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Output Feedback Control Under Randomly
Varying Distributed Delays

Asok Ray
The Pennsylvania State University, University Park, Pennsylvania 16802

An output feedback control law has been formulated in a stochastic setting, based on the principles of
minimum variance filtering and dynamic programming, for application to processes that are subjected
to randomly varying distributed delays. The proposed estimation and control law for delay compensation
is built on the concept of the conventional linear quadratic Gaussian (LQG), called delay compensated
linear quadratic Gaussian (DCLQG). Although the certainty equivalence property of QG does not hold
for DCLQG in general, the combined state estimation and state feedback approach of DCLQG offers a
suboptimal selution to the control problem under randomly varying distributed delays. DCLQG is poten-
tially applicable to analysis and synthesis of control systems for vehicle management of future generation
aircraft where a computer network is employed for distributed processing and on-line information exchange
between diverse control and decision-making functions. Results of simulation experiments are presented
to demonstrate efficacy of the proposed DCLQG algorithm for flight control of an advanced aircraft.

Introduction

HE vehicle management system in future generation air-

craft would require highly integrated control and decision
functions that will have direct flight criticality implications.
For example, the integrated flight-propulsion controller must
take into account the effects of a strong coupling between the
propulsion and aerodynamics to take advantage of propulsive
moments and forces for increased flight maneuverability and
flight envelope.! These functions, combined with new strategies
such as self-repairing and reconfigurable flight control systems,
management of actuator failures and surface damage, control
surface reconfiguration, and applications of artificial intelli-
gence techniques to decision support systems would generate
distributed computation and communications requirements. A
data communication network is needed for information pro-
cessing between the onboard spatially dispersed computers,
intelligent terminals, sensors, and actuators to implement the
stated requirements.

Asynchronous time-division-multiplexed networks, such as
those using the Society of Automotive Engineers (SAE) token
bus? and Fiber Distributed Data Interface (FDDI) token ring’
protocols, are expected to meet the data rate, data latency, and
reliability requirements for network-based control systems* in
future generation aircraft. Although time-division-multiplexed
networking has distinct advantages over conventional point-to-
point connections in terms of reduced wiring, flexibility of
operations, and evolutionary design, the randomly varying dis-
tributed delays induced by the network could degrade the con-
trol system performance and are a source of potential instability.

The key issue is that fiiters and controllers designed for non-
networked systems may not satisfy the performance and stabil-
ity requirements in the delayed environment of network-based
systems such as those in high performance aircraft. From this
perspective, the established methods of state estimation and
state feedback such as Linear Quadratic Gaussian (LQG)*¢ need
to be modified or reformulated.

A finite-dimensional discrete-time model of the control sys-
tem with randomly varying distributed delays has been reported
earlier™ where the delays are represented as stochastic parame-
ters in the matrices of the state-space model. The randomly
delayed measurements render the task of control systems analy-
sis and synthesis more complex than those involving nonde-
layed systems with stochastic parameters as reported by several
investigators.*'" Along this line Liou and Ray"™ " have proposed
a linear stochastic regulator for compensation of randomly vary-
ing delays as an alternative to the deterministic approach of
multistep prediction reported by Luck and Ray' and Shen and
Ray." This stochastic control law is formulated on the principles
of dynamic programming and optimality® where the effects of
randomly varying sensor-to-controller and controller-to-actua-
tor delays, as explained in Refs. 7 and 8, are taken into account.
Following the structure of linear quadratic regulator (LQR),
the control law is formulated in the presence of randomly
varying delays from the controller to actuator under full state
feedback and no plant and measurement noise. Conditions for
stochastic stability of the closed-loop system are established in
the mean square sense.

Asok Ray received his Ph.D. degree in Mechanical Engineering from Northeastern University, Boston,
Massachusetts, in 1976, and graduate degrees in electrical engineering, computer science, and mathematics.
He is currently a Professor of Mechanical Engineering at Pennsylvania State University. Dr. Ray’s interest
include control and optimization of continuously varying and discrete-event dynamic systems in determinis-
tic and stochastic settings, intelligent instrumentation for real-time distributed processes, and design of
fault-accommedating and robust control systems. Dr. Ray is an Associate Fellow of AIAA, a Senior Member
of IEEE, and a member of ASME. He is also serving as an associate editor for two journals.

Received Jan 7, 1993; revision received May 28, 1993; accepted for publication July 20, 1993. Copyright © 1993 by A. Ray. Published by the

American Institute of Aeronautics and Astronautics, Inc., with permission.



702 RAY: OUTPUT FEEDBACK CONTROL

To augment the stochastic linear regulator for output feedback
control, Ray et al.' have formulated a state estimation filter
to account for random delays in the measurements with the
stipulation that the control law can be obtained as a function
of the estimated state vector. This filter is a modification of
the conventional minimum variance filter® and is based on the
statistics of the delay in sensor data arrival at the controller in
addition to the statistics of plant and measurement noise. In
this approach, the most up-to-date sensor data is used at each
sampling instant to obtain the state estimate. We propose an
output feedback control law where the full state feedback sto-
chastic regulator is complemented with the minimum-variance
state estimator under delayed measurements.

The objective of this paper is to present a unified estimation
and control methodology for compensation of randomly varying
distributed delays in the stochastic setting, hereafter called the
delay compensated linear quadratic Gaussian (DCLQG) control.
The proposed concept of DCLQG is essentially a combination
of the optimal full state feedback stochastic regulator'® and
the minimum-variance state estimator'® which compensate for
the randomly varying delays distributed between the controller
and actuator and the sensor and controller, respectively. The
certainty equivalence property® of LQG does not hold, in gen-
eral, for DCLQG because of the presence of multiplicative
uncertainties in the system matrices.® Although DCLQG is a
suboptimal output feedback compensator, it is potentially a tool
for control systems analysis and synthesis in the presence of
randomly varying distributed delays in general, and particularly
for future generation aircraft that are equipped with computer
networks to serve the vehicle management system. However,
further work in the area of performance and stability robustness
is needed to this effect.

Delay Compensated Linear Quadratic
Gaussian Control

The control system under consideration consists of a continu-
ous-time plant (where some of the states may not be directly
measurable) and a discrete-time controller (having an embedded
state estimator) which share a data communication network
with other subscribers.* Therefore, the sensor and controller
data are subjected to randomly varying delays induced by the
network before they arrive at their respective destinations as
shown schematically in Fig. 1. A finite-dimensional discrete-
time model of the delayed control system has been reported in
our previous publications™ where the effects of random delays
are realized in the form of multiplicative uncertainties. Further-
more, the plant is subjected to random disturbances and the
sensor data is contaminated with noise. Based on this model
structure, the proposed delay compensated linear quadratic
Gaussian control system is partitioned into: 1) a stochastic
regulator based on full state feedback and induced delays

Sensor Data Yl Yx Yiel
Sensor Sampling and T ] T I
Signal Generation
Instants ! Sensor Frame 7|
- N -~ ~
N

N
Delayed Sensor Data \ N

\

I th [ | | |
Controller Sampling | _ PeTop = % I |
Instants | =i ;\ =Ykt | Controller

-~ - Frame

N
Control Signal e a L—A __A-'r._T_A.J N
Generation Instants . | |

: ‘l‘“ ! kT
Control Signal ! ey ! ! Uk

1 't ) Iy ﬁ,
State Estimate at the | A I A ! A
Controller Frame | ST s i 3T
State Estimatc at the o3 1 £
Sensor Frame [ANT e Seetient

Fig. 1 Ilustration of induced delay characteristics.

between the controller and the actuator but no plant and mea-
surement noise; and 2) a minimum-variance state estimator
based on the mode! of plant dynamics, plant disturbances, and
noisy sensor data along with the statistics of induced delays
between the sensor and the controller. The main results, includ-
ing the pertinent assumptions and their implications, are pre-
sented in this section.

Assumptions

The pertinent assumptions for constructing the stochastic
regulator and minimum-variance filter of DCLQG are deline-
ated. The underlying justifications are laid out in the paragraphs
following each of these assumptions.

1) The sensor and controller have the sampling period T with
a skew Ay, between the sensor and controller sampling instants.
A is a slowly varying parameter to be periodically reset and
is treated as a constant parameter,

Since the clock rates of individual crystals are very close
but they are never identical, the skew A; varies slowly with time.

2) There is no delay in the process of sensor signal generation,
Le., the instant of sensor sampling is identically equal to the
instant of sensor signal generation.

The actual delay in the signal generation process is on the
order of microseconds whereas the sampling period 7 is on the
order of tens of milliseconds.

3) The delay 4, in the processing of the control signal is
constant. Therefore, the skew between the instants of sensor
and control signal generation, which is equal to the sum A
= As + A, is also a constant. The skew A is bounded above
by 7, i.e., A = T with probability 1.

The processing delay A, can be made small by appropriate
selection of the control computer, and A, can be periodically
reset to a prescribed value. Nevertheless this assumption is not
critical and can be waived at the expense of additional computa-
tions.

4) Network-induced data latencies between the sensor and
controller 8 and between the controller and actuator 8¢ are
bounded between 0 and T with probability 1.

This follows the standard practice of network design* in
which the maximum data latency is constrained not to exceed
the sampling interval.

5) Network-induced data latencies 8 and 8§ are mutually
independent, white sequences with identical and a priori known
statistics. The sequence {{,} of measurement delays in units
of the sampling period T to which the sensor data is subjected
has the following statistics for every sampling instant k: Pr[{,
=0] =« ie., Pridf < Asl = o and Pril, = 1] = 1 —
o, de., Pridf = Ag) = 1 — o,

Independence and whiteness of 8 and 8§ represent the
situation of a large number of subscribers on the network with
random traffic. It is an approximation for an onboard network
of an aircraft. If this assumption is not made, the task of control
systems analysis become mathematically untractable because
the o-algebra associated with the stochastic process will grow
indefinitely with time.

6) The sampler is ideal, and the digital-to-analog conversion
is implemented via a zero-order hold (ZOH). The actuator
operates as a continuous-time device, i.e., the control input acts
on the plant immediately after its arrival at the actuator terminal.

7) The second assumption is justified in view of the fact that
the actuator is equipped with a dedicated microprocessor which
is sampled much faster (ten times or more, for example) than
the controller computer.

8) The probability of data loss, due to noise in the communi-
cation medium and protocol malfunctions, is zero.

The data communication network in future generation aircraft
is expected to be fiber-optic based in which the bit error is
extremely small (107" or less, for example).

9) Plant noise {w,} is Gaussian with E[w,] = 0 and
E{ww]] = 0,8, where O, = 0 Vk, sensor noise {v,} is Gaussian
with E[v,] = 0 and E[vo]] = R where R, > 0 Vi, and
random sequences { wi ], { v}, and {Z;} are mutually indepen-
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dent. The plant state at the initial time is Gaussian with known
expected value and covariance matrix and is statistically inde-
pendent of other noise and disturbance.

These assumptions are in line with the standard LQG problem
and represent an approximation of the real situation for mathe-
matical tractability of control systems analysis.

10) The discretized version of the stochastic plant model is
both uniformly completely reachable and observable.

This assumption is in line with the standard LQG problem
to ensure stochastic stability of the closed-loop control system
in the mean-square sense. :

Remark I: Referring to the sensor frame in Fig. I, assump-
tions 3 and 4 imply that the number of new sensor signals
arriving at the controller terminal is exactly 1 and that the
number of control signals arriving at the actuator terminal is 0
or | or 2 during a sampling period. Similarly, referring to the
controller frame, the number of new sensor signals arriving at
the controller terminal is 0 or 1 or 2, and the number of control
signals arriving at the actuator terminal is exactly 1 during a
sampling period.

Delay Compensated Linear Quadratic Regulator

Setting the plant noise to zero, the plant dynamics for a full
state feedback system are represented by a finite-dimensional,
linear, continuous-time model in a deterministic setting

di

- =8 )

= a()E(1) + b(Du(r);

where £ & R" and u € R™ The problem is to formulate
a state-feedback control law in the discrete-time setting for
compensation of the randomly varying delays between the con-
troller and the actuator. Because of the varying (but bounded)
controller-actuator delay, the input u (¢) to the plant is piecewise
constant during a sampling interval [k7, (k& + 1)T) in the
controller frame where the changes in u (¢) occur at the random
instants k7 + ¢*as shown in Fig, 1. On this basis, the continuous-
time plant model in Eq. (1) is discretized in the controller frame
to yield

Eeor = Ok + DIADE + ) b (@)

i=0

where ®[(k + 1)T, kT'] is the state transition matrix from the
kth to (k + 1)th sampling instant

£+ 0T
b = X ®(k + DT, 1} dr

KT+

k+ )T
b} Ef ®[(k + VT, 1Jb(r) dr — B
kT

Extending the modeling methodology of Halevi and Ray,’
the discretized model (2) is augmented in the controller frame
to take into account the effects of controller-to-actuator delays.
The augmented plant model is

Xpeg = Agsiaxy T Brity 3

where 4, € R represents u(¢) at discrete instants of time,
P

L kT) b B
Arerp = [(D((k +01)T kT) Otjl; B, = [[:] 4)

and
e = ul-]T e R %)

is the augmented state vector.

Remark 2: During the kth sampling period, u, - , may affect
the plant state & ., in addition to w. Since u,., is already
generated by the controller, it is known at the kth sampling
instant,

Remark 3:  The elements b} in the matrices, A; ., , and B,,
of the augmented state-space model (3) are stochastic processes
because the time epochs { 7*} that form the limits of the integra-
tion in Eq. (2) are random. Therefore, A+, = Ays 1 (w), By
= By(w), X = x(w), and u, = u,(w) where w is a sample point
of the random sample space {) of the induced delays. Moreover,
Ar+1x and By are not statistically independent in view of Egs.
(2) and (4). ]

Similar to the standard linear quadratic regulator, an optimal
control law for delay compensation was formulated by Liou
and Ray'*" on the assumption of availability of the augmented
state vector x,. The recursive relationship for optimal state
feedback control {uf , k=N -1, N~ 2,...}, was derived
by minimizing the following performance cost functional over
a finite-time horizon of N sampling intervals:

Jilxy, ug) = Y% [ Qpx, + u]R,uy)
+ E{J¥  (xeer X)) (6)

if Kk < N, where J¥ (x,) := Ji(x,, uf) and uf¥ is the optimal
state feedback law at the kth sample, i.e., in the interval [T,
(k + 1)T,. For k = N, the terminal state is reached, and there
is no need for any control. Therefore,

J¥ (xn) = Iylxy, uf ) = Yo xiPuxy (7N

where Py = § is given.

The (m X m) control penalty matrix R, is symmetric positive
definite. The (n + m) X (n + m) state penalty matrix Q; and
the final state penalty matrix S have the following structures:

0.=[2 7], s=[§ g] ®)

LV -

where §; € "% " is the state penalty matrix which is constrained
to be positive definite, and § € R"*" is the final state penalty
matrix for the discretized plant in Eq. (2). The optimal state feed-
back control law'? is given via a recursive relationship in the fol-
lowing proposition.

Proposition 1: If the stochastic matrices Ay, ; and B; are
independent of {A;.+, ;} and {B;} forj=k -1, k—2,...,
respectively, and the statistics of the network-induced delays
are given, then the optimal control law at the kth stage is

ug (xy) = —Fyx, )
for k < N and the resulting minimum performance cost is
J¥ (xy) = Y x[Pyx, (10
where
Fy = [Ry + E{B[Prs Bi))TE(BIPrsyArs i} (11)
Po= 0, + E{Ais 4Prsvi(Arsrx — BiFD) (12)
with Py = §; and each equation is evaluated backward starting

from N — 1.
Proof: The proof of proposition 1 is given in the Appendix.
O
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Remark 4: The control law in Egs. (11) and (12) is com-
puted off-line to numerically obtain a steady-state value of the
gain matrix F on a finite-time horizon."” The expected values are
numerically generated based on the a priori known probability
distribution of the controller to actuator delay 5§, ]

Joshi"' formulated a recursive algorithm, similar to that in
Proposition 1, as a solution to the optimal regulator problem
in the presence of multiplicative uncertainty. However, conver-
gence of the recursive algorithm and stability of the closed-
loop control system were not established. For the stochastic
plant model similar to the model in Eq. (3) and the state feedback
control law structurally identical to that in Proposition 1, Yaz'®
established exponential stability of the resulting closed-loop
control system in both mean square sense and almost sure
sense. The state feedback control algorithm was generated in

* the settings of both infinite-time horizon and finite-time horizon.
The sufficiency conditions for stability were shown to be Q,
> 0 and the plant model being mean square stabilizable. For
the specific structure of the system matrices A4, and B, in
Eq. (4), the, first condition of O, > 0 can be relaxed to that
specified in Eq. (8). Therefore, the recursive relationship for
the control law given in Eqgs. (9-12) yields exponential stability
of the closed-loop system in the mean square sense and almost
sure sense provided that the pair (A;4, . Bi) is mean square
stabilizable and that the number N of iterations is sufficiently
large. Now we establish convergence of the recursive algorithm
for the special case where the plant is time invariant.

Proposition 2:  Let the cost matrices O, and R; be constant,
and the plant be time invariant, i.e., the matrices a(r) and b(¢)
in Eq. (1) are constant. Then the matrix Py in Proposition 1
converges to the limit matrix P as N — o if the augmented
plant model x,+1 = A4 — By in Eq. (3) is mean
square stabilizable.

Proof:  The proof of Proposition 2 is given in the Appendix.

(]

State Estimator for Delayed Measurements with Plant and
Sensor Noise

The control law derived in Eq. (9) is a function of the aug-
mented state vector x; defined in Eg. (5). The first n elements
of x; are the plant states &, and the remaining m elements of x,;
namely, u, ., are already computed and stored at the controlier
buffer. If all plant states are not measurable or if the sensor
noise level is unacceptable, then a filter is necessary to provide
an estimate, &, of & using the measurement history; and this
estimate may replace the actual plant state part of the augmented
state vector in the formulation of the optimal control uf . The
design of such an on-line state estimator, which must account
for the delayed sensor arrival at the controller and also delayed
control inputs to the plant, is addressed in this section.

The continuous-time plant model in Eq. (1) is now supple-
mented with the unit intensity white noise vector w(r) and the
noise input gain matrix g(1). The resulting discrete-time plant
dynamics at the instants of controller sampling are obtained by
including the noise term in Eq. (2) as

|
Eior = DUk + DT AT, + wi + > bjue-;  (13)

i=0

where

(k+ DT
wi = Ok + DT 7)g(Tw(r) dr (14)

kT

However, for plant state estimation based on the sensor data,
we first set the plant model in the frame of sensor sampling
instants (see Fig. 1), and then predict the state estimate at the
controller sampling instants. Considering the constant skew A
between the instarts of sensor and control signal generation
(see assumption 3 at the beginning of this section), the discret-
ized model in the sensor frame is given as

1
o = O[(k+ )T — A kTIE, + W) + Z Qlui-, (15)

i=Q
Evsn T Dk+ DT (k+ DT - M8, +w
+ > W (16)
i=0

where & is the plant state at the instant of kth sensor signal
generation, and & is the plant state at the instant of kth control
signal generation following Fig. 1,

(k + )T

Wy = ®[(k + DT, tlg(t)w(r) dr

(k+1T=-4

(k+ DT~ 4
wi = f” Ql(k + DT — A, tlg(t)w(r)dr (17)

k+ DT~ A
[ @[k + DT = A, 7]b(r) dr
T+l"

k
0
ift* < (T - A)
ift* = (T - A)

k+ DT -4
f Dk + DT — A, 7]b(r) dr — ¢!

kT

&
I

(18)

£
i

AT + 1 ® A
+ DT — A, )b

= e, @ DT = 8, 1) dn

0

iftt =2 (T — A)

iftf < (T - A)

(k + DT
W= ekt Db dr - ¢

(k+ DT -4

|

19

Then, the plant state and measurement equations in the sensor
frame (see Fig. 1 and refer to Remark 1) are given as

2

Eivr = Dyprabh +wy + Z Biug-; (20)
i=0

Ye = Hi &+, (20

e = (L= Lys + Layr-a (22)

where &,y = ®[(k + 1)T — A, kT — A] is the plant state
transition matrix from the kth to the (& + 1)th sampling instant
in the sensor frame

(k+ T -4

Wy = DIk + DT ~ A, tlg(=)w(r)dT (23)
kT- A

B = ¢f; Bi =@ + -y Bl =wi-1 (29

Remark 5: It follows from Fig. | that the delayed sensor
data z; in Eq. (22) is either y, if the data arrives at the controller
before the kth sampling instant or y, -, if the arrival takes place
after the kth sampling instant. O

Remark 6: It follows from Eq. (24) that

k+ 1T - &

Z}Bx=f”

kT
+ j OUT, T)b(7) dr
kT—-24

Dk + DT —- A, m)b(r) dr

R AR DL TR O,
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Remark 7:  Since the plant model (20) is a direct discretiza-
tion of the continuous-time model (1), the state transition matrix,

®k# Ik is invertible. D
The information on the measurement history, Z = (z
Zi ..., 7}, up to the jth instant is available to obtain an estimate

of the state x; for & = j. Accordingly, we denote the conditional
expectation of & and the resulting error of estimation based
on the measurement history Z; as follows.

Conditional state estimate:

& = E(&§1Z;) forj=<k (25)
State estimation error:
ewy =& - &) forjsk (26)
Conditional error covariance:
Zu =Eleyel;1Z;)  withk=j @7

where E (-} indicates the expectation with respect to the statis-
tics of one or more of the three independent sequences of white

noise {wy }, (v}, and (Z;). (See assumption 9 at the beginning -

of this section.) It follows from assumption 5 that the first and
second moments of {; can be derived as follows:

E{le) =1— oy E{C)Y =1- o

E{(1 =00 =as E{L{l —L)} =0

Remark 8: In the formulation of the state estimation filter
reported by Ray et al.,'s u, was set to zero with no loss of
generality but, in this paper,  is included in the state equation
as needed for closed-loop control. Since the task of state estima-
tion is executed on-line, the past control signals and their arrival
instants { 1} at the actuator terminal are recorded at the control-
ler terminal. Consequently, the matrices {b,}, {B}}, and
{4 ) are known, and the term Z2. Biu,-; in Eq. (20) is deter-
ministic so that it can be linearly combined with the zero-input
state estimate to obtain the actual state estimate &, and the
conditional covariance %,,; in Eq. (27) is unchanged. O

The problem of state estimation under randomly delayed
measurements is stated as follows: Given the lincar discrete-
time dynamic system in Egs. (20 —22) under the assumptions
and initial conditions stated earlier, the problem is to find an
optimal estimate, &y, of the state & that minimizes the quadratic
cost functional at each sensor sampling instant k

Je = Elelyew) = u[E{ewel]) (28)

where ey, = (é{lk — &) is the filter error. The objective is to
synthesize a sequence of filter gain matrices, { K}, k = 1, 2,
..., that would minimize the cost functional J; in Eq. (28) for
each k. Using the concept of a standard (i.e., without measure-
ment delays) state estimator, we .propose a linear estimator for
randomly delayed measurements.

Proposition 3:  The unbiased linear filter that minimizes the
cost functional J; in Eq. (28) has the following recursive struc-
ture:

B = (1, — KilewH, + (1 = a)H, - B4 1)

X oy + Kiz, i 29)

2
Bu-y = QpporBlo -y + Z Bhoite-i-y (30)
=0 .

where I, is the (n X n) identity matrix, and the optimal gain
matrix K, k = 1, 2,3, ..., is given as

K, = [0, 2 - H]
+ (1= a)®Ppio Zpo - Hl- )
X[agHy + (1 — a)H, o D))
X Zu-iloHy + (1 = a)H, - ®54-117
to(l = a)[Hy = Hea @g-y)
X EEE1ZOH, = Hi @)
= (= a)H - PLh-1 Qe D] HT -,
+ (1 — )R-y + aR} ! 30

and the state estimation error covariance matrices are recur-
sively generated as

Dt = Prp 1 Spe a1 ®Licy + Qe (32)
Zu = LiZuo L]
+ oo (l = a)K [Hy — Hio P72
X E@EENZOHe = HyoydFh -]
X K[ = (1 = a)KeH - D)o Qoo PiF- KT KT
(1= o) X (Qu- Pi- HI- K]
+ KeHi o @00, Q4-0) + oK RUK
+ (1~ a)KRi- KT (33)

via the recursive relationship starting from the given initiai con-
ditions

éf)lo =p, and g = no (34)
Proof: The proof of Proposition 3 is given in the Appendix.
a

For implementation of the filter, the term E [ &iTIZ ) in Egs.
(31) and (33) is realized as

E(BE1Z) ~ B Bl + Zhey (35)

Remark 9: The relation in Eq. (35) follows directly from
the plant model (20) and the assumptions of white and mutually
uncorrelated plant and sensor noise statistics except for the
following approximation:

E[Wk-IWtT~|‘Zk] = E[Wk-lwr—lle]
~ E[wi-yw[-] (36
= Q-

It follows from Eq. (22) that if z, = y,, then w, _ , is not condition-
ally independent of z. Therefore, this realization of the optimal
filter in Proposition 3 would provide a suboptimal solution
unless oy is either O or 1 as seen in Eqs. (31) and (33). O

Integration of the State Estimator and the State
Feedback Controller

The results of the delay compensated state feedback and state
estimation algorithms under randomly varying delays, given in
Propositions 1 and 3, are now combined to generate the control
sequence { u,} for the closed-loop system. The estimate & of
the plant state at the kth sensor sampling instant is now extrapo-
lated (see Remark 8 and Fig. 1) to yield the estimate, &, at
the kth controller sampling instant by using the deterministic
part of Eq. (16) as

!
Eu = QUT AT = O + 5 Ylowweminy (37)
i=0

The combined state estimation and state feedback control
law is now obtained by changing a part of the augmented state
vector in the full state feedback control law. Since x, =
[Eluf.,]7 is as defined in Eq. (5), and the control action i, -,
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is already computed, the conditional expectation of the aug-
mented state is

ElxlZ:] = [EL&“Z-I]T (38)

where Z, is the history of the delayed measurements used for
generating the control signal at the sampling instant & in the
controller frame. Using the conditional expectation (38) in the
full state feedback control law (9), the DCLQG control law is
defined as

ul(Zy) = ~F8hu]-\)7  fork<N (39
where F; is the state feedback control gain given in Egs. (11)
and (12), and N is the final time when no control action needs
to be computed. If the control law is synthesized for a large
N, then Fyin Eq. (39) can be replaced by the limiting gain matrix
F provided that the plant is time invariant (see Proposition 2).
Hence, for a time-invariant plant, the DCLQG contro! law is

u (Z) = —F[Euul- )" (40)

Equation (40) implies that the DCLQG loop is formed via
integration of state estimation and state feedback control on
the assumption that the state feedback control can be separately
formulated from the state estimation. However, if o, € (0, 1),
it follows from Eq. (31) that_the filter gain K, involves the
conditional expectation E (£ &' | Z, } which is dependent on the
plant state &f. Therefore, the DCLQG concept does not comply
with the principle of certainty equivalence. That is, the optimal
control law could be different if an equivalent deterministic
model is used instead of the stochastic model. Therefore, unlike
the conventional LQG, the proposed DCLQG control may not
be optimal in the environment of delayed sensor signals.

Remark 10: Recently De Koning® has proposed an optimal
compensation algorithm for nondelayed systems with white
parameters in which the problems of synthesizing the controller
and estimator gain matrices are simultaneously handled. Appar-
ently, in the environment of delayed measurements, De Kon-
ing’s approach is not applicable because the measurement noise
cannot be modeled as a white sequence as explained by Ray
et al.'®

Simulation of a Flight Control System Under Delay
Compensated Linear Quadratic Gaussian
The proposed DCLQG control law was tested by simulation
of the longitudinal motion dynamics of an advanced aircraft.
A (continuous-time) plant model of the aircraft,” linearized at
the operating condition of 7.62-km altitude and 0.9 Mach, is
given as

—0.0226 —-36.6170 —18.8970

0.0001 —1.8997  0.9831
00123 117200 =-2.6316
a= 0 0 1.000
0 0 0
0 0 0
T
b = 0000 0 30
[o 0 0 0 30 0]'

where the six plant state variables are 1) forward speed, 2)
angle of attack, 3) pitch rate, 4) attitude angle, 5) elevon actuator
position, and 6) canard actuator position; the two control inputs
are elevon and canard signals; and the two output variables are
angle of attack and attitude angle. In this example, the linearized
plant model is unstable in the open loop.

On the basis of the discretized plant model, the control matri-
ces of the proposed DCLQG were synthesized using a standard
commercially available toolbox on a personal computer under

the following conditions: sampling time was chosen as T
= 0.025 s, the processing delay A, was assumed to be 0, and
the plant initial condition was set to & = [0.0 0.02 0.0 0.02
0.0 0.0)". Statistics of the network-induced data latencies
(between the sensor and controller 88 and between the control-
ler and actuator 8{*) were assumed to be independent white
sequences with Rayleigh distribution truncated at T.

Fy(8) = [1 — exp(—8 0¥/T?)J/[1 — exp(—8)]
for0=6=<T

For the stochastic regulator, the penalty matrices for the perfor-
mance cost was chosen to be 9, = I, and R, = 1072, for every
k; and the state feedback gain matrix was synthesized to be

0.8589 —3.4484 —1.6247 —2.6987 1.5314 —0.3659
—0.4106 1.9130 1.0092 14771 —0.3319 1.2174

0.31290.0483
—0.0428 0.2711

For the state estimator, the initial conditions are é{,.o = £;; and
Eom = 10-6[6.
The plant noise covariance matrix is

0.1435-0.1321 —0.1366 —0.1355 —0.0941 —0.0941
=0.1321 0.1216 0.1258 0.1248 0.0867 0.0867
—0.1366 0.1258 0.1301 0.1290 0.0896 0.0896
—=0.1355 0.1248 0.1290 0.1280 0.0889 0.0889
-0.0941 0.0867 0.0896 0.0889 0.0618 0.0618
—0.0941 0.0867 0.0896 0.0889 0.0618 0.0618

X 1077

and the measurement noise covariance is 1077,

Figures 2-5 present typical results of the closed-loop system
simulation to show a comparison of the performances of the
DCLQR and DCLQG. Figures 2 and 3 show the transient
responses of the two output variables: angle of attack and
attitude angle, which correspond to the state variables 2 and
4, respectively. Similarly, Figs. 4 and 5 present the transient
responses of the state variables 5 and 6, which are the elevon
and canard actuator positions, respectively. As discussed earlier,
the DCLQR stochastic regulator operates under the assumption
of full state feedback and no plant and measurement noise, but
the presence of controller-to-actuator delay 3¢ is considered.
The DCLQR responses are plotted as a benchmark for compari-

—32.0900 3.2509 -0.7626
—0.0007 -0.1708 -0.0050
0.0009 ~31.6040  22.3960

0 0 0

0 —30.0000 0
0 0 --30.0000

son with those in DCLQG for different values of the normalized
skew (A/T') which have been chosen to be 0.0, 0.5, and 1.0 in
Figs. 2 and 3 whereas Figs. 4 and 5 show comparisons of the
actuator state responses under DCLQR and DCLQG along with
the estimates of these states for A/T = 0.5.

The results in Figs. 2 and 3 show that, compared to DCLQG,
the system performance of DCLQR is always better because
the plant noise and sensor noise are abser:!, all states are avail-
able, and the delay effects of the skew A are exactly compen-
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sated. On the other hand, the overall performance of DCLQG
is degraded with an increase in A. From Proposition 2 and the
fact that the probability « of timely arrival of the sensor data
at the controller is a monotonically increasing function of A,
it follows that as A/T approaches 1, the state estimator would
perform like an optimum filter. However, this advantage of a
larger A is overcome by the increased error in extrapolation of
the estimated state, £§;, at the sensor frame to & at the controller
frame. Since the performance of DCLQG relative to A depends

0.03

r—— DCLQR  STATE
DCLQG  STATE AT =05
DCLQG  ESTIMATE AT =0.5

0.02

001+

CANARD ACTUATOR POSITION
&
2

0,04} ; 4

-0.05
0 0.5 1 1.5 2 2.5

TIME IN SECONDS

Fig. 5 Transients of canard actuator position.

on other factors, such as statistics of the network-induced delays
and the plant dynamics, the observation of monotonic degrada-
tion of DCLQG performance with increase in A may not be
valid in general. Figures 4 and 5 show that both elevon and
canard actuators respond fast under DCLQR to bring the closed-
loop system to a steady state. In contrast, these actuators exhibit
small oscillations to compensate for plant and sensor noise. As
expected, the state estimates lag behind the respective states
because of the dynamic effects of filtering.

Extensive simulation experiments were conducted with a
wide range of parameters representing the statistics of network-
induced delays, plant noise, sensor noise, and the skew A as
well as with different initial conditions for the plant model
and the state estimation filter. In general, the performance of
DCLQG degraded with larger noise covariance, but there was
no evidence of instability of the closed-loop control system. In
particular, the filter performance was very good in terms of the
covariance of the state estimation error. Simulation experiments
were also conducted after injecting structured (e.g., errors in
plant model parameters) and unstructured (e.g., additional
dynamics in the plant model representing the flexible modes
of the airframe) uncertainties in the plant model. DCLQG was
found to be sensitive relative to these uncertainties in terms of
both ‘stability and performance robustness. This is expected
because LQG has poor robustness property (unless appropri-
ately tuned), and the injected delays in the control loop further
deteriorate robustness of DCLQG.

Conclusions

An output feedback control law for compensation of ran-
domly varying distributed delays has been formulated in the
setting of linear quadratic Gaussian, hereafter called the delay
compensated linear quadratic Gaussian. The minimum-variance
state estimator and the optimal state feedback controller in this
delay compensated control law are synthesized on the basis of
a stochastic model of the sensor and plant dynamics and also
the delay statistics of the sensor and control data arrival at the
controller and actuator terminals, respectively. These delays are
assumed to be bounded (by one sampling period) in the analysis
reported in this paper. Nevertheless, the filter and control algo-
rithms can be extended for delays of more than one sampling
period, but such conditions are not of much practical signifi-
cance because the network design should not allow such over-
load even under the most severe conditions. Another major
assumption in the construction of the delay compensator is that
the statistics of the induced delays are white and independent
of the plant and measurement noise statistics. In the context of
a network, whiteness of the delay sequence can be viewed as
the result of having a large number of subscribers with random
traffic, which is an approximation for an onboard network for
an aircraft.

pue—
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In this approach, the state estimation and state feedback
control laws are separately synthesized based on the principles
of optimality, and then they are integrated to obtain the delay
compensated output feedback controlier. However, this applica-
tion of the separation principle does not retain optimality of
the integrated controller because of multiplicative uncertainties
in the plant model resulting from the delays in the loop. There-
fore, the proposed output feedback controller is suboptimal
even though the state estimator and state feedback controller
are individually optimal.

The proposed output feedback control law for delay compen-
sation has been tested by simulation of the flight control system
of an advanced aircraft which is unstable in the open loop. The
simulation results show that the state estimator and the state
feedback regulator are together capable of compensating for
randomly varying distributed delays. The proposed technique
of delay compensated linear quadratic Gaussian has the poten-
tial of emerging as a practical too! for analysis and synthesis of
on-line control systems that are subjected to randomly varying
distributed delays, in general, and particularly for future genera-
tion aircraft that are equipped with computer networks to serve
the vehicle management system. However, robustness of this
control concept is yet to be established under external distur-
bances and uncertainties in modeling of both plant dynamics and
network-induced delays. Further research is needed in this area.

Appendix: Proofs of Propositions 1, 2, and 3

Proof of Proposition 1
Starting at the (N — 1)th stage, the cost is

Iy (xn-1s Un-y)

=Y (- On-rXn-) + uL—IRN—luN-l)

+ E{J¥ (xp)lxn- ] (AD)
Using Egs. (3) and (7) in Eq. (A1) yields
Ju-i(xw-n, uw-1)
=Y (xy- 1 Qn-rxn-1 + Up-1Ry-yutn-y)
+ Y E{(Axn-1Xn-1 + By-yun-1)7
X Py(Anw-rxn-y + Byoquy- i Y xp-i)
=Yo(xy-1Qun-rXy-1 + Uy Ry-yupy-y)
+ Yo xh  E{Afw-1PrAun- i )Xu-
+ Uk E(Bli- 1 PyAny-1)Xu-1
+ Yo uh \E{By- \PyBy-iJun-, (A2)

The optimal control at the (N — 1)th stage is obtained by
minimizing the quadratic cost functional in Eq. (A2) with
respect to uy- . Setting

Sy (xyoy, Uy
: ‘(a” L) Ryl 4 E B PuByey ity
Uy

+ E{BZ‘—IPNAN.N~})XN“i

to zero, we have

¥y = —Fy i Xn-y (A3)
where
Fyoy = (Ry-y + E{Bh_ PyBy_1 )"
X E{Bf-1PyAnn-1) (A4)

The following facts have been used in the derivation: Ay .,
and By, are ‘ndependent of xy ., on the basis of the condition

laid out in Proposition 1 and uy -, is a deterministically struc-
tured function.

The optimal performance is then obtained by substituting
Egs. (A3) and (A2) into Eq. (A1)

JE(xn-y) = Ty (xn-y ul-1) (AS)

=Y xl \Py-1Xy-
where

Pyv = Quoy + Fho Ry Fyoy
+ E((AN.N—I - BN-IFN-I)TPN(AN.N-I "BN—|FN—1)}
= QOn-1 + E{ALy-1Pv(Ann-1 = By-1 Faoi))
+ Fl-i(Ry-y + E(Bi-PyBy-\)Fn-1 — Fhoy
X E{B}-1PyAyn-1)

or
Py =Q0n-y + E{ALy-1 Py(Ayw-y — By_1Froy)) (A6)
because

Fi-i(Ry-1 + E{(BL- \PyBy-i }Fn-)
= Fi-1(Ry-y + E{Bk-PyBy-1))
X (Ry- + E{BL-\PyBy-1 )™ X E(Bi-\PrvAnn-1)
= Fy 1 E{B}-1PyAnn-1)

Now we step back to the (N — 2)th stage,

In-a(xy-2, Un-2)
=Y (xh-20n-2Xn-2 t Uy 2Ry_2uf_3)

T E{JF - (xp-)lxy-2) (AT)

Using Egs. (A5) and (3) in Eq. (A7) yields

In-a(Xp-a, Un-2)
=Yo (xT o2 Qn-2xn-2 + U Ty 2Ry qu" wy)
+ Ve E{(Ay-1n-2Xn-1 T Bu-qun-2)”
Pyo(Ay-in-2 + Bu-quya)lxy-y)
Vo (xTn-2Qn-2Xn-2 + U7 y2Ry-quTy-1)
YoxT y 1 E{AT y i n-2Pu-1An-1n-2)xn-2
T Uy E{BT v 2Py An-in-2)Xn-2
+ Yo uTy yE(BTy_ 2Py By-q)un-s

I

+

Setting dJ (xy -3, Uy-1)/0uy., to zero yields the optimal con-
trol law

U2 = —Fy_axy-2 (A9)
where
Fyoy = (Ry-y + E(Bh-2Py-1By-2))
X E(BTy_2PyAn-1n-2) (A10)
and the optimal performance is
JEa(xw-2) = Jy-a(xn-a, uTyoa) (AT1)

=Yoxf 2 PyaaXn-s

Cipeob g
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where
Py-2 = Qu-a
+ E(ATho weaPu-i(Ancin-r = BuoaFuoy)) (A12)
The proof can now be completed by induction.

Proof of Proposition 2
It suffices to show that the limiting performance cost is
bounded. That is,

JE (x0) = Ve xfPoxy <o (A13)

From Egs. (6) and (7) it follows that as N — oo,

Zuwn+dmﬂ (A14)
k=0

JE(xo) = E

Mean square stabilizability of the pair (A, Bi) implies
that there exists a gain matrix F such that the closed-loop system
X+t = (Alysy, — ByF)x, is asymptotically stable in the mean
square sense. It follows from Yaz'® that the limiting gain matrix
F in Proposition 1 satisfies this condition.

We define an operator =: ©,,, — 0, ., where ©,, . is the
linear space of (n + m) X (n + m) real symmetric positive
semidefinite matrices, and

EM = E{(Ass1x = BiF)™M(Ays s — B, )
VM e®,,n

(AlS5)

Since the sequences of stochastic matrices A, , 1.+ and By are
identically distributed for all k, the operator = is invariant.
Further, because of asymptotic stability of the closed-loop sys-
tem, the spectral radius p(£) < 1. Therefore, the first part of
the infinite sum on the right-hand side of Eq. (A14) can be
expressed as

E z X0x, | =3 Z E*)on < o Vxo (Al6)
k=0 k=0
Since 4, = —Fx,, the second part of the infinite sum in Eq.

(Al4) involving u, also converges. Hence the optimal cost
J¥ (x0) is bounded.

Proof of Proposition 3

Using the concept of a standard (i.e., without measurement
delays) state estimator, we propose a linear estimator for ran-
domly delayed measurements, which will minimize the cost
functional J, in Eq. (28), to have the following recursive struc-
ture:

éiu = Lk;iiu-. + Kizy (A17)
a

-1 = DPrs-r&om-r + Z Biur-, (A18)
=0

where the matrices B} are deterministic for on-line state estima-
tion because the arrival instants {#*) of past control signals at
the actuator terminal are recorded at the controller terminal
(see Remark 8 in the second section). The following relationship
must be satisfied for the linear stochastic filter to be unbiased,
ie., Efew} = E{Eu — &) = 0 Vk, we must have

Ly=1, = KilaH, + (1 = a)H- Prioi] (A19)

where I, is the (n X n) identity matrix. We 'ﬁ.rst present three
lemmas that are needed to prove the proposition.

Lemma ! to Proposition 3
For the linear stochastic filter to be unbiased, i.e., E{ew-y)

= E.{&u-1 — &) = 0, Vk, the following relationship must
be satisfied:
éiu = éiu-l
+ Kz = (ool + (1= a)H - @0k Q8- ) (A20)
Proof of Lemma 1: We need to establish two additional
lemmas for proving Lemma 1.

Lemma 2 for Proposition 3

If the filter is unbiased, i.e., E{ew-,} = 0, Vk, then the
predictor is also unbiased, i.e.,

Efew-1) = 0Vk (A21)

where ey~ = (é’uk-n = &%)
Proofof Lemma2: Using Egs. (20) and (A 18) the prediction
error ey -, can be expressed as
Chk-1 = (bk.k-léilk-l = (Pre-1 & + Wi-1)
= (bk.k—l(éiu-z = &) — Wi
= ¢t.k—|ft~|ik-| T Wiy
Since the filter is given to the unbiased, i.e., E{e;_ -, } =0

and { w; } is a zero mean sequence, the expectation of the right-
hand side in the preceding equation is zero. ]

Lemma 3 for Proposition 3
For an unbiased filter, i.e., E{ex ) = 0, Vk, the gain matrix
Ly in Eq. (A17) can be expressed in terms of X, as

Ly =1, = KiloHy + (1 = ap)H, - Pih-y) (A22)

where [, is the (n X n) identity matrix.

Proof of Lemma 3:  Using Lemma 1, E {e,) = 0 implies
E{ew -1} = 0. Substituting Eq. (A17) in the expression for
ey yields

Cpr = %J’zlk - &

= Lkéilk—l + Kyze — &

= L8 +ew-) + Ke(1 = Lys + Liye-i] — 8
Substituting the relationships for £; and , from Eqgs. (20-22)
into the preceding equation, we obtain

e = [(1 = LK H Py + Li®Pisoy — Dy

+‘§kK}[1b4]a~|

+ (1= LKeHy + Ly — LG Wiy

+ Liew-1 + (1 = LKeve + LiKivyo
Since { w; ) and { v; } are zero-mean sequences and are indepen-
dent of {{,}, taking expectation E (-} on both sides yields

E([(1 = LOKeH Prs-y + Li®yyoy — dyyoy

+ LK H - JJE(E- )} =0
to guarantee the zero mean of ey. Since E{&_.,} # 0, in
general, its coefficient matrix must be zero. Noting that the
plant state transition matrix &,,_, is invertible for Vk and
substituting the first moment of {, in the preceding equation,
the result follows after some algebraic manipulations. O

The proof of Lemma 1 is now completed by using Lemma
3 for L, into Eq. (A17).
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Proof of Proposition 3: The cost function J; is to be mini-
" mized at each instant k based on the measurement history Z,;
the problem is recast as

n}in Jo = n}in [ E(ewehe! Zi}) (A23)
& 'k

such that the gain matrix X, achieves the minimum for the
estimator structure laid out in Proposition 3.

We express the filter error e, in terms of the prediction error
€u; - and the measurement z, by first using Eq. (A17) and then
using Eqs. (20-22) for the delayed measurements

Cpk = é::lk - &
= Lkéilk-l + Kz — & (A24)
= Leflu-1 + Kl(1 = L)(HE + )
+ Le(Heo Eoy + v} — 8
Substitutiné the inverse relationship of the plant model (20)
and rearranging Eq. (A24) yields
ew = LBy — &)
+ L&~ — (0 = L) KeHy = LK H o P14 )
X & = LKeHeo Ok ywio
+ (1 = 8) Kive + LeKevi-y
=Liew-y + (Ly — €08 — LKeHieo  Pik-y wioy
+ (1 = LKevye + LiKyve— (A25)
where £, =1, — (1 — {)KH, — (K H, - P - . The following

relationships are used for subsequent derivations: Moments of
measurement delay statistics given as

Pril; = 0] = o, and Pril, = 1] =1 — o
and
E{wiwi1Zi} = E{wiw]} = Q4
E{voV[I1Zy) = E(viV]) = Ry

All other cross terms involving { w; ) and { v, } are zero because
of their mutual independence and

E{fklzk} = Lk
using the result of assumption 9,

E{em—IWZ—lle}
E{(‘I’u--xék—nk—l = Dpiarbiy — Wk—l)WI—llzk}
= =Q-

il

and

E{( = &)Ly — €)1Zy)
(I —a)l, — E{(1 - ‘:k)ek}
ap(l = 0 )K(He Pehoy — Hy)

Using Eq. (A25) and the relationships just given, we have after
some algebraic manipulations

zm = Efewel!Z,) = L,‘E{e*..-,elu-dzk}ll

+or(l = a)Ki[Hy = Heo PLL-1)

X E(GE1Z ) Hy ~ Hie  Bh-1 1K

= (= a)KH, P,

X Q¥ \H[- K]

+ (1 = a0 X Qu- ®iT- HI- KT

+ KeHe ®24 -1 Q4-0)

+ o KR K] + (1 =~ a )K(Re-1 K] (A26)

and the error covariance for prediction error is obtained as

Eklk-l = Efem-1e"w-11Z;)

= E(& = &u-0)E ~ 8-1)"1Z4)

= E{(@s- 181 + wiey = oy Bon)

X (@pp-rEit +wior = PosmiBon-1)T1Z4)

=E{(@ei-1€h-m-1 T Wi-y)

X (Pra-r€e-m-1 + wi-1)T1Z,)

= @pp 1 Zimm-1 PLe-t + Qi (A27)
Now we can substitute the right-hand side of Eq. (A26) in

the cost functional J; in Eq. (A27) to find the optimal K,. To
minimize J; we set the partial derivative of J, w.r.t. K, to zero

Ej_k - 9 tr(E{ewmelul Ze ) -

3K, 3K, 0 (A28)

By using the following facts about matrix manipulations:

dt[A(B + BTAT

d tr(AB)
= + BT : —l il = BT
A 2A(B ); and 2 B

A
the substituted terms of Eq. (A26) in Eq. (A28) can be expanded

for evaluation of the partial derivatives. Collecting the terms
containing K yields

Ki{lo H,y

+ (1= 0 )H Poia i 2= [ Hy

+ (1= o )Hio  Pup- ] + o (1 — ap)[H,

= Hi k- JE(E, 8124 [H,

—Hy @k )7

= (1 = o )H D1 Q- BT HE -

+ (1= a)Reoy + 0GR} = oD HY

= (1= a)@u-1 = Qu-1)Pif- H[_, =0 (A29)
The filter gain K; is obtained by solving Eq. (A29) and using

Eq. (A27) to substitute for %, -, in the last term on the left-
hand side of Eq. (A29).
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