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The state feedback assisted control (SFAC) uses the
concept of state feedback to modify the demand sig-
nal for an embedded classical output feedback control-
ler to achieve an optimal control objective. It has been
shown that the SEAC concept can improve the perfor-
mance of primary coolant temperature control in a nu-
clear reactor.

How the embedded classical controller assists a
state feedback controller in achieving improved perfor-
mance and stability robustness, which play an impor-
tant role in implementing optimal control algorithms
Jfor reactor control over a wide range of operations, in-
cluding possible faulted conditions, is demonstrated.
While the state feedback component improves system
Dperformance, the classical output feedback component
enhances stability robustness.

I. INTRODUCTION

In Ref. 1, which describes the state feedback as-
sisted control (SFAC) configuration, the emphasis is on
system dynamic performance by application of the op-
timal control theory. This approach primarily provides
transparency of control to facilitate implementation of
optimal control techniques within the established struc-
tures of power plant operations. A major concern in
implementing optimal nuclear power plant control is
that the model used to formulate an optimal control
law cannot exactly match the physical process dynam-
ics. Robust control theory and design address this con-
cern by explicitly considering the discrepancy between
the model used in an optimal control law and the ac-
tual process. In robust control terminology,? the dis-
crepancy between the actual process and its model is

.referred to as uncertainty and can arise from the fol-

lowing three major sources:
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1. The plant model (on which the controller is
based) may be linear, whereas the actual process is es-
sentially nonlinear.

2. The plant model is made to be of lower order
than the actual plant (e.g., a lumped parameter model
of a distributed parameter process).

3. The model parameters may not be correct be-
cause of variations in normal plant operation, plant
degradations, and faults.

A controller can be defined as robust if system dy-
namic performance and stability criteria are met while
accounting for a specified range of uncertainties and
disturbances.? On the other hand, the goal of a fault-
accommodating controller is to make the control sys-
tem tolerant of faults in one or more components.
Therefore, the functionalities of robustness and fault
accommodation are overlapping. A control system has
a robust design when the effects of postulated uncer-
tainties, modeling errors, and noise expected to be prev-
alent under normal operations are taken into account.
These effects include soft failures, i.e., those having
power spectra comparable to the postulated noise and
uncertainties. In the event of hard failures, i.e., large
disruption(s) caused by internal disturbances, exter-
nally induced disruptions, or failures of plant compo-
nents and instrumentation, the control system may have
to be reconfigured on-line using one of the viable pre-
designed options.? The reconfigured control system
must be stable, although its performance is likely to be
degraded. Control system reconfiguration for nuclear
reactors is a subject for future research.

This paper demonstrates the robustness of the
SFAC configuration in the sense that SFAC can more
effectively accommodate plant modeling errors and
disturbances than can a conventional state feedback
controller (i.e., one without an embedded classical con-
trol loop). This robustness is demonstrated by examin-
ing the sensitivity of the system’s dominant eigenvalues
to expected variations in plant parameters, nonlinear-
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ities, and higher order dynamics. The dominant eigen-
values of a more robust system should be less sensitive
to these uncertainties. Time domain simulation is also
presented to confirm the desirable response due to the
SFAC system’s less sensitive dominant eigenvalues. The
superior robustness of the SFAC coafiguration to un-
certainties is also expected to result in better fault-
accommodating characteristics.

This paper has seven sections. Section I is the in-
troduction. Section II reviews the concept of SFAC
and its application to reactor control where the plant
model is assumed to be an exact representation of the
actual process. Section II} presents an optimal control
law based on estimated states where the effects of mod-
eling errors, uncertainties, and disturbances are taken
into account. A general sensitivity analysis for an
observer-based state feedback controller is presented in
Sec. 1V and applied to demonstrate the superior
robustness of SFAC in Sec. V. Section VI further dem-

onstrates the improved robustness with time domain

simulation results. Section VII provides the summary
and conclusions.

il. REVIEW OF SFAC OPTIMAL REACTOR
CONTROLLER DESIGN

Figure 1 presents the SFAC configuration for re-
actor power control. In the embedded classical control
loop, reactor power is regulated solely by a conven-
tional output feedback control law that simply multi-

plies its error signal (i.e., the modified setpoint n,

minus output n,) by a gain G, to generate the com-

Z,

mand signal for control rod speed z,. Reactivity due
to control rod movement &p, is symbolically repre-
sented as the control rod worth per unit length G,
times the integral of control rod speed. The plant re-
sponds to the control rod reactivity changes with a
change in power n, and internal reactivity feedback
mechanisms. The state feedback control loop creates
the modified demand signal n,, to achicve an optimal
control performance objective. The algorithm for es-
timation of staies (including the unmeasured internal
states of the process) is based on a dynamic model of
the physical process, the control input z,, and plant
output n,. This state estimate X has five components:

1. reactor power

2. precursor density

3. average reactor fuel temperature

4. average coolant temperature leaving the reactor
5. control rod reactivity.

The state feedback control is obtained as F,,, X where
the gain matrix Fp, = [for Sm2 Jm3 Jma  Jms)-
In contrast to the SFAC configuration, a conven-
tional state feedback control (CSFC) configuration
without an embedded classical controller directly ma-
nipulates the control rod speed, as shown in Fig. 2.
Reference 1 introduces a formula for calculating state
feedback gains for the SFAC configuration v, and F,,
from the CSFC gains v and F to account for the pres-
ence of the embedded controller with gain G. as follows:

F,=C + F/G,

CLASSICAL CONTROL LOOP

NONLINEAR

PLANT WITH | fr
TEMPERATURE

FEEDBACK

~

5
G,f-dz P

Fnx

REACTOR STATE

STATE FEEDBACK CONTROL LOOP

ESTIMATOR

- -1

E, [
m % = ESTIMATED
STATES

Fig. 1. The SFAC where the setpoint to an embedded classical controller is modified by state feedback to accomplish an

* * optimal control objective.
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Fig. 2. CSFC where an optimal control objective is met by
direct manipulation of the control variable.

and
U = /G, , 0))]

where the matrix C relates the output signal y to the
state vector x, y = Cx, in a state-space representation.

A nonlinear model using point kinetics with one-
delayed neutron group and a two-temperature feedback
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The symbol 6 indicates the deviation of a variable from
an equilibrium value; e.g., 6n,(f) = n.(t) — n,o with
n,o = the nominal value of n, at the equilibrium con-
dition. The elements of the state, control, and output
vectors are thus formed from the following process
variables where

n, = n/ng relative neutron density
n = neutron density (per cm?)
ng = equilibrium neutron density at 100%
power
¢, = c/cg relative precursor density
¢ = delayed neutron precursor density (per
cm?)
¢o = equilibrium precursor density at 100%
power "
T, = average reactor fuel temperature (°C)

T; = average coolant temperature leaving reactor
(°C)

mechanism' is the basis of a fifth-order model-based
optimal reactor power controller for a pressurized wa-
ter reactor (PWR). A state-space representation, based
on a linearized version of the model, is

ép, = change in control rod reactivity (Ak/k)
z, = control rod speed (fraction of core length/s).
The A, B, and C matrices in the state-space represen-

tation are
[ —B/A B/A nmppoy/A mpgoe/2A no/A ]
A =\ 0 0 0
A= JrPoa/Bs 0 —Q/py Q2u, 0 ,
(1 = f)Pos/uc 0 Q/pc —(2M + Q) 2u, 0
i 0 0 0 0 0 |
o]
0
B=10]|,
0
L. Gr -
and
C=[100 0 0, @
where
X =Ax+ Bu . )
q B = fraction of fission neutrons that are delayed
an
y=Cx, @) A = effective prompt neutron lifetime (s)

A = delayed neutron precursor radioactive decay

where the state x, output y, and control u vectors are -1
constant (s™')

x=[én, oc, 6Ty OT; 50,17, . ) L
n,o = relative neutron density at an equilibrium

y= [6”,] ’ pOin[
and ay = fuel temperature reactivity coefficient
u=lz] . €) (Ak/k-°C™Y)
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a, = coolant temperature reactivity coefficient TABLE 1

(Ak/k-°C™Y)
Py, = design power level (MW)
Jf; = fraction ¢ reactor power deposited in fuel
pr = heat capacity of the fuel (MW -s/°C)

Q1 = fuel-to-coolant heat transfer coefficient
{(MW/°C)

4 = heat capacity of the coolant (MW-s/°C)

M = mass flow rate times heat capacity of the
coolant (MW/°C)

G, = reactivity worth of the rod (Ak/k).

In Ref. 1, an optimal controller was designed on
the basis of the foregoing model. The controller per-
formance was then evaluated in the absence of any
modeling errors and disturbances for a narrow power
range (100 to 110% power). The equilibrium relative
power level n,o was set to 1.0. However, wide range
variations in the parameter n,q due to the nonlinear
characteristic of a reactor as well as to other parameter
variations is a major concern in evaluating and com-
paring the robustness characteristics of the SFAC and
CSFC configurations. In this paper, we have used the
middle of cycle full power plant parameters, given in
Table 1, to design a robust fifth-order model-based re-
actor power controller for a complete fuel cycle of a
Three Mile Island (TMI)-type PWR (Ref. 4).

Optimal control gains for the CSFC configuration
are calculated for the model parameters listed in Table I
using the linear quadratic regulator approach? in or-
der to minimize the following optimal control perfor-
mance objective function:

J(z,) =f [0.018T? + 0.16T?+ 3000z2] dt , (5)
[4]

subject to the state equation constraint given by Eq. (2).
The weighting factors 0.01 and 0.1 on the reactor tem-
peratures in Eq. (5) effectively yield an optimal con-
troller to vary the reactor power, which is not penalized,
while tightly controlling the reactor temperatures. Al-
ternatively, if the reactor power state is assigned a non-
zero penalty, then reactor temperature response would
be more sluggish. Since instantaneous values of reac-
tor temperatures determine the structural integrity of
the reactor core more so than does the instantaneous
value of reactor power, specifying control performance
objectives on temperature states is more direct in
achieving desirable system response. The resulting state
feedback gain vector for achieving improved reactor
temperature response is

F = [-0.0001431 —0.1392
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Parameters for Optimal Controller Design at the Middle
of the Fuel Cycle of a TMI-Type PWR*

B = 0.006019
A =0.00002s
oy = —0.0000324 Ak/k-°C™!
Py, = 2500 MW

py =26.3 MW.s/°C
Q =6.6 MW/°C
G, =0.01450 Ak/k

A =0.150s""
a, =—0.000213 Ak/k-°C™!
f; =092

pe =71.8 MW.s/°C
M =102.0 MW/°C

2See Ref. 4.

Selection of the performance index J(*) is critical
for achieving a robust control design because it also
has a direct bearing on the location of the closed-loop
poles. Closed-loop poles for the nominal plant with a
high damping ratio provide a stability margin to ac-
commodate uncertainties. To consider the impact of
uncertainties on the stability of an idealized full state
feedback system, the sensitivity of the closed-loop
poles, eigenvalues of the state feedback matrix A + BF,
should be examined. An idealized full state feedback
system, as referred to here, is a system where all the
states can be perfectly measured and used directly in a
feedback control law. In an idealized full state feed-
back system, an estimator is not needed, and the con-
cerns about introducing an uncertain estimator are
temporarily ignored. As the optimal regulator gain vec-
tor Fis held fixed at that calculated value for the nom-
inal plant parameters of a state-space model A and B
matrices, the eigenvalues of the closed-loop system
then vary as the parameters of the A and B matrices
are varied (i.e., uncertainties are introduced). The pa-
rameter n,o of Eq. (4) is due to the linearization of the
nonlinear model about an equilibrium power level.
Variation of this parameter from the design value
(11,0 = 1.0) thus permits examination of the major
nonlinear effect of reactor kinetics as a parameter un-
certainty in the linearized state-space representation of
a robust controller design. The parameter n,q is the
variable or nonlinear gain of a reactor transfer func-
tion.® While all the parameters of the model actually
change with the reactor operating condition, they do
not vary in direct proportion to the reactor power level.

—0.0002678 +0.0004695

~31.42] . 6)
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Variations in n,, receive initial priority in establishing
robustness of a reactor controller. The eigenvalues of
the idealized full-state feedback system A(n,o) + BF
as the parameter n,q is varied from 1.2 to 0.1 (120 to
10% power) is shown in Fig. 3. Figure 3 is similar to
a root lo~us s-plane presentation. The compiex conju-
gate pair of dominant eigenvalues (the characteristic
equation roots) approach the real axis as power is re-
cuced below 20%. These eigenvalues merge at a point
on the real axis and then proceed in opposite direc-
tions along the real axis as power is reduced further.
In Fig. 3 and the remaining figures (which are essen-
tially similar), many other less sensitive eigenvalues
also trace out loci of points in the complex plane.
Although the eigenvalue with the smallest real part ul-
timately dominates the time domain response, we con-
sider the eigenvalue that is most sensitive to parameter
variations as the dominant one from the standpoints
of performance and stability robustness.

The dominant eigenvalue location for the nominal
plant (100% power = r,o = 1.0) has a good damping
ratio greater than 0.9. As power level is increased from
100 to 120%, the magnitude (speed of response) and
damping ratio of the dominant eigenvalue increase
slightly. As power is reduced to ~60% power, the
magnitude and damping ratio decrease slightly. Going
from 60 to 10% power, the magnitude decreases fur-
ther as the system moves to an overdamped condition.
Although the optimal control design is strictly optimal
with respect to Eq. (5) only at the 100% power condi-

1.0 . . : -
08} .
06} .
.
< i
04} .
100%
i 120% POWER i
POWER ++% .,
+ ., 20%
02} +,  POWER i
-/
i 10% 10%
o ‘ ’POWE/?‘ + \ POWER
-1.0 0.8 —06 —0.4 02 0
o (1/s)

Fig. 3. Dominant eigenvalue sensitivity of an idealized fifth-
order optimal control law due to the nonlinear char-
acteristic of reactor power level in the range from
120 to 10% power at 10% intervals.
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tion, the sensitivity characteristic of the dominant ci-
genvalue due to the major nonlinearity of the reactor
1s acceptable for this particular optimal control design
from a stability standpoint.

ill. AN OPTIMAL OBSERVER APPROACH

Examination of the sensitivity of the closed-loop
system’s dominant cigenvalue for the idealized full
state feedback case is of course only a first-level eval-
uation of a robust design. If the sensitivity at that level
does not look favorable, there is no point in consider-
ing the less than ideal case of implementation with an
uncertainty-prone model-based estimate of plant states.
Good optimal controller performance and robustness
in the idealized case should be obtained before design-
ing an optimal observer for use in the controller.

Figure 4 shows the structure of a linear Luenberger
Observer’ for estimating unmeasured plant states. The
nominal plant model {A,,B,,C,}, used in the design
of an optimal contro! law F, is the basis of a linear
simulation operated in parallel with the plant to esti-
mate the plant states. The design of robust optimal
control takes into account uncertainties between the ac-
tual plant {A,B,C} and the nominal model {A,,B,,C,]
that is used for constructing the observer.

For the idealized case where the plant exactly
matches the nominal plant, the observer gains can be
made arbitrarily large in order to generate state esti-
mates to rapidly track the plant states. If a stochastic
component in the input, plant, or output measurements
is considered, then the Kalman Filter® procedure pro-
vides appropriate estimator gains and structure to mini-
mize the mean-square error between plant and estimated
states. If external disturbances at the plant input and
output are additionally considered, then the Linear
Quadratic Gaussian/Loop Transfer Recovery (LQG/
LTR) robust control design procedure’ modifies the
Kalman Filter procedure to accomplish a robust control
design. The LQG/LTR control design indirectly ac-
commodates some uncertainties but suggests the use of
large observer gains.*!%!! The rationale for the ro-
bustness characteristics of the LQG/LTR procedure is
that external disturbances at the plant input qualita-
tively mimic the effect of uncertainties. In an optimal
observer approach, the possibility of external distur-
bances was ignored, and a low gain observer with good
robustness to uncertainties was experimentally deter-
mined and later shown to minimize an optimal ob-
server quadratic performance objective.? The robust
optimal observer gain L is computed from an optimal
regulator control law F, for the dual system (ATCT)
with weighting matrices {Q,R,}; i.e., L = —FJ. The
dynamics of the dual system is related to the dynam-
ics of the error between actual plant states and esti-
mated plant states in a Luenberger Observer. The
weighting matrix Q, is thus chosen to penalize state
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Fig. 4. CSFC configuration with a linear Luenberger Observer for estimating plant states.

estimation errors of importance to accomplish the spe-
cific optimal control law [Eq. (5)]. This importance is
indicated by the relative magnitude of the individual el-
ements of the state feedback gain vector [Eq. (6)]. The
most important state estimates to accomplish the op-
timal control performance objective [Eq. (5)] are (a)
precursor density, state 2 with feedback gain f, =
—0.1392, and (b) control rod reactivity, state 5 with
feedback gain fs = —31.42. Correct estimates of the
other states are not as important as correct estimates
for these states; therefore, the diagonal elements of Q,
are chosen as the square of the corresponding state
feedback gain vector element; i.e., gi = f?. (The off-
diagonal elements of Q, are chosen as Zero.)

For an optimal observer design, R, is interpreted
as a penalty on the error between plant output y and
estimated plant output y, an input to the observer. For
the single input/single output reactor control problem
considered here, the R, matrix is simply a scalar r,.
The specification of the r, penalty on the plant output
error can be made very small to permit the plant out-
put error to deviate more from zero while holding the
state-estimate errors close to zero. When this is done,
the resulting observer gains are identical to the LQG/
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LTR procedure results.® Alternatively, a robust low
gain optimal observer is obtained by making r, large
to permit the state estimate errors to deviate more from
zero while holding the plant output error close to zero.*
The rationale for this approach is that the state esti-
mate errors must remain reasonable when the plant
output error is forced toward zero because the plant
output error is actually a function of the uncertainties
that combine to produce the estimate errors in the first
place. Selecting r, = 5000000 yields the following low
observer gains whose robustness characteristics are
demonstrated in comparing the SFAC and CSFC con-
figurations in Sec. IV:

L =[2.007 01325 72.86 3.459 0.01405]7 . (7)

IV. SENSITIVITY ANALYSIS OF AN OBSERVER-BASED
OPTIMAL CONTROL

For the realistic implementation of an optimal con-
trol law using an on-line real-time model-based esti-
mate of plant states, the closed-loop system’s dynamic
characteristics become more sensitive to uncertainties.
Regardless of whatever approximate method is used to
VOL. 98
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suggest observer gains, the sensitivity of the eigenvalues of a model-based Luenberger Observer state feedback
system can be precisely examined using an augmented state vector that includes both plant and observer as

follows:

x,= [xT|£7)T = [6n, oc, T, 8T, oo, oh, 6¢ 87y 8T, op,17 (8)

where the caret symbol indicates an estimate of the cor-
responding state. For the CSFC configuration (Fig. 4),
the augmented state-space representation matrices are

[ A | 0
A=—01,
“ hLCIAo——LCJ
Ba= _B—] s
| B,
and
[0
F,={—=1 . 9
hF] )

The closed-loop poles that characterize the combined
model-based observer feedback system are the eigen-
values of the matrix A, + B,F,. Note that the com-
bined model only incorporates feedback of the
estimated plant states in the augmented state feedback
gain vector F,. For the SFAC configuration (Fig. 1),
the augmented state-space representation matrices are
different because of the embedded classical controller
with gain G. as follows:

A_[A—GCBC] 0
| L,C |A,—GBC-L,C,|"’

oofg].

and

F,= {;‘—’-—} a (10)

where L, is a modified observer gain vector for a
plant model with an embedded classical controller to
accomplish the same observer design objective as a
CSFC observer design L.

The important thing to note between the CSFC
[Eq. (9)] and the SFAC [Eq. (10)] augmented matrices
is that the SFAC matrices have an additional param-
eter, the embedded classical controller gain G.. Also
recall that the SFAC state feedback gains F,, are ad-
justed according to Eq. (1) to account for the presence
of the embedded classical controller. When the plant
and observer are the same (A =A,,B=B,,and C =
C,), then the CSFC and SFAC configurations are
equivalent and demonstrate the same robustness char-
acteristics to uncertainties; the embedded classical con-
troller gain can be chosen arbitrarily as a nonzero
value. When the plant and observer are different, as

- they will always be for any real world application, then

NUCLEAR TECHNOLOGY VOL. 98 MAY 1992

the SFAC configuration demonstrates improved ro-
bustness characteristics over a CSFC implementation
for the same optimal control law and positive values of
G.. The SFAC and CSFC configurations demonstrate
different robustness characteristics when uncertainty is
introduced because of the manner in which the for-
mula for F,, [Eq. (1)] was derived.' At a certain point
in the block-diagram logic derivation of Eq. (1), an es-
timate of the plant output y and plant output y were
introduced as an approximate cancellation at the sum-
mer shown in Fig. 5. When the plant and observer are
the same, this cancellation is exact, and the two con-
figurations are equivalent. When the plant and observer
are not the same, the plant output y and estimated out-
put ¥ will respond differently and no longer precisely
cancel at the summer. As this innovation, (§ — »)
propagates through the embedded classical controller;
the gain G, offers an extra degree of freedom to im-
prove the system robustness. In effect, the control in-
put is modified to compensate for plant modeling
uncertainties.

V. AN INITIAL DEMONSTRATION OF SFAC ROBUSTNESS

To demonstrate the robustness advantage of the
SFAC configuration, a specific uncertainty between
plant and observer needs to be considered. The first
thing that a robust controller based on one-delayed
neutron group must be capable of is control of a much
higher order process with many delayed neutron groups.
By considering a six-delayed neutron group represen-
tation, the plant A matrix of Egs. (9) and (10) becomes

PLANT —>

\
ESTIMATOR |

Fig. 5. Introduction of an embedded classical controller in
a CSFC for derivation of the SFAC gain vector F,,
from the CSFC gain vector F.
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Fig. 6. Dominant eigenvalue sensitivity of SFAC and CSFC
one-delayed neutron group model-based observer
state feedback controllers for application to a six-
delayed neutron group plant.

tenth order while the observer A, matrix remains at
fifth order. To better estimate the reactor states, the
nonlinear reactor kinetics equations are used in the ob-
server, which causes the observer A, matrix to have
the same variation because of the equilibrium relative
power level parameter n, as the plant A matrix. The
sensitivity of the dominant eigenvalue of the CSFC and
SFAC configurations is shown in Fig. 6. The six-
delayed neutron group parameters are summarized in
Table II.

The first thing to note in Fig. 6 is that the idealized
full state feedback dominant eigenvalue behavior as

TABLE 11

Effective Six-Delayed Neutron Group Parameters
at the Middle of the Cycle of a TMI-Type PWR*

N
Group i B; "
1 0.000215 0.0124
2 0.001424 0.0305
3 0.001274 0.111
4 0.002568 0.301
5 0.000748 1.14
6 0.000273 3.01
2See Ref. 12.
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power level is varied from 120 to 10% is naturally dif-
ferent than in Fig. 3 because of the difference in the
order of the idealized models; Fig. 3 is a fifth-order
plant; Fig. 6 is a tenth-order plant. Both optimal con-
troller designs used the same performance index [Eq. (5)]
for calculating the required gains. The second thing to
note in Fig. 6 is that the low-order CSFC configuration
slightly shifts the dominant eigenvalue to the less sta-
ble region at all power levels. The third and most im-
portant thing to note is that the SFAC configuration
demonstrates a less severe shift in dominant eigenvalue
than the CSFC configuration at all power levels. Fig-
ure 7 further assesses the tunable robustness character-
istic of the SFAC configuration for classical control
gains of 0.001, 0.1, 0.3, and 0.5. As the classical control
gain approaches zero, the SFAC dominant eigenvalue
behavior approaches that of the CSFC configuration.
As G, is increased, the dominant eigenvalue becomes
more damped. However, the embedded classical con-
trol gain cannot simply be made arbitrarily large be-
cause observer poles at ¢ = —2.34 and o = —1.52 for
the design condition, Table 1 and Eq. (7), become
overly sensitive as controller gain G, is increased. Fig-
ure 8 (with a change in scale) demonstrates the sensi-
tivity of the feedback and observer poles at embedded
classical controller gains of 0.75, 1.5, 3.0, and 6.0. The
embedded classical control gain is recommended to be
set based on classical output feedback analysis such as
root locus. For the foregoing reactor control problem,
root locus analysis suggests a classical control gain of
G.=0.2.

1.0 . ' .

L ° G, = 0.001 b

o8k x G, =0.1 A
+ G, =03

i « G.=05 i

jo (1/s)

+ *x ° o
+ X ©°
04} Y. e -
° s + + + »
- : . o a+ -
T # 10%
02k POWER .
0 1 ™ e - i * L
-1.0 -0.8 -0.6 -04 -0.2 0
o (1/s)

Fig. 7. SFAC dominant eigenvalue sensitivity for power lev-
els in the range of 10 to 120% and embedded clas-

sical controller gains of 0.001, 0.1, 0.3, and 0.5.
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Fig. 8. SFAC dominant eigenvalue sensitivity for power lev-
els in the range of 10 to 120% and embedded clas-
sical controller gains of 0.75, 1.5, 3, and 6.

VI. THE EFFICACY OF THE SFAC
ROBUSTNESS CHARACTERISTIC

Another known source of uncertainties that a ro-
bust reactor power controller must accommodate is
that most of the other plant parameters change as a re-
sult of normal fuel burnup, power level, and/or con-
trol rod position. To meet the strict definition of a
robust controller as time invariant, the robust control-
ler uses constant values for all parameters. Although
gain scheduling, adaptive identification, adaptive con-
trol, and nonlinear control offer approaches to com-
pensate for plant parameter variations, a time-invariant
controller that achiceves desired performance, stability,
and fault accommodation is preferable because of its
much simpler implementation requirements. To further
assess the potential for a robust fifth-order controller
based on one-delayed neutron group, the Babcock &
Wilcox (B&W) modular modeling system (MMS)
model of a TMI-type PWR was used.'? The MMS
model is a twenty-third-order nonlinear simulation that
models the reactor with three axial thermal-hydraulic
and associated reactor kinetics calculations. Three-
delayed neutron groups are represented at each axial
node, and the prompt jump approximation is used. Pa-
rameter variations due to fuel burnup, power level, and
control rod position are modeled. A parameter with a
large variation and concern is the control rod worth
G,. Figure 9 shows the SFAC dominant eigenvalue
sensitivity analysis (G, = 0.2) for the 10 to 120%
. power range with three different values of plant con-
VOL. 98
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Fig. 9. SFAC dominant eigenvalue sensitivity for power lev-
els from 120 to 10% and control rod worths of
0.0048, 0.0145 (design), and 0.048.

trol rod group worth: G, = 0.0048, G, = 0.0145 (nom-
inal value from Table 1), and G, = 0.048. The CSFC
dominant eigenvalue sensitivity with the high-worth
rod group is also shown as a lower bound for the
damping ratio characteristic of the SFAC configura-
tion. For the case of the high-worth rod group, the
CSFC dominant eigenvalue indicates a noticeably
poorer damping ratio. The linear analysis prediction
(Fig. 9) is confirmed for a step change in demand tran-
sient from 100 to 80% power using the nonlinear MMS
(Fig. 10). The CSFC response (Fig. 10a) shows a lightly
damped control rod group speed, whereas the SFAC
response (Fig. 10b) shows a noticeably better damping
characteristic when the control element becomes unsat-
urated at a maximum speed of 0.005 fraction of core
length/s. Results of numerous dominant eigenvalue
sensitivity analyses and simulations that confirm the
robustness advantage of the SFAC configuration over
the power range of 10 to 100% and over the full range
of burnup conditions are presented in Ref. 4.

VIl. SUMMARY AND CONCLUSION

The robustness advantage of implementing model-
based controllers with an embedded classical controller
has been demonstrated for a fifth-order robust reactor
power controller design for a TMI-type PWR. The
demonstration utilized a dominant eigenvalue sensitivity
analysis based on a linearized model of a simulated
plant and controller. The improvement in robustness
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Fig. 10. Verification of the SFAC robustness characteristic using nonlinear simulation: (a) CSFC response with a high worth
' rod for a step change in demand from 100 to 80% and (b) SFAC responsec.
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of the SFAC relative to a CSFC configuration was first
demonstrated with the sensitivity analysis procedure by
considering the specific discrepancy of a six-delayed
neutron group reactor simulation controlled by a one-
delayed neutron group controller. The linear analysis
robustness predictions were further confirmed via ap-
plication of the fifth-order controller to a much higher
order nonlinear reactor simulation using the B&W
MMS (Ref. 12). The efficacy of the SFAC configura-
tion for significantly improving the robustness of a
model-based controller implementation was then dem-
onstrated for an extreme case of severe parameter un-
certainty; the control rod reactivity worth of the plant
was varied by a factor of 3, while the controller mod-
el’s rod worth parameter remained constant at the
nominal design value.

The conventional feedback controller embedded
within a state feedback system is a multiple layer con-
troller that achieves improved robustness characteristics
of modern control implementations for power plant
applications. Coupled with the previous motivation'
to provide an intuitive interpretation of the operation
of an optimal control design, the SFAC concept ap-
pears to be a potentially powerful vehicle for improving
wide-range operation of power plants. This multiple
controller technique can also provide improved fault-
accommodating characteristics in power plant control.'3
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