sends a
request to the appropriate bus controller for permission
to transmit. For example, station A in Figure 1 wishes to
send a message to another station B, which is on its right.
The request occurs in two steps: a short signal, known as
the preemptive signal, is first sent bv station A to the right
bus controller M2 which, in turn, initiates a request frame;
when this request frame is received by station A, it puts a
request to the left bus controller M1. Upon acceptance of
this request, M1 schedules station A to transmit the
waiting message. The rationale for the request frame in
the first step is to allow centralized management of bus
operations by the two controllers M1 and M2. This is
especially important for efficiency and faimess to all
network subscribers. Since there is no reservation for
sending the request and the message frame, the
complexity of the bus controller operations is reduced,
and any possible wastage of bandwidth is avoided
because there is no reservation for the data that has not
yet arrived.

In the TBC protocol, each station may interface with
the network via a passive coupler such that the network
operates in the bus topology, i.e. the transmitted message
will not be interrupted and dropped off at the end station
which is a bus controller. However, a repeater, or a
regenerator, will eventually be required for strengthening
the optical signal as the length or size of the network
increases.

Two different frames are designed for the TBC
protocol: request frame, and message frame.

Request frame and format

The request frame (as shown in Figure 2) is designed fora
station to send a request to the bus controller. It is a
relatively small message which allows the bus controllers
to schedule message transmissions by the individual
stations. The request is sent opposite to the direction of
the later data transmission. The request frame is of
constant length and has the following four different fields.
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Figure 2. Request frame format. 8: Preemption (to bus
controller); 1: broadcast field (from bus controller); 2:
_contention field; 3: request field, a fixed length

e preemptive field;
e broadcast field;
e contention field;
e request field.

The request field, in turn, consists of the following four
subfields, as shown in Figure 3:

source address field;
destination address field;
data request field;
status.

A request frame starts with the preemptive field for
station(s) to send a preemptive signal. Figure 4 illustrates
the details of the request frame timing. To explain how
the request frame operates, the preemptive field is
ignored for the time being. The bus controller sends a
request frame identifier pattemn in the broadcast field. Let
t; be the time to detect that this is a request frame, and t,
be the allocated time for contention, i.e. the time to
detect the presence of any signal on the bus. A station
wishing to transmit any information sends a short initial
burst during the interval t,. It is likely that more than one
station will start sending the burst. However, each station,
while transmitting its own message, can listen to the
incoming signal from other station(s). Due to the uni-
directional nature of the transmission only the most
upstream of all stations that are transmitting at that time
will not hear any reception. In the example shown in
Figure 4, station B will not hear the transmission of other
stations whereas any other stations (such as C), located
downstream of B will abort their transmissions as soon as
they detect an upstream transmission. Thus there will be
no conflict in the request information field, which will be
captured by the most upstream requestor. It is important
to note that t; and t, are not related to the propagation
time or the number of stations; t; depends only on how
long it takes to recognize the request identifier, and t, is
essentially based on the time it takes to recognize the
presence of an initial signal burst, probably on the order of
only a few bit lengths.

The request field in this frame is of fixed length, and
contains several identical subfields which are used to
specify the message priority and length. In other words,

S.AA. | DA | #1 #3 #4 | ... Status

Figure 3. Request field structure. S.A.: source address;
D.A.: destination address (= bus controller); #1, #3, #4:
number of packets for priorities 1, 3, 4.; Status: for special
purpose
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Figure 4. Request frame timing details

requests for multiple classes of data can be grouped
together in a single request frame. The preemption is
included in both request and data frames. It is a short
notice (e.g. about the same length as t,) that any arbitrary
(i.e. unidentified) station needs to transmit in that
direction, and therefore must send a request frame to the
bus controller in the other direction. It does not matterin
this case whether there is a conflict. The receiving bus
controller simply interprets it as a signal to issue one or
more request frames. In the example of Figure 4, station A
wishes to transmit in the L to R direction, and therefore it
requires a request frame from the right bus controller in
the R to L direction.

Message frame and format

The message frame, as shown in Figure 5, is used to
transmit data, and is of variable length. The frame length is
assigned by the bus controller according to the information
specified in the corresponding request frame. Each
message frame can only convey one class of data, and the
transmission of each message frame is coordinated and
controlled by one of the two bus controllers. There are
four different fields in a message frame:

e preemptive field;
e broadcast field;

e synchronous field;
e data field.

The preemptive field and broadcast field are similar to
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those defined in the request frame, except the content of
the broadcast is a message frame not a request frame.
Furthermore, the broadcast will specify the sender’s
identity, the type and length of the transmitted data, as
illustrated in Figure 5. Right after the detection of a
broadcast signal, the bus controller issues a special
message as a synchronous signal to activate the message
transmission. Upon receipt of the synchronous signal, the
sender starts transmitting the message.

Bus controller functions and network
management

As illustrated in Figure 1, there are two bus controllers (BC)
located at two ends of this dual-bus system. Each BC has
all functional features of a remote terminal (RT), which is
essentially any station that does not serve as a BC. The
additional features of a BC are to control and monitor the
activity of the buses and perform network management
functions. On the receiving side, a BC has to be aware of
the messages (i.e. preemptive signal), the request frame
and message frame, and it coordinates the issue of
request frames and message frames on the transmitting
side. Actually, a single computer can serve as a bus
controller if the network is configured as a bidirectional
loop.

Now we consider the control and coordination of the
request frames and message frames. Upon receipt of a
preemptive signal, a BC (say the left one) schedules the
next outgoing frame to be arequest frame. Since the exact
number of requests is not known to the BC, one
procedure would be to issue a sequence of request
frames. The other BC (the right BC in this case) recognizes
an unused request frame it receives. Since the pair of bus
controllers has complete control over the events occurring
on the bus, the right BC can immediately tell the left BC to
stop transmitting request frames. This requires sending
one additional request frame. An alternative method
would be to send only one request frame, and rely on
receiving additional preemptive signals if there are more
requests. This prevents wastage of bus bandwidth due to
unnecessary transmission of request frames at the
expense of increased delay whenever there is more than
one simultaneous request. The bus controller’s strategy of
request frame transmission could also be made traffic-
dependent. For example, if the left-to-right line is lightly
loaded, the left BC could send a sequence of request
frames; on the other hand, if this line is heavily loaded,
then it could send just one request frame.

The BC has complete control over the instant each
terminal may transmit and the duration of its transmission.
it can maintain a memory of outstanding requests of all
active terminals, the time of arrival of the requests and
their priority and delay constraints. Therefore, an
environment can be created to exercise intelligent
network management for performance optimization. This
is especially important when the network serves a large
number of stations.

The BC can also handle initial entry of a station based
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on the current network load and the requestor’s signal
class based on the priorities of the messages. For example,
a new request involving transmission of real-time messages
(e.g. video, voice or control-sensor data) could be refused
if this additional traffic is expected to exceed the
constraints of average channel capacity. This protective
measure would ensure maintenance of high quality of
service. However, non-real-time data with much more
relaxed delay constraints could be admitted more freely,
subject primarily to overall queuing constraints.

Adding and deleting terminals does not interfere with
the system operations. An entering terminal could send its
address initially in both directions to announce its
presence to all other terminals and the BCs. This could
reveal its direction to all the other terminals, although not
all the terminals may have the capability to record this
information. The BCs could record the presence of the
new station to maintain alist of all connected stations, but
its location cannot be identified from this information.
Another consideration when a terminal needs to start
transmitting it that it may not know the direction of the
destination terminal. This could be determined by
sending an initial message in both directions. Once a

response is received, both terminals know their relative

position on the bus which suffice to determine the
direction of transmission.

Fault management is a critical function for network
operations. Each of the two BCs should be made fault-
tolerant to ensure reliable and uninterrupted operations
of the network. This pair is in a good position to monitor
and manage failures of the remaining stations in the
network. Moreover, each BC can also detect the failure of
the other. In fault management, any missing message or
error in the message transmission can be detected by the
BC on the receiving end of that line, as it will see the
allocated address without any use of the allocated time
slot. The BC can inform the terminal via the otherline that
the terminal’s transmitter is not responding, and this
information is also received by the other BC. A station
could similarly inform the BCs of its disconnection; if it
does not, the fact could be discovered by failure to
respond to its next reception, possibly followed by test
signals from the BC to confirm the disconnection.

Finite state machine model of TBC protocol

A finite-state-machine model has been generated to
describe the functions of the TBC protocol, as shown in
Figure 6. The model is formulated on the basis of the
following two assumptions for each RT:

e each RT has separate buffers to store different classes of
data. Also, an RT has the capability to know the
individual number of messages in each of the buffers;

e each RT has the capability to check the destination
address for the incoming messages and place them in
the appropriate buffer either on the upper bus or on
the lower bus (or on both if the message is to be
broadcast).
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Figure 5. Message frame format. B: preemption (to bus
controller); 1: broadcast field (from bus controller) — D.A.:
destination address (requestor); PR.: message priority (one
type of data only); NO.: number of packets; 2: reset (syn.)
field (from bus controller); 3: data field, a variable length
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Figure 6. Remote terminal internal structure

It is assumed that the information regarding which bus
(e.g. lower or upper) will be used by an RT for a particular
message is already known, or can be obtained from the
network manager, i.e. the bus controller. To find out the
rightlocation of the destination address for each message,
each RT can either acquire the information from a BC or
wait for the acknowledgement from the destination
station. Only BCs which also serve as network managers
need to know the locations of all RTs. The finite-state-
machine model presented in Figure 6 is defined for a RT
with a specific class of data, and its buffer size is limited to
one on each side of the bus. Six states, as shown in Figure
7, exist in an RT:

0. Idle: the state that the buffer is empty and is
capable of receiving any incoming message;

1. Backlogged: the state that the message arrives at
the buffer;

2. Preemption: the state that the RT sends a bit-string
as the preemptive signal;
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Figure 7.  Finite state machine model of a remote terminal
for a specific class of data

3. Request: the state that the RT attempts to capture a
free request frame;

4. Wait: the state that the RT waits for the permission
to transmit its data;

5. Transmit: the state that the RT is transmitting its
data.

It is to be noted that a preemption is always successfully
transmitted while a request may be delayed, depending
on when the RT wins the contention. If the RT is
competing for a free request frame, the preemptive signal
may not be transmitted.

PERFORMANCE ANALYSIS

The delay induced by the TBC protocol can be attributed
to four sources:

1. The delay 6, in having the opportunity to insert a
preemptive signal to inform the bus controller.

2. Delay 6, to put in a request frame.

3. The Waiting time &3 for the permission of the bus
controller to transmit.

4. The delay 6, due to transmit the message.

Both 6, and 8, range between 0 and /.5, where /.« is the
length (in bit time) of the largest message. §, ranges
between 0 and (/max + (N = 1)lreq), where N is the total
number of stations to send a request and /¢ is the length
(in bit time) of a request frame. §; is a random variable
whose statistics depend on several factors of network
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traffic, such as average arrival rates of messages at different
priority levels, and number of stations.

Assuming a data packet arrives at a particular station at
time t, then the actual arrival of the request to the bus
controlleris (t + 81 + 83 + lreq)- Since (61 + 62 + lieq) may

have general probability distributions, the actual model .

for the network is essentially a G/G/1 with a priority
queue. This model is very difficult to solve analytically.
Assuming the Poisson distribution of the arriving message
with an interarrival rate A at every station, if the delay
(6, + 85 + leg) s sufficiently small compared to the
interarrival time (1/4), then request arrivals at the bus
controller can be assumed to have the same distribution
as the message arivals at the station in which M/G/1
model can be applied. Obviously, certain errors will be
introduced in the analysis by this approximation of an
M/G/1 model.

M/G/1 head-of-the-line model

In the M/G/1 model, all message arrivals destined for one
of the two directions is lumped together as if they were
generated at the same source. Although an upper stream
station on the bus carrying requests has an earlier
opportunity to send its requests, this is not relevant to
computing average delay over all packets of a given class,
which is independent of the location of the originating
station. In the M/G/1 model, the general equation for the
expected waiting time of the data with priority level jfora
total k different priorities is'> '®:

i/‘iﬂsizi

i=1

EWjl = -1 i
2x[1 —Zp;]x['l - Zp,]
i=1

i=1

where A is the average message arrival rate, S is the service
time, p is the intensity (i.e. the product of the average
arrival rate and average service time), W is the waiting
time, and the subscript i corresponds to the " priority
level.

Assuming the worst case when each station suffers a
maximum delay (i.e. the maximum message length) to
send both the preemptive signal delay 6, and the request
delay &, to the bus controller, the overall delay can be
considered to be the upper bound. Similarly, the lower
bound of the delay is obtained by assuming that the
message suffers a minimum delay. independent of the
magnitude of the delay, the process of data arrival at the
bus controllers has the same distribution as it has at the
station because of the constant delay. The bounded
delay for the data with priority i and length [; can be
expressed as:

e Upper bound of the average delay = E{W;} + 2 X
’max + l,eq + ![;
e Lowerbound of the average delay = E{W;} + leq + ;-
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TBC PROTOCOL SIMULATION

The computer simulation for the TBC protocol is
performed in the manner of discrete-time-event simu-
lation. The first step is to derive a timed Petri-net model'”
for studying the concurrence of different events in the
protocol operations. The discrete-time-event simulation
model follows the event interactions of the Petri-net
model. -

The simulation model consists of two submodels:
message generation, and protocol operation. The message
generation submodel is responsible for generating the
new messages and the associated priority levels, and the
protocol operation submodel handles the activities
within the network. For simplicity and space limitations,
the discrete-event simulation is directly described without
discussing the Petri-net model. The simulation model is
presented by an event interaction flow chart, as shown in
Figure 8, in which several events are defined in accordance
with the protocol operation (e.g, broadcast, preemption,
contention, message transmission). No gross simplifying
assumption is made in the simulation model.

The simulation model starts from the message
generation and overall initialization. A new arrival message
interacts with the network and activates the protocol
operation. To simulate a large number of stations with
heterogeneous traffic, a 100 Mbit/s optical fibre com-
munication is assumed with the following four classes of
data on it. The message arrival process for each class of
data is assumed to be Poisson:

e Sensor/controller data: average interarrival time =
10 ms with message length of 300 bits;

e Voice data: average interarrival time = 100 ms with
message length of 6400 bits (64 kbit/s).

e Video data: average interarrival time is 33 ms with
message length of 66667 bits (2 Mbit/s).

e Non-real-time data: average interarrival time is 50 ms
with message length of 75000 bits.

e The number of active stations on the bus ranges from
10 to 80.

e Each station is capable of generating all four classes of
data as itemized above.

The first three types of data are considered as real-time
data and the number, shown above, stands for the priority
level for that data. Throughout the simulation, real-time
data is assumed to occupy 25% of the channel capacity,
and the remaining bandwidth is used by non-real-time
data. The results of simulation are presented below.

RESULTS AND DISCUSSION

The results of simulation and analysis are presented in
Figures 9-12. Some differences exist between the simu-
lation and the analytical results. With references to Figures
9-12, the reasons for these difference are explained
below:

e The model in simulation is G/G/1 head-of-the-line
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Figure 8. Protocol operations for discrete-event simulation. R.T.: real-time data; N.R.T.: non-real time data; --—: to and

from other bus controller

with priority queue, but it is M/G/1 head-of-the-line
with priority queue model in analysis.

e A multiple request scheme is applied in the simulation
model, while it does not exist in the analysis.

e Stations that generate the same class of data are
lumped together in the analytical model, making it
different from the original FIFO scheme, while it is
always FIFO in the computer simulation.

e The data collected from the analytical model is under
the assumption of steady state condition, while the
computer simulation model accommodates any
transients that may occur before reaching the steady
state.

e The request scheme used in the TBC protocol gives a
preference to the upper stream station, and it is true in
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the computer simulation model not in the analytical
model. The effect of the physical location of each RT is
not considered in the analytical model.

In" addition to the delay evaluation, it is interesting to
know how many request frames have been used, how
they relate to the channel capacity, and how many
multiple requests appear in the simulation. ‘Multiple
request’ means that more than one request has been put
in asingle request frame, as described previously. In Table
1, ‘request throughput’ is defined as the dimensionless
number of total request bits transmitted per unit time
divided by the channel capacity in bits per unit time.
Similarly, ‘data throughput' is the dimensionless number
of total message bits transmitted per unit time divided by

computer communications
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Figure 9. Delay performance of sensor-controller data
(Note: offered traffic of the TBC protocol for both buses is
twice that shown in the figure). —: analysis; ---: simulation
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Figure 10. Delay performance of voice data. (Note:
offered traffic of the TBC protocol for both buses is twice of
that shown in the figure). —: analysis; ---: simulation

the channel capacity in bits per unit time. Simulation
results at different levels of network load show that the
request throughput is insignificant compared to data
throughput, and does not beara monotonic relationship.
This implies that the bandwidth consumed by request

frames is negligibly small, and may be treated in the

category of noise relative to data throughput.

The network running the TBC protocol actually
contains two dependent subnetworks, and the overall
network utilization is twice that of the throughput value
shown in Table 1. The following conclusions can be
drawn from the simulation and analytical resuits:

e A priori bounds can be set for the delay of real-time data
on the basis of the statistical characteristics; and the
delay for non-real-time data is finite provided that the
bus capacity is not exceeded.
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Figure 12. Delay performance of non-real-time data.
(Note: offered traffic of the TBC protocol for both buses is

twice of that shown in the figure). —: analysis; ---:
simulation

Table 1. Request bits throughput

Data Request Average value of
throughput throughput requests per frame
0.10 0.00021 12

0.20 0.00040 28

0.30 0.00030 76

0.40 0.00042 107

0.50 0.00042 104

0.60 0.00059 145

0.70 0.00039 222

0.80 0.00042 269
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e Request frames occupy only a small portion of the
channel capacity.

e The protocol is capable of integrating heterogeneous
traffic, and can accommodate a large number of
stations.

COMPARISON WITH OTHER PROTOCOLS

The performance of the TBC protocol is compared with
that of Fasnet and Buzznet because of the similarity in
topology. Generally speaking, the TBC protocol has two
major advantages: structural simplicity, and accommo-
dation of heterogeneous traffic. With the exception of the
two bus controllers, the level of complexity in the
remaining large number of stations (i.e. remote terminal) is
very moderate in view of both hardware and software.
This is possible because of the centralized bus control
scheme used in the TBC protocol which can accommodate
heterogeneity of network traffic. The overall throughput
of the network running the TBC protocol is approximately
twice that of the other two protocols, and also the
number of stations being accommodated in the TBC
protocol is also twice that of Fasnet and Buzznet. The
comparisons apparently do not show the advantage of
the TBC protocol in accommodating heterogeneous
traffic, as only two types of data are considered in this
simulation. If a new class of data, especially real-time data,
is to be added to the network, Buzznet has to define a
new jamming pattern, and Fasnet has to generate a new
round-robin cycle for the new data. In other words, Fasnet
and Buzznet may have to update the network interface in
every station. In the TBC protocol, the priority of the new
data can be defined online or offline between the specific
station and the bus controller, and added to the network
without affecting other stations.

In Fasnet, different types of data are transmitted by way
of reservation. Network utilization will be reduced if the
message does not arrive at the buffer when the slot(s)
come by, e.g. silence in voice communication or data
compression in video conference. Even though Fasnet
allows a station to grasp any unused slot, this will give
preference to a downstream station, and this is unfair to
the upper stream stations. Furthermore, complexity arises
for the priority cycles (for Fasnet) and jamming pattern (for
Buzznet) when the level of priority increases. In addition,
these two protocols mandate the same message to be
transmitted in both buses, and lead to a relatively poor
network utilization. The results of comparison are shown
in Figure 13 and 14.

The delay performance of the TBC protocol in Figure
13 is much better than Fasnet in normal operation, i.e.
throughput is less than 0.7. In contrast Fasnet, which
allows each data station to transmit one slot per cycle, has
better performance at high load. The TBC protocol suffers
longer delays under heavy load because, in this specific
scenario, at least 10% of the channel capacity is used in
transmitting requests. When the network is congested or
heavily loaded, round-robin disciplines used in Fasnet
allow all users to transmit at approximately the same level,
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Figure 13. Performance comparison between TBC and
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Figure 14, Performance comparison between TBC and
Buzznet protocols. (Note: offered traffic of the TBC
protocol for both buses is twice of that shown in the
figure). O: Buzznet, non-real-time data; X: TBC, non-real-
time data; A: Buzznet, real-time data; O: TBC, real-time
data

which is fairer than FIFQ'8, This is the reason that Fasnet
has smaller delays under high load. Although any unused
voice slot in Fasnet can be grasped and used by a
downstream station, the queued data in the upper stream
stations would still suffer. Thus, free slots may return to
the locomotive station (the first station), while the upper
stream stations have a lot of messages in the gqueues,
especially when the number of stations is large. The TBC
protoco! does not use the reservation scheme, and its
delay performance is superior to that of Fasnet in normal
traffic load.

To compare the TBC protocol with Buzznet, it can be
seen in Figure 14 that the delay for TBC is slightly higher

computer communications



protocols

than Buzznet under lighter load (i.e. throughput is less
than 0.5), but TBC yields smaller delays under higher load.
As the traffic intensity becomes higher, the switching
between random access mode and controlled access
mode of Buzznet becomes more frequent, resulting in
increasing delay. Conceptually, under heavier load the
real-time suffers larger delays in Buzznet because it is very
likely that all real-time data would encounter non-real-
time data transmission. On the other hand, in TBC the
opportunity of sending a message is only dependent on
the activity of the other bus. Higher traffic load in one bus
does not imply that the load in the other bus is also high.
Furthermore, the probability of sending muitiple requests
in TBC is much higher in heavier traffic which, in tum,
tends to reduce the overall delay.

SUMMARY AND CONCLUSIONS

The proposed TBC protocol uses a simple mechanism in
all remote terminals, and makes it possible to integrate a
large number of stations with heterogeneous data. It
performs a partially centralized control scheme over the
twin bus topology, and eases the operation of network
management which may be very difficult for those
protocols with completely distributed control, especially
if the number of stations is large. The TBC protocol
maintains global queues and enforces the priority scheme
and fairness. In other words, a higher priority message is
always transmitted in preference to the lower priority
message. Furthermore, any addition or removal of a
particular type of message can be worked out just
between the bus controller and the station(s) without
affecting other stations. This avoids the interruption or
shutdown of the network.

The TBC protocol can accommodate more stations
than Fasnet and Buzznet with fairly good performance of
message delay. The TBC protocol is designed to
accommodate heterogeneous traffic and generate two
dependent subnetworks for the twin bus topology,
resulting in a very high network utilization. Because the
two dependent subnetworks cooperate with each other,
failure in a station can be detected much easier by the
station itself or the bus controller. For example, the
receiver failure can be detected by checking the activity of
the other bus, and the transmitter failure can be detected
by the bus controller for the missing message after the
broadcast of a message frame.
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