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State Estimation Using Randomly 
Delayed Measurements1 

This paper presents a modification of the conventional minimum variance state 
estimator to accommodate the effects of randomly varying delays in arrival of sensor 
data at the controller terminal. In this approach, the currently available sensor data 
is used at each sampling instant to obtain the state estimate which, in turn, can be 
used to generate the control signal. Recursive relations for the filter dynamics have 
been derived, and the conditions for uniform asymptotic stability of the filter have 
been conjectured. Results of simulation experiments using a flight dynamic model 
of advanced aircraft are presented for performance evaluation of the state estimation 
filter. 

1 Introduction 
In diverse control and navigational applications, the state 

variables are estimated using the on-line sensor data and a 
model of plant dynamics [1, 2]. It is assumed that the sensor 
data albeit contaminated with noise, contain information about 
the current state of the plant. As such, for a linear system with 
additive white Gaussian noise, a recursive relationship can be 
formulated to obtain a minimum-variance estimate of the plant 
states on the basis of the measurement history. In many prac
tical situations such as those in real-time distributed decision
making and control systems, however, the sensor data may be 
randomly delayed or interrupted so that the available meas
urements are not up-to-date. An example is the occurrence of 
random delays in the control law execution due to priority 
interruption at the controller computer [3]. Another example 
is the randomly varying delays induced by multiplexed data 
communication networks in distributed control systems [4-6]. 

State estimation and control in the presence of delays have 
been investigated by several researchers, and a brief discussion 
on this subject was presented by Luck and Ray [7]. While the 
majority of the reported work deals with constant delays, Nahi 
[8] and Sawaragi et al. [9] have directly addressed the issue of 
state estimation under randomly delayed measurements. These 
estimators are shown to perform better than the conventional 
minimum-variance estimator on the assumption that, at al
ternate samples, the sensor data is reduced to the zero-mean 
noise that is associated with the measurements. The above 
estimator [8, 9], however, is not realistic for application to 
control systems because, for a reasonably fast sampling rate, 
the previous measurements contain significant information 
about the plant states and therefore should be used in the 
absence of any new sensor data arrival at a given sample. 

We first discuss two concepts for constructing a minimum-
variance state estimator when the sensor data arrival at the 
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controller is either timely or delayed by one sampling period. 
That is, the number of sensor data arrivals during a sampling 
period is 0 or 1 or 2 as illustrated in Fig. 1. In the first concept, 
the estimated state is obtained as the predictor output, t]k\k-\, 
when sensor data is delayed and as the filter output, t]k\k, when 
the sensor data is not delayed. The algorithm for computing 
the state error covariance matrix needs to be modified to ac
commodate the fact that the sensor data could be missing in 
some sampling periods and there may be two consecutive data 
in some other sampling periods. Switching between the filter 
output and predictor output to generate the state estimate could 
introduce chattering of the control command sequence re
sulting in performance degradation and possible instability of 
the closed loop control system. In an earlier publication [5], 
we have shown, by simulation of the flight control system of 
an advanced aircraft, that random switching between delayed 
and non-delayed data indeed causes performance degradation 
and potential instability. In the second concept, the state es
timate is consistently obtained as the predictor output, iu/Ar-i> 
regardless of whether the sensor data is delayed or not. In 
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Fig. 1 llustration of sensor to controller delay characteristics 
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effect, this is similar to having the sensor data always delayed 
by one sample. If the probability of delayed arrival of sensor 
data is small and the covariance of plant noise is large relative 
to that of the measurement noise, then the cost of introducing 
a constant delay of one sampling period may prove to be 
excessive in view of the control system performance. 

To circumvent the above problem we have proposed and 
developed, in this paper, a state estimator which is a modi
fication of the conventional minimum variance filter and relies 
on the delay statistics of sensor data arrival at the controller. 
The proposed filter operates on a single algorithm, and there
fore its implementation is less complex relative to one that 
would switch between filtering and prediction. In this ap
proach, the currently available sensor data is used at each 
sampling instant to obtain the state estimate which, in turn, 
could generate the control signal. The usage of currently avail
able data simplifies both hardware and software structure of 
the state estimator and thereby serves to enhance the control 
system reliability. In contrast to the predictor algorithm that 
always operates on the past measurements, the proposed filter 
is shown (via simulation) to yield smaller state estimation errors 
although it is more complex to implement. 

The paper is organized in five sections including the intro
duction. Section 2 presents the problem statement along with 
a description of the delayed system and major assumptions. 
The filter equations are derived in Section 3. The results of 
simulation are provided in Section 4 for estimation of flight 
dynamic states of an advanced aircraft. The paper is sum
marized and concluded in Section. 5. 

2 System Description and Problem Statement 
The control system under consideration consists of a con

tinuous-time plant (where some of the states are not directly 
measurable) and a discrete-time controller (which has an 
embedded state estimator). The plant is subjected to random 
disturbances and the sensor data is contaminated with noise. 
Furthermore, the sensor data set at time k is randomly delayed 
by an amount 5k before it arrives at the controller as illustrated 
in Fig. 1. This delay may occur as a result of multiplexing in 
communication networks [4,12] or due to priority interruption 
in time-shared computers [3]. In practice, however, the prob
ability that 8k exceeds the sampling period T is made to be 
extremely small [12]; otherwise the control system performance 
is likely to be significantly degraded. Furthermore, we assume 
existence of a time skew, A€[0, T), between the sensor and 
controller sampling instants because the sensor and controller 
may have different clocks. (Synchronization of these two clocks 
and the ramifications of having a non-zero A are addressed in 
our previous publication [5]). This would cause the controller 
to use either the current sensor data or the past data, whichever 
is available. That is, the sensor data generated at the (k- %k)

th 

sample, £*€ {0, 1), is used for obtaining an estimate i\k of the 
state xk at the kth sample. The objective is to construct a linear 
state estimator based on the randomly delayed sensor data. In 
the formulation of the state estimation algorithm, we have set 
the deterministic part of the plant input to zero with no loss 
of generality. (Note: The effects of a nonzero deterministic 
input can be included in the estimator in a way similar to that 
in (nondelayed) standard minimum-variance filters.) 

The continuous-time plant model is discretized relative to a 
sampling period T, and the resulting discrete-time plant dy
namics with delayed sensor data are modeled as: 

xk+1 =Fk+,_ k xk + Gkwk 

yk =Hkxk+vk (1) 

Zk =i\-kk)yk+Zkyk-i 

where plant state x€(R", plant disturbance w€Glr, plant output 
y€<Rm, sensor noise u€(R'", and the delayed sensor data zedf" 
which is used to obtain the state estimate 17. The above matrices 
are of compatible dimensions, and they are bounded, i.e. there 
exist positive real numbers yit y2, and 73 such that, for every 
k, the following inequalities hold: 

Fk+i. kTFk+i, *<7i/„; Gk
TGk<y2Ir; and HkHk

T<yiIm (2) 

Remark 1. Since the plant model in (1) is a direct conse
quence of discretization of a continuous-time system, the state 
transition matrix Fki k_ l is invertible for every k. 

The pertinent assumptions and initial conditions for the 
stochastic plant model in (1) are stated below: 
• Plant noise {wk} is Gaussian with E[wk]=0 and 

E[wkWiT] = Qkdk, where Qk>0vk; 
• Sensor noise [vk] is Gaussian with E[vk] = 0 and 

E[vkViT] =Rkbki where Rk>0vk; 
• Measurement delays £*€[(), 1] are white, i.e., Pr[%k%j\ 

= Prltk\Piliii for v * * / ; Pr[£k=l]=ctk, and 
Pr[Zk = 0) = (l-ak); 

• Random sequences [ wk], {vk}, and [ %k] are also mutually 
independent; 

• The initial state x0 is Gaussian with mean fi0 and covariance 
matrix n0 , and is statistically independent of other noise 
and disturbance. 

(3) 

Remark 2. It follows from (3) that the first and second 
moments of £,k can be derived as follows: 

E{kk}=dk\E[(.kkf}=ak,E{{\-ikf) 

= l - a * ; E [ £ * ( l - & t ) } = 0 . » 

The information on the measurement history, Zj, up to the 
/ h instant is available to obtain an estimate of the state xk for 
k>j. Accordingly, we denote the conditional expectation of 
xk and the resulting error of estimation based on the meas
urement history Zj as: 

Conditional state estimate: 7ik\j-.=E[xk\Zj} with j<k (4a) 

State estimation error: ek/J: = (rj^/y-xk) with j< k (4b) 

Statement of the Problem. Given the linear discrete-time 
dynamical system in (1) under the assumptions and initial con
ditions (3), the problem is to find an optimal estimate, -qk\k, 
of the state xk that will minimize the quadratic cost functional 
at each instant k: 

Jk:=E^Ex[ek\k ek\k} (5) 

where e*i*: = 0?*i*-**) is the filter error, 
£ { indicates the expectation w.r.t. the statistics of (j-k], and 
Ex indicates the expectation w.r.t. the statistics of \wk] and 
[vk]. 
The expectation E$EX[ • ] w.r.t the statistics of {£k) > f wk) and 
(vk] is here after denoted as E{ • ) . 

3 Development of the State Estimation Filter 
Using the concept of a standard (i.e., without measurement 

delays) state estimator, we propose a linear estimator for ran
domly delayed measurements, which will minimize the cost 
functional Jk in (5), to have the following recursive structure: 

Vk/k = LkVk/k-i+ Kkzk (6a) 

Vk/k-i=Fk, k-lVk-l/k-l (6*) 

where the gain matrices Lk and Kk of the above filter are derived 
in the sequel. We present the important properties of the state 
estimation filter as propositions. 

Proposition 1. For the linear stochastic filter to be un
biased, i.e., E[ek/k] = E{r)k\k~xk] =0vk, the following rela
tionship must be satisfied: 
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Vk\k = Vk\k~\+Kk[Zk-[^-ak)Hk + akHk_lFk: k-\
 []Vk\k-\] 

Proof of Proposition 1 We need to establish two lemmas 
for proving the proposition. 

Lemma 1 for Proposition 1. If the filter is unbiased, i.e., 
E{ek\k\ =0 V&, then the predictor is also unbiased, i.e., 

E{ek\k-il=0vi: where ek\k~\- = (vk\k-i-xk). 

Proof of Lemma 1. Using (1) in (6b) the prediction error 
ek\k-\ can be expressed as.: 

£k\k~\=Fk, k-lVk-l\k-l-(Fki k- \Xk- 1 + Gk- \Wk- \) 

— Fk, k-\{l)k-l\k-\—Xk-\) — Gk-lv/k-\ 
= Fk, k-\Sk-\\k^\ — Gk-\Wk-i. 

Since the filter is given to be unbiased, i.e., E{ek-]\k-\] = 0 
and (wk 1 is a zero mean sequence, the expectation of the right 
hand side in the above equation is zero, m 

Lemma 2 for Proposition 1. For an unbiased filter, i.e., 
E{ek\k] = 0 VA", the gain matrix Lk in (6a) can be expressed in 
terms of Kk as: 

Lk = I„ -Kk[(l - ak)Hk + akHk- iFk, *_ T ' ] 

where /„ is the (n x ri) identity matrix. 

Proof of Lemma 2. Using Lemma 1, E{ek\k) = 0 implies 
E[ ek\k-11 = 0. Substituting (6a) in the expression for ek\k yields 

ek\k = Vktk-Xk = Lk r)k\k-l+KkZk~xk 

= Lk(xk + ek\k-\) + Kk[(l - £k)yk + £*?*] - xk 

Substituting the relationships for Xk and yk from (1) into the 
above equation, we obtain: 

Sk\k = [(1 ~ik)KkHkFk< k-i+ LkFk, k-\~Fk, k-\ 

+ ikKkHk- \]xk-1 + [(1 - ik)KkHk + Lk- In]Gk-iWk. { 

+ Lkek[k-1 + (1 - £k)KkVk + t,kKkVk-1 

Since {wk} and \vk) are zero-mean sequences, taking expec
tation E{ • j on both sides yields 

E({[(.l-£.k)KkHkFki k-i+ LkFk, k-i—Fk, k-i 

+ ^ A - J ] £ I t e - i ] = o 
to guarantee the zero mean of ek\k. Since Ex{Xk-\} 9*0 in gen
eral, its coefficient matrix must be zero. Noting that the plant 
state transition matrix Fk, t- i is invertible for Vk (see Remark 
1) and substituting the first moment of ^(see Remark 2) in 
the above equation, the result follows after some algebraic 
manipulations. • 

The proof of Proposition 1 is now completed by using Lemma 
2 for Lk into (6a). a 

Next we proceed to derive the gain matrix Kk of the filter 
presented in Proposition 1. The objective is to synthesize a 
sequence of gain matrices, [Kj], j = 1, 2, ..., that would 
minimize the cost functional Jk in (5) for each k. The optimal 
gain matrix is expressed in terms of the conditional error cov-
ariance matrices defined as: 

E*y: =E[ek\jek\j
T\Zj\ with kTzj (7) 

Proposition 2. For the filter structure in Proposition 1, the 
optimal gain matrix Kk, k = 1, 2, 3, ..., is obtained, by min
imizing the cost functional Jk in (5), as: 

Kk= [(1 -akyLk\k-\Hk +&kFk, k-iLk-i\k-iHk-i ] 

X{[(l-ak)Hk + oikHk.{Fk, k-r']Zk\k-d(l-ctk)Hk 

+ akHk- iFk, k-1" lf+ «*(1 - OLk)[Hk 

-Hk-iFk, k~r ]E(xkxk \Zk)[Hk-Hk-.\Fk, k_x~ ] 

-<*kHk-iFk, k-i Gk-iQk-[ Gk-\ Fk, k^i" 

X Hk- , r + akRk-., + (1 - ak)Rk} ~' 

where the state estimation error covariance matrices are re
cursively generated as: 

%k\k-l=Fk, k-fik-l\k-lFk, k-l +Gk-{Qk-\Gk-{ , 

Ek\k = LkEk \k~\Lk + ak{ 1 - ak)Kk[Hk 

-Hk.{Fk, t-r'lEiXkxflZ*} x[Hk-Hk_xFk, k-f']
TKk

T 

-akKkHk-\Fk, k-\ Gk-iQk-\Gk~\ Fk, k~i Hk~i Kk 

+ ak(Gk-iQk-[Gk-\ Fk, k~\~ Hk„\Kk 

+ KkHk~\Fk, k-i Gk-\Qk-\Gk-i ) 

+ (1 - oik)KkRkKkT+ akKkRk. {Kk
T, 

Lk is derived in Lemma 2 for Proposition 1, and the recursive 
relationship is started from the given initial conditions: 

Vo\o'-=^a and E 0 | 0 :=n 0 

Proof of Proposition 2. Since the cost functional Jk is to 
be minimized at each instant k based on the measurement 
history Zk, the problem is recast as: 

min Jk = min T r a c e ^ E j f ek i kek \ /1 Zk}) (8) 
Kk Kk 

such that the gain matrix Kk achieves the minimum for the 
estimator structure laid out in Proposition 1. 

We express the filter error ek\k in terms of the prediction 
error ek\k-i and the measurement zk by first using (6a) and 
then using (1) for the delayed measurements: 

ekik = yk\k — xk = LkTik\k-i+Kkzk — xk 

= Lkiik\k-1 +Kk[(l - Zk)(Hkxk+vk) 

+ ^k(Hk- tfk-i + Vk-1)] - xk (9) 

Substituting the reverse relationship, xk-\ = Fk, k_{'
1 

x (xk- Gk~\Wk-1)> of the plant model (1) and rearranging the 
terms in (9) yield: 

ek\k = Lk(r)klk_ iXk) + Lkxk-[I„ - (1 - £,k)KkHk 

+ ikKkHk-\Fk, k-i ]Xk-£kKkUk~i> Fk, *-i Gk^\Wk_\ 

= Lkek\k^i + (Lk— £k)xk 

-ikKkHk.iFk, k-1"lGk-1wk-1 + (1 -£k)Kkvk + ZkKkvk-1 

(10) 

where £*: = J„ - (1 - h)KkHk + ̂ kKkHk. iFk, *_;" ' . 
The following relationships are used for the subsequent de
rivations: 

• Moments of measurement delay statistics given in Remark 
2 

• E(wkwk
T\Zk) =Ex{wkWkT} =Qk\E{vkvk

T\Zk\ = Ex[vkvk
T} 

= Rk; all other cross terms involving (w*) and {vk} are 
zero because of their mutual independence and 

• Ei[£,k\Zk}=Lk using the result of Lemma 2 for Propo
sition 1; 

E{ektk_lwk_l
T\Zk} =Ex{(Fk, k-iVk~i\k-i-Fk, k-\Xk-i 

-Gk-lWk-l)wk-l
T\Zk} = -Gk-\Qk-\ 

E{xkwk-.l
T\Zk}=Ex{(Fk,k-iXk-i + Gk-lWk-{)Wk-iTZk} 

= Gk~iQk-i 

£ t ( U L k - &k)/Zk} = ctkLk - E( {£k£k} 

= «*(1 - ak)Kk(Hk_ ^ k-,"' - Hk) 

Using (10) and the above relationships, we have after some 
algebraic manipulations: 
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Ek\k = E{ek\kek\k \Zk) 

= LkE[ektk-leklk-l
T\Zk}Lk

r+ak(\-uk)Kk[Hk 

— Hk-\Fk,k-\ ]E[xkxk \Zk}\Hk-Hk-lFkt k_\ ] Kk 

-akKkHk^iFki k-i Gk-iQk_iGk-i Fk, k-i Hk-\ Kk 

+ Ok(Gk-iQk-iGk-i Fk, k-\ Hk-\ Kk 

+ KkHk-\Fkt *_! Gk-.iQk-\G\i-.\ ) 

+ (1 - ak)KkRkKk
T+ akKkRk„ xKk

T (11) 

and the error covariance for prediction error is obtained as: 

^k\k-\=E{ek\k-iek\k-i \Zk] 

= E[{xk-r\k\k-)){xk-T}k\k^lj
r\Zk} 

= E{(Fkt k~iXk-i + Gk~iWk-\-Fkl *-i1*-ii*-i) 

X(Ek, k-lXk-l + Gk-\Wk-\-Fk: k-lVk-l\k-l) \Zk\ 

= E{(Fk, k-iek-l\k-l + Gk~\Wk-i)(FkI k-l^k-Uk-l 

+ Gk-iwk-,)
T\Zk} 

=Ek, k~\^k~\\k-\Fk, k-\ +Gk-iQk^iGk~i (12) 

Now we can substitute the right hand side of (11) in the cost 
functional Jk in (8) to find the optimal Kk. To minimize Jk we 
set the partial derivative of Jk w.r.t. Kk to zero: 

dJk/dKk=d Trace ( E l e t ^ / l Z * ] ) / * * * = <) (13) 

By using the following facts about matrix manipulators: 

d[trace(v4CB + BT)AT)]/dA = 2A(B + BT) 

d[tmce(AB)]/dA=BT, 

the substituted terms of (11) in (13) can be expanded for eval
uation of the partial derivatives. Collecting terms containing 
Kk yields 

Kk{[(1 - ak)Hk + ctkHk_ {Fk, k_ ,]£*,*_,[(1 - ak)Hk 

+ akHk- iFkj k-i]
T+ ak(l - ak)[Hk 

-Hk-\Fk, k-\ ]E{XkXk \Zk}[Hk-Hk-\Fk, k-\ ] 

-<XkHk-iFkl k-\~ Gk-iQk-i Gk-{ Fk, k-\ Hk-\ 

+ akRk-1 + (1 - oik)Rk} - (1 - otk)T,k[k-iHk
T- ak(Ek\k~I 

-Gk-iQk^Gk^Wk, k-rTHk-i
T=0 (14) 

The filter gain Kk is obtained by solving (14) and using (12) 
to substitute for I W - i in the last term on the left hand side 
of (14). a 

Corollary 1 to Proposition 2. If wk-i is assumed to be 
independent of Zk, then the conditional covariance of xk is 
given as: 

E(xkXk \Zk) =Vk\k-lVk\k-lT+^k\k^l (15) 

Proof of Corollary Proof follows directly by using the 
relationship (4b) for state estimation error if the conditional 
expectation E{wk~\Wk-\T\Zk) is approximated to be equal to 
the unconditional expectation E\ w t_ Jw< ._i r). a 

Remark 3 Suppose that a feedback control loop is formed the following properties: 

by using the separation principle [2]. That is, the estimated 
state TĴ Î . is used in place of the true state xk for state feedback 
control. Then, if 0^ (0 , 1), it follows from Proposition 2 that 
the filter gain Kk involves the conditional autocorrelation 
E(xkxk

T\Zk) of the plant state xk. Therefore, the proposed state 
estimator under randomly delayed measurements may not 
comply with the principle of certainty equivalence [2] which 
assures optimal design by separately synthesizing the control
ler. In this case, the optimal state feedback control law could 
be different if an equivalent deterministic model is used instead 
of the stochastic model. Furthermore, the realization of E{xk 

xk
T\Zk] in (15) would yield a suboptimal solution of the op

timal filter problem. However, if ak = 0 Ik (i.e., the meas
urements are not delayed with probability 1), then the notion 
of certainty equivalence remains valid, a 

3.1 Stability of the State Estimation Filter Under Meas
urement Delays. The filter equations derived in Propositions 
1 and 2 converge to those of a standard minimum variance 
filter as the measurement delays approach zero, i.e., a*—0 Vk. 
Therefore, the filter is uniformly asymptotically stable for 
ak = 0 provided that the system (1) is stochastically controllable 
and observable [2]. This is true regardless of whether the plant 
dynamics in (1) are stable or not. However, if the plant is 
unstable (and is not stabilized by feedback control), then the 
convergence of the filter is not of practical significance. There
fore, we only consider the case in which the plant state vector 
is bounded in the mean square sense. That is, \\E[Xkxk

T\Zk} II 
remains bounded as k—oo. Then, for a ^ O , the critical ques
tion is whether the state estimation error covariance, Lk\k, 
remains bounded in the mean square sense as k-~<x. We at
tempt to address this issue in this section. 

Since stabilizability of the system (1) is unaffected by the 
measurements delays, it suffices to determine, for stability of 
the filter, under what conditions the system is stochastically 
observable for a<.#0. This implies determination of the con
ditions under which uniform complete observability is affected 
by the measurement delays. The system (1) is uniformly com
pletely observable [2] if there exist positive real constants a 
and (3, and a positive integer / such that 

0«xI<O(k,k-l)<pi v£>/ (16) 

where the observability matrix is defined as: 
k 

0(k,k-l):= 2 [Fj, /H/HjFj,k] and / i s the identity matrix 

of appropriate dimension. 

After suppressing the term involving wk (that does not affect 
observability) for brevity, we augment the state space of the 
system (1) as follows: 

Xk+\ = $k+t, k%k 

zk =lEkXk+vk (17) 

where the augmented state Xk: = [xk
Txk-\

T]T\ 

the augmented state transition matrix 

[Ek+i,k 0 
**+i, *: = 

L / 0_ 
the modified measurement matrix %k = [(1 - t-k)Hk £kHk-1] \ and 

the modified measurement noise vk={\ — ^k)vk + ^kvk-i with 

Ex{vk) = 0 and E,[ W ) = (1 -**)£*+1** 

for l / -A:l>2 

for l / - / t l = l 

S(l-ik?Rk+Zk2Rk-x for l = k 
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The noise sequence (i^) is clearly non-white and also non-
Markov for «t€(0, 1). However, the only possible source of 
non-whiteness of vk is the usage of the same sensor data at 
two consecutive samples, i.e., whenever the combination of 
£̂  = 0 and %k+1 = l occurs. Since the augmented system (17) 
cannot be modified into the standard form of having white 
and mutually independent process and measurement noise, the 
notion of observability in definition (16) may not be applicable 
in to the augmented system (17), and a formal proof for uni
form asymptotic stability of the filter with delayed measure
ments is not readily achievable. Therefore, the results of 
stability analysis of the proposed filter, based on the approx
imation that the noise sequence {vk\ is white, are presented 
as conjectures instead of propositions. 

Conjecture 1, If the system (1) is uniformly completely 
observable under no measurement delays, i.e., 
o-k = PAkk= 1] = 0, then it is also uniformly completely ob
servable for ak€ [0, 1 - e] for any specified e > 0. 

Justification for Conjecture 1. Following (16), the ob
servability matrix of the augmented system (17) is defined in 
a loose sense as: 

0(k,k-l): = J Es vj,k >->j "J^J, kl (18) 
j = k-l 

Eil*J,k%%<f>J,k} = 

-(\-ajWj. /H/HjFj, t + ajFj^/Hj. 

0 

i Hi-\Fj- ,k 0 

0 

where E^ indicates expectation relative to the measurement 
delay statistics. (Note: The above statement requires the mod
ified measurement noise [pk] to be white.) Substituting the 
relationships (17) for the augmented system in the summand 
of (18), it follows after using the results in Remark 2 and some 
algebraic manipulations that 

(19) 

Since our interest is in the observability of the first part (i.e., 
xk) of the partitioned augmented state Xk: = [xk

Txk„iT]T, we 
focus on the top left submatrix [13] 

k 

0„(*, k-l):= J] (1 -aj)Fj, /HfHjFj, k 
j=k-l 

+ 2 «/)_,, /Hj.fHj^Fj^ k (20) 
j = k-l 

of the augmented observability matrix in (18). The bounds of 
On are established as follows. 

Since a, is bounded between 0 and (1 - e ) , it follows from 
the inequality (16) that the first part of On in (19) is bounded 
between eal and fil. The second part of On can be expressed 
as: 

Extension to Conjecture 1. Asymptotic stability of the fil
ter for a stationary, non-delayed system suggests asymptoti
cally stability of the filter for the delayed system provided that 
the measurement delay statistics are stationary. 

Justification for Extension to Conjecture 1. Stationarity 
of the delayed system in (1) implies that Fk+li k = F, Hk = H, 
and ak = a Vk. Then, the condition for stochastic observability 
in (16) is reduced to positive definiteness of the observability 
matrix O(l) for some positive integer /, i.e., 

O(0: = 2 W-i)THTHF-J} 

and the submatrix On in (19) also reduces to 

(22) 

O„(0: = ( l -a) 2 (F~J)THTHF-J 

+ a 
l-\ 

YJ(F-J-l)THTHF-i-x 
= [(1 - a)O(0 + oF~ TO(1)F~ '] 

which is positive definite and bounded for a€[0, 1] because 
0(f) is positive definite and F-\ is bounded, a 

Remark 4. It appears, on the basis of extensive simulation 
runs, that the result of Conjecture 1 is valid under the relaxed 
condition of e = 0, i.e., ak€[0, 1] Vk, possibly except for certain 
contrived cases. Hence, we further conjecture that, for prac
tical applications, the proposed filter is uniformly asymptot
ically stable provided that the minimum variance filter for no 
measurement delays is uniformly asymptotically stable, a 

Remark 5. The restriction of having a specified e > 0 as set 
forth in Conjecture 1 may not be necessary for stationary 
systems. • 

4 A Simulation Example 
The proposed algorithm for state estimation under delayed 

measurements has been verified by simulation of the longi
tudinal motion dynamics of an advanced aircraft. The state-
variable model of flight dynamics in continuous time is de
scribed below. 

Plant Variables and Parameters 

8a = Elevator command, i.e., deterministic input to the ac
tuator (radian) 

8e = Elevator deflection, i.e., actuator output (radian) 
W = Normal component of linear velocity at the center of 

mass (m/s) 
q = Pitch rate about the center of mass (radian/s) 

S «/)- 1, * Hj •1 HJ-lFi- 1, k 
j = k-l 

2 («/). /HfHjFj, k) 
= k-

k Hk-+ ak-iFk-,-U k //•*_/_! Hk-,-iFk-i-U k-oikHk Hk (21) 

A lower bound of (21) is clearly 0 because all matrix products 
are positive semidefinite and a y >0 Vy. An upper bound of (21) 
is (1 -e)((3 + 7!73) I following the inequalities in (16), (2) and 
(3). Therefore, by combining the bounds of two parts of (20), 
we obtain 

0<a'I<Ou(k,k-l)<l3'I Vk>l 

where / is a positive integer, and a ' (e) :=ea and 
/3'(e): = (2 - e)/3 + (1 - e ^ ^ . This establishes uniform complete 
observability of the system with measurement delays in (1). a 

The dimensional stability derivatives [14] for longitudinal mo
tion dynamics were selected as: 

Zde: = (dZ/dbe)/m = - 61.655 m/s2; 
Zq: = {dZ/dq)/m = - 5.132 m/s; 
Zw: = (dZ/dW)/m= -3.1332 s"1, 
Mde: = (dM/dde)/Iy= -40.465 s - 2 ; 
Mq: = (dM/dq)/Iy = - 2.6864 s~'; 
Mw: = (dM/d W)/Iy = - 0.04688 (s - m)~'); 
mwd: = (dM/dW)/Iy= -0.00377 mT1) 

where 

Mis the pitch moment (m2 kgm s~2); 
Z is the normal component of the aerodynamic force (m kgm 
s"2); 
m is the lumped mass of the aircraft (kgm); and 
Iy is the moment of inertia about the pitching axis (m2 kgm). 
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Other constant parameters were: 
T = Actuator time constant (0.1 s) 

U0 = Reference flight speed (306.42 m/s) 

Longitudinal Motion Dynamics in the Continuous Time Do
main 

dx/dt = Fx+Bu + Gw; y = Hx+v 

where x = [5e W q]T, w is the process noise which is assumed 
to be white with unit intensity; u = 8a; y = q; and v is the 
measurement which is assumed to be white. 

Zde 

.Si 

0 

s2 

0" 

So 

S3. 

; B= 

r r - ' i 
0 

. 0 . 

0.00625" 

0.25 

0.025 . 

\H= 

'0' 

0 

. 1 . 

S0: = (Z, + U0);Sl: = (Mde + MwdZde); 

S2: = (Mw + M„dZw); S3: = [Mq + MwdS0]; and 

the initial conditions are: r)oio=[0 0 1.0] and E0io = Diag [0.04, 
1.0, 0.5]. 
The (deterministic part of) control input, ba, was set to zero 
in the simulation because the specific objective of the simu
lation was to demonstrate the performance of the estimation 
aglorithm. The above flight dynamic model was first discre-
tized with a sampling period T = 0.055, and the sequence (l-k} 
of measurement delays were taken to be stationary, i.e., 
Pr[t-ic=l] = a v£.(This assumption is in agreement with the 
fact that the statistics of the network traffic are stationary over 
a finite window of time.) The following parameters were varied 
to obtain a series of simulation runs: 
• Covariance, r, of the (discretized) measurement noise; 
• Probability, a, of the measurement being delayed by one 
sample. 
The performance of the proposed state estimation filter is 
compared with that of the predictor algorithm of the conven
tional minimum-variance filter in Figs. 2 to 5 for different 
values of r and a. The proposed delay-compensated filter uses 
the currently available sensor data, namely either yk or y^-i, 
at time k. That is, if yk is unavailable at time k, then it uses 
the stored data yk-X to generate the estimate. If, at the next 
sampling instant k+\, both yk and yk+1 are available, the 
estimate is based on yk+1. In this case, yk is not used for state 
estimation to maintain the strategy of using the latest sensor 
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data that can be easily fetched from the terminal's reciever 
buffer. In contrast, the predictor algorithm of the conventional 
filter always uses the delayed data y>k-\ at the instant k re
gardless of whether y^ is available or not. 

Fig. 2 shows a comparison of the true state, W, with its 
estimates using the conventional minimum-variance and the 
proposed algorithms for /• = 0.0025 and a= 1. (The implication 
of a - 1 is that the sensor data is consistently delayed by one 
sample, and the proposed fitler is identical to the predictor.) 
The initial condition of the plant state, x0 = [0 0 1.2]r, is 
deliberately made different from that of the plant state esti
mate, i?oio= [0 0 1.0]T, to demonstrate convergence of the al
gorithms. The proposed filter is consistently superior to the 
minimum variance algorithm and they eventually converge to 
the steady-state value of zero. The true state, however, hovers 
around this steady-state value due to presence of the zero-
mean process noise in the plant model. Figure 3 shows curves 
under conditions similar to those of Fig. 2 except that a 
= 0.5. Performance of the proposed filter (compare the dotted 
curves in Figs. 2 and 3) is better for a = 0.5 than that for a 
= 1 because, on the average, only a half of the sensor data 
sequence is delayed while the remaining data arrive at the 
controller in time. This shows that the filter performs better 
than the predictor (i.e., a = 1) which always relies on the 
delayed sensor data regardless of whether or not the current 
sensor data is available. 

In Figs. 4 and 5, the measurement noise covariance r is 
increased to 0.0625 to demonstrate its impact on the perform
ance of both algorithms. An increased r reduces the filter gain 
implying that the state estimator relies more heavily on the 
plant model than on the measurement itself. Therefore, the 
proposed algorithm appears to be slightly less effective in Figs. 
4 and 5 relative to their counterparts in Figs. 2 and 3, respec
tively. Similar curves comparing the performance of the two 
estimation algorithms for the two other states, namely 8e and 
q, were also obtained. These results are not presented in this 
paper because they convey no significant additional infor
mation. 

Next we discuss the results on convergence rates of the filter 
for different values of a. Extensive simulation experiments 
were conducted to determine convergence of the state esti
mation filter, and there was no evidence of divergence for any 
values of r and a. Figure 6 shows a comparison of the con
vergence of the norm, IIE*i*ll, of the state error covariance 
matrix for a = 0,0.25,0.5,0.75 and 1.00 and the measurement 
noise covariance r = 0.0625. While IIE*|*II converges in all cases, 
the smallest value of II32*1*11 occurs for a = 0 (i.e., no meas

urement delays) and the largest for a = 0.5. The rationale for 
the latter event is that a = 0.5 creates maximum uncertainty 
regarding arrival of a specific sensor data at the controller. 
For a = 0.5, the probability of using the same sensor data 
for state estimation during two consecutive samples is also 
maximized, thereby causing error due to the approximation 
of j Vk} to be a white sequence. Although there is no uncertainty 
regarding arrival of sensor data for a = 1, the initial overshoot 
occurs due to a fixed delay of one sampling period. The results 
for a = 0.25 and a = 0.75 in Fig. 6 are comparable because 
of identical uncertainty in sensor data arrival. Figure 7 shows 
similar results for the measurement noise covariance r = 0.0025. 
In this case, a smaller r causes a larger gain matrix K^ resulting 
in more pronounced effects of a on the profile of 112*1*II but 
the convergence for different values of a takes place practically 
within the same time interval. The conclusions derived on the 
basis of results of these simulation experiments are summarized 
below. 
• The norm, IIE*i*ll, of the state error covariance matrix is 

smallest for a = 0. This is in agreement with the fact that 
the filter is essentially optimal at a = 0. 

• As a is increased from zero, III!*i*ll gradually increases for 
a up to 0.5 where the uncertainty of sensor data arrival is 
the largest and then gradually decreases until a approaches 
1. 

• For all values of r > 0 and a€[0, 1], the filter response 
remains bounded, and there is no evidence of divergence. 

5 Summary and Conclusions 
An optimal stochastic algorithm is presented for state es

timation where the sensor data is randomly delayed such that 
the measurements available at the controller terminal are not 
up-to-date. This may happen in real-time processes, such as 
advanced aircraft, if a multiplexed data network is used for 
communications between the control system components. An
other potential situation is the occurrence of random delays 
in the control law execution due to priority interruption at the 
controller computer. The random delay in the sensor data 
arrival at the controller terminal is assumed to be statistically 
independent of the plant and sensor noise. The delay is also 
assumed to have binary statistics, i.e., either the sensor data 
arrives at the controller in time or it is delayed by one sample. 
Nevertheless the estimation algorithm can be extended for de
lays more than one sampling period but such conditions are 
not of much practical significance. The algorithm is derived 
using a step-by-step procedure, and the main results are given 
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in the form of two propositions. Convergence of the state 
estimation filter is conjectured, and this claim is supported on 
the basis of extensive simulation experiments as there was no 
evidence of divergence of the filter. However, since criteria 
for convergence of the proposed filter have not yet been for
mally established, further research is necessary to identify the 
conditions under which the filter is uniformly asymptotically 
stable under measurement delays. 

The proposed state estimation filter has been tested via sim
ulation experiments using the flight dynamic model of an ad
vanced aircraft. It appears from the simulation results that the 
filter, in the presence of randomly delayed measurements, per
forms better than each of the following two: (i) minimum-
variance state estimation algorithm that switches between a 
predictor (when the data is delayed) and a filter (when the data 
is not delayed); and (ii) a predictor that always relies on the 
delayed data regardless of whether the current data is available 
or not. The proposed state estimation filter is directly appli
cable to synthesis of large-scale control systems which are 
subjected to delays due to communications between spatially 
dispersed components. This state estimation algorithm com
plements the stochastic control law, recently reported by Liou 
and Ray [10, 11], for compensation of randomly varying dis
tributed delays. 
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