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SUMMARY

This paper focuses on delay compensation as an extension of the loop transfer recovery (LTR) procedure
from one-step prediction to the general case of p-step prediction (p > 1). The steady state minimum
variance filter gain is shown to be the H,-minimal solution of the relative error between the target
sensitivity matrix and the actual sensitivity matrix for p-step prediction (p > 1). This result is useful for
synthesis of robust delay compensators in multiple-input/multiple-output (MIMO) discrete-time systems.
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INTRODUCTION

The presence of delay(s) within a multi-input/multi-output (MIMO) feedback system makes
the task of controller design significantly more difficult than that without delays. To this effect
Luck and Ray! proposed a delay compensator to alleviate the detrimental effects of bounded
delays by using a multistep predictor. The number p of predicted steps in the compensator is
then determined from the upper bound of the delay; that is, at time k the predictor estimates
the state using the measurements up to the (k— p)th instant. Although Luck and Ray'
addressed some of the robustness issues of the delay compensator for structured uncertainties,
the compensated system used the gain matrices that were originally designed for the non-
delayed system. Since the robustness property of linear quadratic optimal regulators (LQRS)
is not retained when the state feedback is replaced by state estimate feedback,? this problem
is likely to become worse with the insertion of a p-step predictor for p > 1 because of the
additional dynamic errors resulting from plant-modelling uncertainties and disturbances. The
objective of this paper is to extend the concept of loop transfer recovery (LTR)** for multistep

delays (i.e., p > 1) in a discrete-time setting.

REVIEW OF THE LTR CONCEPT FOR ONE-STEP PREDICTION

The concept of loop transfer recovery (LTR) and the existing results for one-step prediction
in the discrete-time setting are reviewed in this section. The plant under control is represented
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by a discretized version of a finite-dimensional, linear, time-invariant model in the continuous-
time setting. The discretized model is assumed to be minimum phase, stabilizable and
detectable:

Xk+1 = Axr + Bug )
Y = Cx (2)

The full-state feedback control law for the above plant is
ue = —Fxg 3)

Following (1) and (2), the plant transfer matrix is given as
G(i@Z)=C®(z)B “4)

where ®(z) = (zI — A) ™! is the resolvement matrix. Following (3), the loop transfer matrix at
the plant input is

Hz)=F®(z)B 5
and the resulting sensitivity matrix is
S()=[M+H(@@)]™! 6

For the filter observer (i.e., letting p = 0) of a stabilizable, detectable and minimum phase
plant the loop transfer and sensitivity matrices have been shown by Maciejowski® to converge
pointwise in frequency to those of the target system as the measurement noise approaches zero.
However, this may not be valid for the one-step predictor.>*®

In this paper we have assumed that the uncertainties are lumped at the plant input in the
form of an input multiplicative term. Therefore, breaking the loop at the plant input, the one-
step delay compensator transfer matrix is obtained as

Gi(z)=FEI-A+BF+LC)"'L )
Then the loop transfer matrix for the one-step delay-compensated system is

Li(z)=Gi1(z)G(z)
=F[I+ ®(z)(BF + LC)] "' (z)LC®(z)B (8a)

which can also be expressed, similarly to the formula proposed by Zhang and Freudenberg, ¢ as
Li(z) = [+ Ei(z)] "' [H(z) - E1(2)] (8b)

where E; = F(zI — A + LC)"'B is the one-step error matrix at the plant input. The resulting
one-step sensitivity matrix can be expressed as a function of the error transfer matrix:

S1(z) = [I1+Li(z)] !
= [I+HE@)] '[1+E;(z)] )

It is clear from (6) and (9) that E;(z) is essentially the relative error of the sensitivity matrix
S1(z) of the one-step delay compensator relative to the target sensitivity matrix S(z), i.e.

Ei(z) =8(2) 7' [S1(z) -~ S(2)] (10)

It is known>® that complete loop recovery, i.e. making E;(z) =0 for all z, cannot be
achieved in general by a constant observer gain L. However, it is possible to identify an L that
minimizes the one-step error transfer matrix E;(z) in the H> sense.’
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THE p-STEP DELAY COMPENSATOR

If the sum of the distributed delays is represented by a lumped delay of p sampling intervals
at the plant output, the sensory information made available to the controller is yx -, at the kth
instant. The p-step delay compensator (where the plant is completely controllable and
observable) proposed by Luck and Ray! has the structure

i =FRejk-p (11)

where F is the state feedback gain matrix and the state estimate is based on the sensory
information up to the (kK — p)th instant given as

Ri\k-p= ARp-1|k-p + Bux-1

A A (12)
Ri—p+2]k-p=ARk-p+1|k-p+ BUg-ps1

ﬁk—p+l|k—p = Aik—plk—p-l + BUk—p + L(yk-—p - Cﬁk—p}k—p—l)

The key idea of using the LTR approach to the above p-step delay compensator is to tune
the loop transfer matrix such that the error transfer matrix (i.e. the difference between the
actual and target sensitivity matrices) is minimized in a certain sense. Derivation of the loop
transfer function of the p-step delay compensator is presented below as two propositions.

Proposition 1

The transfer matrix of the p-step delay compensator (p > 1) from yx to ux in the equation
set (12) is given as

Ap“l Ap—l -1
G,(z)=FQ;'(z) e (zI—A+LC+BFQ;1(z) EFT) L (13)
where
AP~!
Q) =1+ (I—-z-;_—l>q>(z)BF for p> 1, Qi@z)=1 (14)

Proof. According to Ishihara,® the transfer matrix of the p-step compensator from yx to ux
can be expressed as

FAP™! _ Pl FA'B\ ! FAP™!
G,(z)= ._< pre zZI-A+LC) 'B+1I+ e ) ;;_1
i=0

ZI-A+LC)"'L (15

By using the relationship of the resolvement matrix ®(z) as I =z®(z) - A® (z), the sum in the
above equation can be expressed as
PZ2 FA'B Piz FA'z®(z)B _ "22 FA'A®(z)B

T 1 T
=0 2 i=o Z i=0 z'

p—1

~F&(z)B-F ;‘:;:1— 2(2)B (16)

The proof is completed by substituting (16) and (14) into (15) and exercising a few algebraic

operations. O
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Proposition 2

Let the loop transfer matrix of the p-step delay-compensated system at the plant input be
expressed as

Ly (x) = Gp(2)G(2)
where G, (z) and G(z) are as defined in (13) and (4) respectively. Then
Ly(2) = I+ Ep(2)] "' [H(2) - Ep(2)] (17)

where

1
Ep(z) = F®(2)B — F“"p1 [+ ®(z)LC] ~'®(z)LC®(z)B (18)

is the p-step error transfer matrix and H(z) is the target loop transfer matrix as defined in (5).

Proof. By Proposition 1 the open loop transfer matrix of the p-step delay compensator is

L, (z) = Gp(2)G(z)
p 1 p~-1

-1
—an‘(z) <zI A+LC+BFﬂp‘(z) 1) LC®(z)B

AP 1 -1 pp-1
-Fﬂp‘(z)<l+ [1+q>(z)LCJ-1<1>(z)Bm,,1(z)> — T

X [I+ &(z)LC] ~'®(z)LC®(z)B

| APt AP! _ -1 AP-1
=F[I+ <I—‘%;:T)‘I’(Z)BF+?;:T I+ ®(z)LC] 1¢(Z)BF] zp_l

x [I+ &(z)LC] ~'®(z)LC®(z)B

Ap-l -1 Ap—l
= (1 +F®(z)B-F —=T 1+ @@)LC] 1 (z)LCP (z)B) F o

x [+ ®(z)LC] ~'® (z)LC® (z)B

The proof is completed by substituting (18) and (5) in the above equation. O
Remark 1
After some algebraic manipulations E,(z) can be written as
Ey(2) =FTp(z) (19)
where
p-1 p-2 i
é;:T @—A+LC) B+ ), E‘?ﬁn, p>1
T,(2) = 1 = (20)
ZI-A+LC) B, p=1

This shows that E,(z) can be separated in terms of the full-state feedback gain F and a
function of L and p. O

L
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Remark 3

It follows from the expression of L,(z) in Proposition 2 that the sensitivity matrix S,(z) of
the p-step delay compensator is

Sp(2) = 1+ Lp(2)] '
= [[+H(2)] 'L+ Ep(2)] (22)

and the difference between the sensitivity matrices of the p-step compensated and target
systems is

Sp(z) —S(z) = I+ H(@)] ~'Ep(2) (23)

where S(z) is given in (6). This shows that the error transfer matrix E,(z) is indeed the error
of the sensitivity matrix of the p-step delay compensator loop relative to that of the target

loop. . O

Remark 4

If the plant model has an inherent delay of p; steps and the induced delay in the feedback
loop amounts to p; steps such that the total delay is p = p1 + p2, then the resulting error
transfer matrix satisfies equation (21) as the measurement noise covariance is tuned to zero.
This can be easily seen if the plant transfer matrix has the constraints

CA'B=0, i=0,1,....,p1—2, det(CA” ~'B) = 0 (24)

According to Shaked,® the observer gain L — A”'B(CA” ~'B)™! as the measurement noise
covariance approaches zero. Applying this observer gain to the loop transfer matrix gives

Ly(z) = Gp(2)G(2)

and by using (13) in Proposition 1, the error matrix becomes identical to that in (21) with a
total delay of p= pi1 + pa.

This shows that any inherent delay in the plant has the same effect on the error matrix as
the induced delay in the feedback loop. In other words, we can either consider the delays in
the feedback loop outside the plant or as a part of the plant model. In the second case the
original plant state space matrices (A, B, C), with det (CB) # 0, need to be augmented with
p1 steps of delay and the new plant state space matrices (A’, B’, C’) need to be formed, which
must satisfy the following conditions: (i) C'(zI — A")"'B’' = C(zI — A)™'Bz™7; (ii) complete
controllability and observability. '® Therefore we have adopted the first approach of putting the
lumped induced delay outside the plant model. O

Remark 5

Dual results of Proposition 2, obtained by breaking the loop at the plant output instead of
the plant input, yield the loop transfer matrix

Ly(z) = G(2)Gp(z)
= [H@)-E,@)] 1+ Ex(2)] "

where the target loop transfer matrix at the plant output and the error transfer matrix are

AP
77! L

H(z) = C® ()L, E,(z) = C®(2)L — C& (2)BF® (z) [I + BF® (2)]
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The resulting loop sensitivity matrix of the p-step delay compensator at the plant output is

Sp(z) =1+ Ly(x)] ™"
= [1+Ey()] I+ H(z)] ™!

and the difference between the sensitivity matrices of the minimum variance filter and p-step
delay compensator is

Sp(z) = S(2) =E, () [+ H(z)] ™'

H>-MINIMIZATION OF THE p-STEP ERROR MATRIX

For the one-step predictor it has been shown by Yen and Horowitz’ that the steady state
minimum variance filter gain with zero measurement noise is obtained by minimizing the
H>-norm of the one-step error matrix E;(z). Analogously to the case of p =1, we will show
that the same filter gain minimizes the H,-norm of the p-step error matrix E,(z). This result
forms the basis for synthesis of robust p-step delay compensators (p > 1) and is presented in
the sequel as two propositions.

For the purpose of tuning the minimum variance gain of the observer, we augment the
discrete-time, linear, time-invariant plant model in (1) and (2) with (fictitious) plant noise and
measurement noise as

Xk+1= AXg + Buyg + wy (25)
Vi = Cxp + vk (26)

where {w,]} is a zero-mean white sequence with covariance matrix £ {wkw,T} = BB '8, and {vi)
is a zero-mean white sequence with covariance matrix E{viv;"} = pI8;;. Combining the
distributed delays within the control loop as a lumped delay of p sampling intervals at the
sensor—controller interface, the state estimate is redefined as

Rk k-p= E{Xk|Yi-p} (27)

where the estimator is described by the set of equations (12).

Proposition 3
Let the (zero-mean) state estimation error be defined as
€|k-p =Xk — Rk |k-p (28)

Then

<«

p=2
E{ex|k-pek|k-p) = 2 AP Y (A-LC)'BBT(A-LC)’TA®-DT L % ABBTA’T (29)

s=0 s=

Proof. From the plant model in (25) and (26) and the filter equations (12) we can express the
estimation error ex|« - p in terms of the input sequence {w;} when the system is initially started
at s = — o

k=-p

k-1
ejk-p= 2, APTHA-LC P Sw+ >, Af STl (30)

§= — 0 s=k-p+1

Hence the cross-covariance of ex.s and wy, defined as Rew(s) = E[ek+s|k+s_pw;cT }, can be
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expressed in the form

* p=s~—1
Rew(s)= 2, AP Y(A-LC)*P""BBTs(m)+ D, A '""BBTs(m)
m=1-3s

m=p-s
AP"Y(A-LC)* PBBY, s>p

={A*"BBT, s=1,...,p-1 (31)
0, s=0

Similarly, the autocovariance of e, is obtained as

© p-2
Ree(s)= 2, Rew(s+m+ p)(A—LC)"TAP DT 4 3" Rew(s+m+ AT (32)
s=0

m=0

The proof is completed by setting s=0 and then substituting (31) into (32). O

Proposition 4

The H>-norm of the sensitivity error matrix E,(z), defined in (18) in Proposition 2, is
minimized if the observer gain matrix L is identically equal to the standard steady state
minimum variance filter gain matrix with zero measurement noise.

Proof. From the definition of Hz-norm'' and E,(z) in (19) of Remark 1 it follows that
1 27 ) )
IEs(2) 13 = - trace(SO FT,(e!®)T(%)FT dﬂ)

1 27 Ap—l o~
=-2""7; tl’aCE[SO F(*e—]—m‘:“ﬁ (eJ I—A+LC)'IB>

AP~ . T
X (é-_—f,-—ﬁm— (e"QI-—A+LC)"‘B> F' dﬂ]

1 [ p 27 Ap—l ‘Q 1 p-2 A T T
+i—-trace 50 F(g}‘ﬁ‘(‘;"‘:‘ﬁ(e" I-A+LC) B)(ZO WB)F dQ]

™ §=

1 [ p 27 p=2 A Ap—l _ig 1 T T
+ 5 trace SO F(Sgo ST B) (e_m(p_l) (eI - A + LC) B)F dﬂ]

™
1 [ p 27 p—=2 As p—2 As T
+'2—7; trace SO F<s§) m B) ( ; m B) FT dQ:l (33)

Since the sum of the second and third integrals is identically equal to zero and the integrals
of the cross-terms in the fourth term also vanish,

2 . .
lEx2)|13= 51. trace(FA”"l g [(e"*I- A+LC) 'BBT(e T~ A + LC)"T dQ] A"’“”TFT>
T 0

p=2
+ trace[F( D A’BBTA’T>FT:| (34)

s=0
For given plant model state space matrices A and B, if the feedback gain matrix F is fixed,
then the observer gain L is the only adjustable matrix which could change the H>-norm of the
error matrix. On the other hand, the covariance of the state estimation error in Proposition
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3 can be written, according to the discrete-time Plancherel theorem, ! as

Efex|k-pek|k-p} =

27 -2
AP S (1 - A+LC) BB (- A+ LC)"T dQ]A®~VT+ Y, ABBTAST (35)
0 5s=0
A comparison of the Az-norm of the error matrix E,(z) in (34) with the trace of the error
covariance matrix Ef{e|x-p€k|k-p] in (35) reveals that minimization of | E,(z)|> is
equivalent to that of trace (E{ex|k-p€k|k-p}) for all p > 0.

Next we proceed to find an optimal L that minimizes trace (E{ex|k-pek|«-p}). It follows
from Lemma 1 given below that the minimum variance filter gain (with p = 1) also minimizes
trace (F {ek-|k_pezlk-p}) while p > 1. Therefore the optimal observer gain L that minimizes
| Ex(z) ||2 is the same L that minimizes || E;(z) ||2. According to Lemma 2, the steady state
minimum variance gain with zero measurement noise is the optimal gain. OJ

Lemma 1 for Proposition 4

For the p-step predictor (p > 1), if the estimation error is defined as ex|x-p =Xk — Rk | k- p»
then the filter gain L which minimizes the covariance Ef{ex|«-pek|x-p} is identical to the
minimum variance filter gain.

Proof. The proof follows directly from the derivations in Chap. 5 of Reference 12. ]

Lemma 2 for Proposition 4
For a fixed F the H-optimization of the one-step predictor error matrix given as

mLin | Ei1(z) ||2=mgn |F(zI-A+LC) 'B|, (36)

is the steady state minimum variance filter gain, where the plant and measurement noise
covariance matrices Q and R are set to
Q=BBT, R=lim pl (37)

o0

Proof. The proof follows directly from the dual result of Theorem 3.1 in Reference 7. []

CONCLUSIONS

Results on robust compensation of induced delays in a multi-input/multi-output discrete-time
feedback control system are presented. The delay compensation algorithm formulated in this
paper is an extension of the standard loop transfer recovery (LTR) procedure from one-step
prediction to the general case of p-step prediction (p > 1). The major conclusion is that the
concept of the steady state minimum variance filter gain as the H>-minimal solution of the
difference between the target sensitivity matrix and the actual sensitivity matrix for one-step
prediction does hold for p-step prediction (p > 1). This concept is useful for synthesis of
robust delay compensators.

L
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