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Abstract. Performance management of communication networks is critical for speed, reliability, and flexibility
of information exchange between different components, subsystems, and sectors (e.g., factory, engineering design,
and administration) of production process organizations in the environment of computer integrated manufactur-
ing (CIM). Essential to this distributed total manufacturing system is the integrated communications network
over which the information leading to process interactions and plant management and control is exchanged. Such
a network must be capable of handling heterogeneous traffic resulting from intermachine communications at the
factory floor, CAD drawings, design specifications, and administrative information. The objective is to improve
the efficiency in handling various types of messages, e.g., control signals, sensor data, and production orders,
by on-line adjustment of the parameters of the network protocol.

This paper presents a conceptual design, development, and implementation of a network performance manage-
ment scheme for CIM applications including flexible manufacturing. The performance management algorithm
is formulated using the concepts of: (I) Perturbation analysis of discrete event dynamic systems; (2) stochastic
approximation; and (3) learning automata. The proposed concept for performance management can also serve
as a general framework to assist design, operation, and management of flexible manufacturing systems.

The performance management procedure has been tested via emulation on a network test bed that is based
on the manufacturing automation protocol (MAP) which has been widely used for CIM networking. The concep-
tual design presented in this paper offers a step forward to bridging the gap between management standards and
users’ demands for efficient network operations since most standards such as ISO and IEEE address only the
architecture, services, and interfaces for network management.
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1. Introduction

Availability of affordable computer hardware and software has resulted in automation of
various office and factory operations. These operations include accounting, forecasting,
and marketing for business administration, computer-aided design (CAD), finite element
analysis (FEA), computer simulations for design and engineering, computer-aided pro-
cess planning (CAPP), inventory control and monitoring control of production processes
for manufacturing. A critical ingredient of this distributed total manufacturing system is
the integrated communications network over which the information leading to process in-
teractions and plant management and control is exchanged. Such a network must be capable
of handling heterogeneous traffic resulting from intermachine communications at the factory
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floor, design specifications, and administrative information. The objective is to improve
the efficiency in handling various types of messages, e.g., control signals, sensor data,
and production orders, by on-line adjustment of the parameters of the network protocol.
In an effort for further productivity gain computer integrated manufacturing (CIM) focuses
on combining these activities into a single, closed-loop, interactive control system. Essen-
tial to the success of CIM operations is the computer network which links spatially distributed
islands of automation through timely exchange of relevant information such as new pro-
duction orders, design modifications, and status report of manufacturing resources (Ray
1988b).

Data communication plays an essential role in flexible manufacturing systems (FMSs)
as it allows various information to be transferred over spatially distributed and functionally
diverse manufacturing entities. Manufacturing system networks carry a wide variety of in-
formation such as CAD drawings for product design and assembly, bills of materials, pro-
cess plans, customer orders, materials requirement planning, and production schedules.
The networks also carry sensor data and control signals for manufacturing processes in
addition to voice and video data for interpersonnel communications. These kinds of infor-
mation are crucial for operation of an FMS, and successful information management and
integration is a key element for an efficient FMS.

Computer networks for FMSs are required to transfer information under continuous
changes such as fluctuations in network traffic including the addition, deletion, and failure
of network components. In order to maintain an acceptable level of service, computer net-
works must be flexible to adapt themselves to variations in traffic load; this is the respon-
sibility of network management. In general, network management aims to maintain reliable,
flexible, and efficient network services by controlling and coordinating available resources.
Among various functions of network management, three major components are configura-
tion, fault, and performance management (Thompson 1986). Configuration management
is related to establishing the network and accommodating any configuration changes by
modifying the necessary parameters while the primary functions of fault management are
fault detection, isolation, and recovery. Performance management monitors a specified
measure of network performance and executes the identified actions which can improve
the efficiency of network operations.

Performance management of communication networks is critical for speed, reliability,
and flexibility of information exchange between different components, subsystems, and sec-
tors (e.g., factory, engineering design, and administration) of production process organiza-
tions in the CIM environment. Basic results have been reported on the architecture, ser-
vice definition, management protocol, and distribution of network management functions
(Thompson 1988; Saydam and Sethi 1987; Klerer 1988). Several standards for network
management have been already published or are under preparation as an important part
of the integrated protocol suite (Manufacturing 1987; Technical 1987; IEEE 1985; SAE
1987). However, researchers apparently have not addressed the key issue of how to accom-
plish the network management tasks in real time as problems or disruptions arise either
in the network operations or in the manufacturing process that is served by the network.
This has happened partly because the development of a methodology for network manage-
ment is beyond the scope of standardization. Nevertheless, from the users’ point of view,
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network management is crucial for maintaining an acceptable level of services, as many
functions in different sectors of CIM operations are dependent on timely and reliable ex-
change of information.

Network operations with a single set of protocol parameters may not result in acceptable
network performance over a prolonged period of time because characteristics of network
traffic and availability of network resources change from time to time, especially in the
environment of flexible manufacturing. Therefore, performance management is needed for
tuning the protocol parameters to maintain the acceptable performance. Furthermore, per-
formance management of CIM networks becomes more important whenever a single net-
work has to satisfy diverse requirements for different classes of messages resulting from
diversity of production processes and their support services. This situation usually occurs
when a high degree of systems integration is needed in complex systems by accommodating
different classes of messages on a single network by virtue of elaborate priority mechanisms
or increased network bandwidth of optical fiber media (Ayyagari and Ray 1992a, 1992b).
For example, a single network for CIM should be able to deliver various messages such
as database query and response, CAD file transfer; interpersonnel electronic mail, and
sensor and control signals within their time limits of delivery under changing traffic pat-
terns caused by common events such as the arrival of new production orders and machinery
breakdown. Even though certain protocols (/EEE 1985) offer mechanisms to handie various
types of messages, the key parameters of the protocol which determine the network perfor-
mance are at the network operator’s disposal. In the current state of the art, these parameters
are manually adjusted on the basis of ad hoc rules and individual experience because there
is no established relationship between protocol parameters and network performance ex-
cept for the routing and flow control problems in point-to-point networks (Bertsekas and
Gallager 1987).

This paper presents a conceptual design, development, and evaluation of a performance
management procedure for multiple-access computer communication networks in the CIM
environment. The objective is to improve the efficiency in handling various types of
messages, e.g., control signals, sensor data, and production orders, by on-line adjustment
of the parameters of the network protocol. The performance management algorithm is form-
ulated using the concepts of: (1) Perturbatgion analysis (PA) of discrete event dynamic systems
(DEDS); (2) stochastic approximation (SA); and (3) learning automata (LA). The perfor-
mance management procedure has been tested via emulation on a MAP network test bed.

This paper is organized into six sections including the introduction and two appendices.
Section 2 presents the main theme of the proposed performance management procedure
including the concepts of PA, SA, and LA. Analytical formulation of the procedure for
the specific case of a token bus protocol is presented in Section 3. Details of implementa-
tion of the performance management procedure and its emulation on a MAP network test
bed are described in Section 4. The test results are presented and discussed in Section
5. Finally, the paper is summarized and concluded in Section 6. The priority mechanism
of the token bus protocol considered here is briefly described in Appendix A, and an ex-
ample of perturbation analysis of timer setting changes for the token bus protocol is given
in Appendix B.
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2. Structure of the Performance Management Procedure

Network performance, more specifically delays experienced by message packets, could
be critical for dynamic performance and stability of real-time manufacturing processes.
This is especially true if multiple machines (that are not hard-wired together for specific
task(s)) are required to jointly perform a variety of operation in the environment of flexible
manufacturing. An example is intelligent robotic welding (Nayak and Ray 1993), where
a scam-tracking robot may have to communicate through a network to exchange the desired
position coordinates and various messages for status report. Another example is manipula-
tion of a bulky and flexible workpiece by more than one independent robot which initiate
their own prescribed trajectories upon receiving a signal from a controller and report the
completion of the trajectories back to the controller via a network. The timeliness of the
transmitted data is essential because a delay could damage the workpiece or the robot’s.
wrists and arms.

In order to maintain an acceptable level of the dynamic performance and stability of various
manufacturing processes, performance management is required to manipulate adjustable
protocol parameters in real time so that the network can adapt itself to the dynamic en-
vironment. This can be accomplished in two steps: (1) Performance evaluation to find how
perturbations in protocol parameters affect a selected performance measure, i.e., to deter-
mine the relationship between the performance measure and the protocol parameters; and
(2) decision making to decide on how to adjust protocol parameters, i.e., to identify the
direction and magnitude of the parameter adjustment vector, utilizing pieces of informa-
tion provided in the first step and the history of performance.

Analytical techniques for performance evaluation such as queuing theory (Viswanadham
and Narahari 1992) often require unrealistic assumptions like Poisson arrival, and tend
to be mathematically untractable as the structure of the performance measure becomes
complex. Furthermore, network traffic statistics such as distributions of message genera-
tion interval and message length, which are required as inputs to the analytical model,
are very difficult to estimate in real time. On the other hand, discrete event simulation
(Law and Kelton 1991 is a viable alternative to analytical techniques. A major advantage
of simulation over any analytical technique is that a discrete event dynamic system (DEDS)
can be modeled with much less stringent assumptions, and more complex performance
measures can be handled with relative ease. However, discrete event simulation usually
suffers from significant computational burden because a single simulation run represents
only one realization of a stochastic process. In order to obtain an accurate performance
estimate under a given set of parameters, several independent runs (or a lengthy run if
the process is ergodic) are needed, and these runs should be repeated for different sets
of pertinent parameters. In order to avoid the estimation of network traffic statistics which
are still required, one can record time of generation and length for each message and feed
this information into a simulation model. However, this requires a large amount of infor-
mation transfer from each individual station to the computer on which the model is run-
ning, which may degrade the overall network performance.

Over the last decade, Ho and his colleagues (Ho and Li 1988; Ho and Cao 1991; refer-
ences therein) have developed the technique of perturbation analysis (PA) to circumvent
the difficulties of conventional analysis and simulation in DEDS. PA estimates the DEDS
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performance under perturbed conditions (with different parameter values) by observing
the sequence of events occurring over a period of time in the nominal (i.e., unperturbed)
system. In fact, PA constructs parts of event sequences for the perturbed system based on
the nominal one. This approach has a computational advantage over repetitive simulation
especially when no analytic technique is available. When the effects of n parameters on
a performance measure are to be evaluated, the conventional discrete event simulation needs
n + 1 runs (one with the nominal parameters and n runs, each with one perturbed parameter
and the remaining nominal values). On the other and, PA needs only one run because it
calculates the performance measure of the perturbed system based on the inherent infor-
mation from the simulation with the nominal parameter. Therefore, the ratio of computa-
tion time can be approximately 1 to n -+ 1 if the processing time for PA algorithms is
negligible compared to that for discrete event simulation. For performance management,
PA is very suitable because this technique can directly utilize on-line observation of events.
This does not require any identification of statistical parameters of the network traffic and
is computationally more efficient than discrete event simulation. Furthermore, PA still re-
tains the inherent advantaged of simulation over analytical techniques.

Decision making requires parameter optimization, and can be accomplished numeric-
ally by stochastic approximation (SA) which utilizes random measurements over a finite
period of time to estimate the finite difference quotient of the performance measure with
respect to decision variables (Rubinstein 1986). Since the measurement for performance
measure is a random variable with an unknown distribution, the estimated quotients have
a nonzero variance at every point. Consequently, the SA technique has to reduce its step
size as the extremal point is approached. However, in situations such as different types
of batch production, more than one optimization algorithm may be required because any
individual algorithm is likely to be efficient only in some region of the protocol parameter
settings under given statistics of network traffic. An additional level of decision making
is desirable to select the most appropriate optimization algorithm according to the current
parameter settings and traffic statistics. This approach is likely to enhance the efficiency
and credibility of performance management in a dynamic operating environment whose
characteristics are unknown or partially known. Techniques like learning automata (LA)
can be used for decision making at the upper level for selecting the most efficient and credible
optimization algorithm based on the past performance (Narendra and Thatachar 1989).

A learning automaton consists of a set of actions, a corresponding set of action prob-
abilities, and a reinforcement scheme. The action probabilities are updated by the rein-
forcement scheme according to the response from the environment which reacts to the ac-
tion of the learning automaton. A performance evaluator (PE) as a part of the environment
is required to interpret the response. If the interpretation is favorable, then the probability
of the chosen action is increased and those for other actions are decreased. By repeating
this process, the learning automaton can select the best action under the current environ-
ment. In the dynamic environment of flexible manufacturing (e.g., for different types of
batch production) the performance management algorithm must know whether the net-
work traffic statistics have changed because: (1) the optimization algorithm is likely to have
its own ability of adaptation such as reduction of the step size in SA; and (2) a change
in network traffic may mislead the learning automaton in evaluating the performance of
the optimization algorithms. Therefore, whenever any change in network traffic statistics
takes place, the step size of the optimization algorithm and the PE may have to be reset.
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The following two examples are provided to illustrate the analogy between the concept
of network performance management and that of flexible manufacturing operations.

¢ Let an FMS have a reconfigurable storage space which can hold several different part
types. The storage is designed to have movable partition walls so that the storage capacity
for a part type can be changed depending on the product mix and status of other manufac-
turing resources. A similar framework to the proposed concept of network performance
management, i.e., the combination of perturbation analysis, stochastic optimization, and
learning automata, can be applied for on-line adjustment of the individual storage capacity
for different part types.

¢ Consider the problem of dynamic part routing where a certain part of the product is
required to be directed to the most suitable machining center among the currently available
ones. It might be necessary, for efficient operations, to modify the routing criterion which
may include setup time, machining time, tool cost, and travel distance. Perturbation
analysis can be used to examine the effects of change in the relative weight of a factor
on the overall system performance such as throughput and production time (i.e., time
needed to complete the task). The combination of stochastic optimization and learning
automata may decide on the new weights of various factors in the routing criterion. These
weights can be modified on-line so that the whole system adjusts itself to various pro-
duction environment.

3. Formulation of a performance management procedure

The proposed performance management is based on the principles of perturbation analysis
(PA), stochastic approximation (SA), and learning automata (LLA), and its overall structure
is shown in figure 1. The linear token passing bus (LTPB) protocol (SAE 1987) has been
selected to demonstrate the efficacy of this performance management procedure for adjust-
ment of token holding timer (THT) and three token rotation timers (TRT1, TRT2, and TRT3)
in real time on the basis of measured network performance. The operating principle of
LTPB and its priority mechanism are described in Appendix A.

3.1. Performance evaluation via perturbation analysis

The knowledge of the relationship between a selected performance measure and the perti-
nent protocol parameters is a critical requirement for performance management. In this
case, the behavior of the LTPB protocol with perturbed parameter settings under the same
stochastic realization is constructed from a single observation with nominal parameters.
The settings of the four timers of LTPB directly influence data latency (i.e., the time inter-
val between the instant a message enters the source station’s queue to the instant the last
bit of the message is received at the desitnation station) whose statistics are often one of
the most dominant factors in the network performance. How to assess the effects of change
in timer settings on network operations is illustrated by a simple example of an LTPB net-
work in Appendix B.
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Figure 1. Overall structure of performance management.

We assume that the buffer capacity of each of the computers in the network is sufficient-
ly large so that there is no queue saturation on both nominal and perturbed paths with
probability approaching one. This assumption holds true in the CIM environment with
a large number of network users because the network is usually designed to operate suffi-
ciently below its full load and a safe margin is allowed in the allocation of queue capacity
to accommodate for bursty traffic in some parts of the network (Ray 1988a). In practice,
however, since the buffer capacity cannot be made arbitrarily large, queue saturation may
occasionally occur and performance management may not be optimal in that case. Since
these events result from bursty traffic, the network will recover from the transient loss
of performance and resume its optimal course under normal operations.
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The PA algorithm consists of two parts: (1) Detection of any possible difference between the
nominal path and a perturbed path; and (2) construction of the portions of the perturbed path
which differs from the nominal one. No additional event scheduling in discrete event simula-
tion is required for any one of these two parts. This is critical because a major share of
computations in discrete event simulation results from event scheduling and its execution.

3.11. Detection of difference between nominal and perturbed paths. A portion of the per-
turbed path begins to differ from the nominal one when the numbers of message transmis-
sions from a queue on a particular token reception are different in these two paths. (Transfer
of the right to transmit between the queues of a station is also considered as a token recep-
tion.) In order to establish the test conditions for a different number of message transmis-
sions on the perturbed path, several notations are introduced.

m: Number of messages just transmitted from the current queue on the nominal
path, m =0, 1,2, ....
g: Number of messages waiting in the current queue after m transmissions on the
nominal path, ¢ =0, 1, 2, ....
L,: Transmission time of the kth message, k = 1, 2, ..., m.
T: Nominal token circulation time of the current queue, i.e., the time interval be-
tween the previous and current token reception instants.
THT: Nominal length of THT.
ATHT: Perturbation in THT, THT + ATHT > 0.
TRT,: Nominal length of TRT;.
ATRT;: Perturbation in TRT;, TRT; + ATRT; > 0.

The following tests must be executed before passing the token to the next queue after
m message transmissions.

TESTO [test for priority class 0]:
Case a. ATHT > O and m > O:

> L < (THT + ATHT) and ¢ > 0
k=1

Case b. ATHT < Qand m > 1.
m—1

L, = (THT + ATHT)
1

=
[l

TESTi [test for priority class i, i = 1, 2, 3]
Case a. (TIRT; — T) > Oand m > O:

M=

L, < (IRT; + ATRT; — T)and g > O

k=1

ll
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Case b. (IRT; — T) > 0, ATRT; < Oand m > 1
m=—1
(TRT, + ATRT, - T) < 2 L
k=1

Case c. (TRT; — T) = 0 and ATRT; > O:
(TRT; + ATRT, — T) > Oand g > 0

Case d. (TRT, — T) > 0, ATRT, < Oand m = 1:
(TRT; + AIRT, - T) = 0

TESTO.a is applicable if a priority class O queue can transmit more message(s) on the
perturbed path in addition to m transmitted messages on the nominal path. Additional
transmission is possible only when THT is increased and there has been at least one message
transmission on the nominal path. (No transmission on the nominal path implies that the
queue is empty upon token reception). Further, the increased THT should be long enough
so that the perturbed THT is not expired even after m transmissions and the queue should
not be empty for additional transmission(s). TESTO.b is the opposite of TEST0.a. If TESTO.b
is satisfied, then the number of transmission on the perturbed path is less than the number
m of transmissions on the nominal path. In this case, ATHT should be negative and the
perturbed THT should expire during the (m — 1)st transmission at the latest. TESTi.a and
TESTi.b are largely equivalent to TESTO0.a and TESTO.b, respectively. TESTi.b represents
a slightly different situation compared to TESTO.b in the following sense. TEST:.b could
imply that no transmission is allowed on the perturbed path while there would be at least
one transmission on the perturbed path for TESTO.b. TESTi.c implies that some transmis-
sions are possible on the perturbed path while there has been no transmission on the nominal
path due to expiration of TRTi. If TESTi.d, which can be considered a special case of
TESTi.b, is satisfied, then no transmission is allowed on the perturbed path while one
transmission is allowed on the perturbed path while one transmission was possible on the
perturbed path.

3.1.2. Construction of the perturbed path. The construction of a perturbed path consists
of three parts: maintenance of the perturbed queue status; calculation of the perturbed timer
status; and propagation of the effects of perturbation on the instant of token reception.
Records associated with a message such as generation time and message length are kept
even after the message is transmitted on the nominal path. These records are discarded
only after the message is transmitted on both nominal and perturbed paths. In this way,
queue contents on the perturbed path are available for construction of the perturbed path.

For the priority level O, THT status is independent of the token circulation time T since
THT is always reset to its full value at each token reception. Therefore, upon a token recep-
tion, the remaining interval of THT on the nominal path R(0) is always equal to THT dur-
ing which the priority O queue can start to transmit its messages. On the perturbed path,
the interval R'(0) is

R'(0) = THT + ATHT.
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For the lower priority levels, the remaining interval of TRT; on the nominal path is equal
to R({) = max(7TRT; — 7, 0) upon a token reception, where max(:, *) denotes the larger
of the two arguments. Since the interval is dependent on 7, the perturbation on the instants
of the current and previous token receptions at a queue should be considered, which are
denoted by AC and AP, respectively. The perturbation on the remaining time when the
token is received, AR(i), is

AP — AC + ATRT, if (TRT, = T) > 0
AR(i) =
AP — AC + ATRT, + TRT, — T if (IRT, — T) < 0.

The first case of the above equation applies when the timer is not expired on the nominal
path as shown in figure 2. The second case applies when the timer is already expired prior
to the token reception as shown in figure 3. Then, at the token reception, the remaining
interval on the perturbed path, R'(i), during which priority i transmissions can start is

R'(i) = max(RG) + AR(), 0).

AC for the next queue is yet to be obtained for construction of the perturbed path. The
time X (i), spent in transmitting messages from the current queue, is known from the nominal
path. The time, X '(i), spent for message transmissions on the perturbed path can be ob-
tained on the basis of the perturbed queue status and the perturbed remaining time R'(i)

Previqus Token Current Token
Reception Instant Reception Instant
on Nominal Path on Nominal Path

Nominal Timer

AP - AC

Perturbed Timer Ik ATRT;
AP . ac AR(i)
: R'(i)
4
Previous Token Current Token
Reception Instant Reception Instant

on Perturbed Path on Perturbed Path

Figure 2. Perturbed remaining interval of TRT;(case 1).
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Previous Token Current Token
Reception Instant Reception Instant
on Nominal Path on Nominal Path

Nominal Timer

T AP - AC+TRT; -T

Perturbed Timer ATRT;
4 AC | ARG)
4 R'(i)

A

Previous Token Current Token

Reception Instant Reception Instant

on Perturbed Path on Perturbed Path

Figure 3. Perturbed remaining interval of TRT;(case 2).

is calculated by summing up the transmission time, L;, of the jth message from the per-
turbed queue either until the perturbed queue becomes empty or until the perturbed TRT;
is expired, i.e., R'({) — X '({) = 0. While caiculating X '(i), the observations, like data
latency on the perturbed path, can be recorded for estimating the perturbed performance.

Defining AX(i) = X'(i) — X(i), perturbation at the instant of token reception for the
next queue is obtained as:

AC@I + 1) = AC(@H) + AX(@)

where the indexes i and i + 1 which indicate the current and the next queues are based
on modulo 4, i.e., they range from O to 3.

3.6.3. Summary of the PA algorithm. The algorithm for perturbation analysis of the LTPB
protocol is summarized in four steps as delineated below.

Step 1. Perform appropriate tests (TESTO and TESTi, i = 1, 2, 3) just before passing the
token to the next queue or station. Set the flag if any of the tests are satisfied.

Step 2. If the flag is not set, repeat Step 1 for the next queue or station. Otherwise, pro-
ceed to Step 3.

Step 3. Execute the construction procedure for the current queue before passing the token.

Step 4. Repeat Step 3 until all queues have AC = 0 and AP = 0 during a token circula-
tion. If so, clear the flag and go to Step 1.
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3.2. Stochastic approximation

Although the stochastic approximation (SA) technique described by Rubinstein (1986)) has
been proved to converge in a stochastic sense, it is known to have a slow convergence in
many practical situations due to the fact that its step size is uniformly reduced regardless
of the current value of decision variable x[k] (a 4 X 1 vector of timer settings in this paper)
at the kth iteration. To circumvent this difficulty, the conventional algorithm is modified
following Ho and Cao (1983). This modified algorithm, hereafter referred to as modified
stochastic approximation (MSA), can be written as follows.

x[k + 1] = x[k] — T[kIf(gEIkD, ..., @k — m, + 1])

T[] is a diagonal matrix whose nonzero elements are not restricted to be identically equal
and are dependent on the number of sign reversals in the corresponding forward or backward
finite difference quotient g7 [k]. The ith diagonal element of I'[£] is

yilk] = max(c;ra™, 1y

where ¢; is a positive constant for initial step size; r € (0, 1) is a reduction factor; the ¢;[k]
is an integer counter variable indicating the number of sign reversals in the ith quotient
gF[k]; and [ is the lower bound common to all diagonal elements. The forward or
backward quotient of the observed performance g(x[k], w[k]) at a sample point w[k] is
defined as

G 1k = SO0+ ATk, oKD — gk — gOIH, wIK)
‘ A%TA

where u; is the ith unit vector, and a positive perturbation for ith decision variable; Ax;[k]
is used for forward difference while a negative Ax;[k] is used for backward difference.
The MSA algorithm also utilizes the past quotients to smooth the adjustments in x[k]. The
function f takes a weighted average of m,, recent quotient vectors g[k] = L., gif[k]u,.
That is, the ith element of f is written as

(qEkl, ..., gtk — m, + 1 _ 8(xIk], w[kD) J wixlk — j + 1gFlk — j + 1]
Hat T " D x;[k] j=1 gxlk —j + 1], wlk — j + 1])

where L%, w; = 1and w; = 0 V.

Remark. The basic idea behind the MSA algorithm is that the sign of the quotient changes
more frequently as X[k] approaches its optimal m point since the noise contained in the
quotient is likely to determine the sign. The MSA algorithm adapts its step size based on
the number of sign reversals in the quotient in contrast with uniform reduction in stochastic
approximation. The weighted averaging function f serves to reduce the length of a period
to measure the performance and to avoid alternating direction of the parameter adjustments.
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With an appropriate choice of the window size m,, and the weighting factors wj, inherent
noise in measurements may be reduced without sacrificing the speed of convergence.
However, a rigorous proof of the convergence for the MSA algorithm has not been estab-
lished. This is apparently untractable because of the dependence of the step size on past
history.

3.3 Learning automata

For autonomous selection of the optimization algorithm, the variable-structure stochastic
automaton (VSSA) (Narendra and Thatachar 1989) has been adopted because greater flex-
ibility can be exercised within a smaller structure in comparison to those in fixed or deter-
ministic settings. The reinforcement scheme in VSSA updates the action probabilities in
discrete time based on the responses from the performance valuator (PE). The next action
of the automaton is selected on the basis of the updated action probabilities whose sum
is equal to one. A simplified VSSA is represented by the triple {a, 8, A} where & = {«,
Qg ey O}y B = {Bi, Ba, ..., B}, and A: @ X B — & is the reinforcement scheme.
« is the set of available actions (i.e., optimization algorithms); «fk] denotes the action at
the instant k. 3 is the set of responses (i.e., possible levels of performance of the current
optimization algorithm) that are inputs to the automaton, and the response at the instant
k is denoted by B[k].

The discrete reinforcement scheme for performance management has been formulated
following the concept of discrete reward/penalty (DRP) automaton (Oommen and
Christensen 1988). In this case, the automaton has two available actions (i.e., there is a
choice between two alterntive optimization algorithms) in response to five possible inputs,
namely 0, 0.25, 0.5, 0.75, and 1, from the environment. Among these inputs, 8; = 0
indicates the most favorable response while 85 = 1 is the most unfavorable one. The rein-
forcement scheme has M + 1 states (i.e., the action probability is allowed to assume one
of the M + 1 values) where M is an even integer greater than two. The parameter M is
to be selected by the user as a trade-off between the resolution and convergence time of
the decision algorithm. The reinforcement scheme is presented below:

-~

2 ifafk] = 1and Bk} = 0,

M orif a[k] = 2 and Bfk] = 1

1 if afk] = 1 and B[k] = 0.25,

M orif afk] = 2 and B[k] = 0.75

Aplk] = < 0 if B[k] = 0.5

-1 if a[k] = 1 and B[k] = 0.75,

M orif afk] = 2 and B[k] = 0.25

-2 if alk] = 1 and Blk] = 1,
M orif ofk] =2 and B[k] =0
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min(p,[k] + Api[k], 1) if Api[k] > O
pilk + 1] = 4 pilk] if Api[k] =0
max(p[k] + Ap,[k], 0) if Apy[k] < O

where p[k] is the probability of selecting «;. The probability of selecting «, is given as
palkl = 1 — pylk] vk

4. Implementation of the performance management tool

The performance management algorithm has been implemented on a network test bed where
the LTPB protocol (SAE 1987) under consideration was emulated by two interacting ap-
plication processes. The test bed is operated on the IEEE 802.4 token bus protocol in the
environment of the (10 Mbps broadband) manufacturing automation protocol (MAP). The
physical configuration of the test bed consists of a length of coaxial cable, a head-end re-
modulator, and three hosts. Each host computer is equipped with two network cards from
Industrial Networking Inc. (MP-400 1987). One of the hosts operates as a network manage-
ment console for initial downloading of the protocols to the remaining two hosts. For these
two hosts, a software package has been developed to emulate a number of LTPB stations
by generating, transmitting, and receiving messages which are essentially packets of the
association control service element (ACSE) of MAP.

4.1. Implementation strategy

Since the PA algorithm involves only logic and addition operations, it has been implemented
in a distributed manner so that the algorithm is executed at each station to estimate the
network performance under perturbations. The algorithm is capable of following four per-
turbed paths in which one of the four timer settings of the LTPB priority mechanism is
perturbed. The effect of a timer perturbation (perturbation in the token reception instant)
on the next station propagates through the logical ring via the token which carries this
information. In this distributed implementation, additional traffic due to management opera-
tions is expected to be significantly smaller than that for a centralized PA algorithm which
requires information on contents of queues and timer status from all stations. On the other
hand, the decision-making module that includes stochastic approximation and learning
automaton is centralized as a designated station, hereafter referred to as performance
manager. Even though the network may have more than one station with partial or com-
plete capability to execute decision-making functions, the centralized strategy allows only
one active copy of each decision-making function. The rationale for selecting centralized
decision making is that the distributed strategy, where every station could make decisions
autonomously based only on its local performance, would result in inconsistency and con-
flict by havng different timer settings over the network.

Network operations under the proposed performance management procedure involve a
series of iterations which consist of an observation period and subsequent management
actions. At the beginning, the performance manager broadcasts the initial timer settings
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and timer perturbation vectors to all stations. During an observation period, each station
executes its own PA algorithm, and the performance manager monitors the messages flow-
ing over the network. When the performance manager decides that enough data have been
collected, it waits for the token and then broadcasts the request for a performance report
to all stations. Then the performance manager passes the token without any further message
transmission. Once this request from the performance manager is received, other stations
interrupt their normal operations, prepare the performance reports, and transmit these reports
as soon as the token is received. After one complete token circulation, the manager receives
the token again and, by this time, reports from all other stations have been received. Then,
the manager processes the reports, computes new timer settings and broadcasts them with
new timer perturbation vectors for the next iteration. Upon reception of the new settings
and perturbation vectors, all stations set their corresponding variables and wait for the token
to resume normal operations.

4.2. Implementation of details

In this implementation, a measure of the network performance has been formulated on
the basis of observed data latency. Throughput of the network is excluded from the perfor-
mance measure because the network traffic is assumed to be sufficiently small relative
to the network capacity, which implies that all messages entering the network are eventu-
ally transmitted to their destination. In other words, the throughput is assumed to be equal
to the offered traffic. If this is not the case, then throughput should be included in the net-
work performance functional g(-, °).

The main focus of the performance measure is on data latency, i.e., how long it takes
for a message to reach its destination relative to the instant of its generation. This type
of performance measure will reflect how timely the messages are delivered and will be
suitable for many manufacturing applications such as the intelligent welding system and
the manipulation of bulky objects. The network performance g(-, -) is expressed as a func-
tion of data latency:

3 mylk]
g(x[k], w[k]) = —,;"[k] F(5i(x{k], wlkD)
al*l 2o j=1
1 3 mylk] 2
+d =0 8 (x[k], w[k])
malk] =5 j=1 ’

where p € [0, 1] is a weighting factor, m,[k] is the number of messages observed during
the kth iteration; i denotes priority level; m;[k] is the number of the priority level i
messages during the kth iteration which is related to m,[k] by m,[k] = L3, m;[k]; and
8}(x[k], w[k]) is the data latency of the jth priority level i message during the kth itera-
tion. F;(*) is a penalty function for the priority level i messages and is defined as
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0 if &} (x[k] wlk]) =
F,»((S}(X[k], wlk]) = (5 L(x[k], w[k]) — 6;)° 1f0 < &} (x[k] w[k]) 6, + b,
b? if 8} (x[k], wlk]) > 6; + b

with penalty threshold 6; and penalty band b; for the priority level i messages.

The first term of the performance measure represents the average penalty over all messages
such that a message of which data latency exceeds the corresponding threshold is penal-
ized according to the penalty function F;(+). This is analogous to variance of data latency.
This form of penalty is especially useful for messages carrying time-critical information
such as control signals and sensor data, interrupt signals, and video and voice data. The
second part of the performance measure takes into account the square of average data latency
over all messages. For network emulation on the test bed, p is set to one because the two
terms of the performance measure were found to have a very close correlation with each
other from simulation experiments.

The performance evaluator (PE) assesses the performance of an optimization algorithm
by observing various items after timer settings have been changed. To this end, the perfor-
mance of an optimization algorithm has been formulated focusing on its stepwise behavior
rather than the asymptotic one. In fact, the asymptotic performance of an algorithm may
not be measurable because the performance manager usually switches from one algorithm
to another. The PE maintains history of the network performance and adjustment of the
timer settings in order to provide criteria for evaluation of the recent action by the learning
automaton. In this implementation, records for the past five iterations are maintained. The
PE compares the current network performance with the average network performance of
the past iterations. Also, the magnitude and the signs of the current timer changes are com-
pared to those of the averaged timer changes for the past iterations. Since perturbation
analysis is executed all the time, the signs of the next changes are available for the PE
to compare the signs of the current changes to those of the next changes. According to
these comparisons, the PE selects one value for S[k] out of five possible values.

5. Results and discussion

The first part of this section presents the results from simulation experiments which were
conducted to investigate the accuracy of the PA algorithm which is an important ingredient
of the performance management tool. The second part focuses on the results from emula-
tion experiments on the network test bed to demonstrate the efficacy of the proposed tool.

5.1. Results of simulation experiments

An LTPB network with 10 stations has been simulated with the transmission rate of 50
Mbps and queue capacity of 10 messages for every queue. The network traffic is com-
posed of messages at four priority levels. The total network traffic takes 70% of the network
capacity on the average: 10% for priority level 0 and 20% each for priority levels 1, 2,
and 3. The PA algorithm formulated in Section 3.1 has been implemented in the simulation.
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This implementation maintains four separate perturbed paths and only one timer setting
can be perturbed in each path. The simulation result under a typical scenario is discussed
below.

Having set the timers, THT, TRT1, TRT2, and TRT3, at the nominal values of 150, 1,000,
800, and 600 usec, respectively, the PA algorithm was used to estimate the perturbed per-
formance under four different perturbations on TRT3: -100, -50, 50, and 100 psec. Four
additional simulation experiments have also been performed to obtain the network perfor-
mance with four sets of the perturbed timer settings without using the PA algorithm.

Figure 4 shows the absolute values of percent error in estimating the perturbed network
performance with TRT3 perturbations. In figure 4, S denotes the number of future message
generations considered by the PA algorithm. For S = 0 where no future message is taken
into consideration (shown by solid black bars), the error for the positive perturbation is
much larger than that for the negative one. The rationale is that a positive increment in
a timer setting is likely to make the perturbation in token reception instant AC positive
during a major part of the simulation experiment because an increased timer setting enables
the corresponding queues to transmit more messages compared to the nominal path. If
AC is positive, the PA algorithm has to construct the perturbed path with no knowledge
of any potential change in the queue contents from the present time z. In order to reduce

1.0
B s=0 Q

[e.n)

2 S=1 S

Percent Error in Performance

TRT3 Perturbation (psec)

Figure 4. Percent error of the PA algorithm with TRT3 perturbations.
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error in estimating the perturbed performance, the PA algorithm has been modified to look
into the event calendar so that the next message generation at a given queue can be con-
sidered in constructing the perturbed path. This idea has been extended to consider message
generations further in the future by scheduling more than one message generation for a
given queue. The shaded bars for § = 1 in figure 4 show a significant reduction in the
absolute values of the percent error when one future message generation at each queue
is considered by the PA algorithm. However, this method for reducing errors is aplicable
only to simulation experiments. Simulation results show that the PA algorithm is capable
of estimating the performance of the LTPB network under perturbed parameters by using
the results of a single simulation experiment under the nominal condition. The estimation
errors are found to be within 3% of all simulation experiments for perturbations in THT,
TRT1, TRT2, and TRT3.

5.2. Results of emulation experiments on the test bed

Three experiments conducted on the network test bed are reported here as typical results.
For each of these experiments, the emulated network was run for 100 iterations which are
equivalent to 300,000 message transmissions. During the first 25 iterations, the network
was operated without any performance management action in order to achieve the steady-
state operations. Four timers of the LTPB priority mechanism were adjusted on-line dur-
ing the remaining 75 iterations. The network is loaded with 60% of its capacity which
is evenly distributed over four priority levels. The network traffic for the priority levels
0 and 1 is intended to emulate real-time messages such as control signals and sensor data
which have a stringent time limit. Both priority levels have uniformly distributed message
length and interval between message generations. The messages at the priority level 0 are
generated more frequently but with a smaller number of bytes compared to those at the
level 1 in order to represent messages for the system with fast dynamics. On the other
hand, the priority levels 2 and 3 have exponentially distributed message length and interval
between message generations with larger averages than those for the priority levels 0 and
1. This scenario mimics the network traffic of occasional information transfer for other
non-real-time applications such as numerical control, (NC), program downloading and in-
ventory control activities.

For these experiments, two different MSA algorithms (described in Section 3.2) were
used: one is referred to as conservative and the other as liberal. The conservative MSA
algorithm has smaller values for initial step size ¢;, reduction factor r, and weighting fac-
tor w; compared to the liberal algorithm. In other words, the conservative algorithm tends
to adjust timers in smaller increments and to reduce its step sizes faster compared to the
liberal algorithm. For the first two experiments, the two algorithms were used separately
and one at a time for performance management without the learning scheme. This is re-
ferred to as the single-algorithm performance management (SPM). The conservative SPM
was found to yield better cumulative performance than the liberal SPM. For the third ex-
periment, both algorithms were employed together for performance management but one
and only one of the two algorithms is selected by the learning automaton at any given itera-
tion. This is referred to as the dual-algorithm performance management (DPM).
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Figure 5 shows a comparison between the cumulative network performance of the DPM
and the conservative SPM. As a reference, the network without any performance manage-
ment is also shown in figure 5. Up to 50 iterations, both SPM and DPM yield comparable
network performance which is significantly superior to that without any performance
management. Then onward, the cumulative performance using the DPM improves faster
than that using the conservative SPM. The rationale is that the DPM selects the liberal
SPM (which has relatively larger step sizes) more frequently to change timer settings in
larger increments while the conservative SPM changes the settings in smaller increments
which are reduced prematurely.

6. Summary and conclusions

A performance management algorithm for multiple-access networks has been conceptualized
and formulated for a token bus protocol by using the principles of: (1) Perturbation analysis
of discrete event dynamic systems; (2) stochastic approximation; and (3) learning automata.
The procedure is aimed at improving the performance of CIM networks in handling various
types of messages by on-line adjustment of protocol parameters, and has been emulated
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on a network test bed. The conceptual design presented in this paper offers a step forward
to bridging the gap between management standards and users’ demands for efficient net-
work operations since most standards such as ISO and IEEE address only the architecture,
services, and interfaces for network management.

The following major conclusions are derived from the results of simulation and emula-
tion of performance management of linear token passing bus (LTPB) protocol.

® The perturbation analysis algorithm can estimate the performance of an LTPB network
(e.g., IEEE 802.4 within the MAP architecture) by using the results of a single simula-
tion experiment under the nominal condition. The estimation errors are found to be within
3% for all simulation experiments.

® The performance of a manufacturing system network can be maintained by on-line ad-
Justment of its timers while the traffic load may change to meet the production schedules,
equipment failures, or other disruptions. Most importantly, the performance manage-
ment procedure does not require identification of the network traffic statistics.

® The discrete reward/penalty (DRP) reinforcement scheme is well suited as an ingredient
of on-line performance management under unknown and dynamically changing
environment.

¢ The framework developed in this research may be extended to a wide range of discrete
event dynamic systems (DEDS) including FMS. According to the current status of an
FMS, manufacturing resources such as robots and programmable machine tools can be
dynamically allocated to various manufacturing processes of different product types.

Appendix A. Linear token passing bus protocol

A token bus protocol is a distributed controlled-access protocol for the medium access
control (MAC) layer. The right to use the medium is explicitly controlled by a special bit
pattern called a token, and the responsibility of controlling the use of the medium lies with
every station. This appendix describes the priority mechanism of the linear token passing
protocol (LTPB) which is used in this paper to demonstrate efficacy of the proposed per-
formance management tool. A complete description and detailed specifictions of the LPTB
are given in the reference SAE (1987).

A token bus network consists of a number of stations connected via a broadcast medium
on which any transmission from a station can be heard by all stations. The right to transmit
a message is given to a station when it receives a special bit pattern called a token. The
token is passed from a station to another following a sequence of station addresses. The
last station in the sequence sends the token back to the first station to form a logical ring.
A station may transmit its messages before it passes the token to the next station in the
logical ring sequence. A station with the token has complete control fo the medium for
a finite period of time. The length of this period depends on the number of waiting messages
and the status of several timers as explained later on priority mechanism. A station can
transmit a number of messages or can pass the token to its successor (i.e., the next station
in the logical ring sequence) without any transmission.
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The LTPB protocol has a priority mechanism of four levels, namely 0, 1, 2, and 3, among
which the priority level O has the highest privilege of medium access. Each priority level
has a queue to provide temporary waiting space for messages of the corresponding priority
level. A token holding timer (THT) and three token rotation timers, i.e, TRT1, TRT2, and
TRT3 regulate message transmissions for the priority level 0, 1, 2, and 3, respectively. The
priority level O messages are allowed to start transmission with a period equal to the length
of THT. For the lower priority level messages, the initiation of a transmission must not
occur beyond the residual period (i.e., the time left until its expiration) of the correspond-
ing timer. If a timer expires while the corresponding priority message is being transmitted,
the transmission will be continued to completely finish the current message and no further
transmission is allowed until the instant of next token reception.

If a station receives the token it performs a self-diagnostic during the period of response
time (RT) before any transmission. At the end of RT, the station resets THT to its full value
and checks whether any message is waiting in the priority O queue. If the queue is empty,
the chance of transmission is given to the priority level 1; otherwise, the station starts its
THT and begins to transmit the oldest message in the priority 0 queue. At the completion
of a message transmission, the station checks whether THT has expired and whether there
are more messages waiting in the priority 0 queue. If THT is not expired and the queue
is not empty, the station starts another message transmission. This procedure continues
either until the queue becomes empty or until THT expires.

After the station finishes the above procedure for the priority level O messages, it checks
if TRT1 has expired. If it is expired or the priority 1 queue is empty, then TRT1 is reset
to its full value and restarted, and the chance of transmission is passed to the priority level
2 messages without any transmission of the priority 1 message. If TRT1 is not expired
and the priority 1 queue is not empty, then THT is restarted after being reset to the re-
maining value of TRTI1, and TRT1 is reset to its full value and restarted. The priority level
1 messages can be transmitted consecutively either until THT expires or until there is no
message in the priority 1 queue.

When one of two conditions, namely, THT expiration and empty priority 1 queue is
satisfied, the station begins the same procedure for TRT2 and the priority 2 queue, and
continues for TRT3 and the priority 3 queue. After the station completes the procedure
for the priority level 3, the token is passed to the successor station. This priority mechanism
is summarized by a flowchart in figure 6.

Appendix B. Perturbation analysis for timer setting changes of the LTPB protocol

The network under consideration in this example consists of three stations which have only
one token rotation timer (TRT) in addition to token holding timer (THT) which is used
as a dummy timer to store the remaining time of TRT. For simplicity, it is assumed that
message transmissions are solely controlled by the status of TRT. Therefore, each station
is considered to have only one queue. Figure 7 depicts evolution of the network with a
nominal TRT setting (nominal path) along with evolution with a perturbed TRT setting
(perturbed path). The status changes of the station i, i = 1, 2, 3, are represented by S;
and S/ for the nominal and the perturbed paths, respectively. S; consists of four elements,
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Figure 6. Priority mechanism of LTPB protocol.

namely, message generation instant (MSG), message transmission instant (XMT), token
holding timer status (THT), and token rotation timer status (TRT). For the perturbed path,
S; consists of three perturbed elements where MSG is excluded because the instants of
message generation are identical for both.

MSG is essentially the instant of message insertion into the queue. It is denoted by a
down arrow with an appropriate identifier, M;(j), for the jth message at station i. XMT
indicates the time interval of transmission and contains two kinds of transmissions. A block
with a letter T denotes transmission of the token, and message transmission is depicted
by a block with an appropriate message identifier. For THT and TRT, a block represents
the time period while the corresponding timer counts down, which always starts with a
letter S (start). The block ends with a letter R (reset) if the timer is reset before expiration.
Otherwise, i.e., if the timer is expired, the block is shaded and ends with a letter E (expire).
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Figure 7. Effects of TRT perturbation on network operations.

Figure 7 illustrates network operations from the initial time # = O when one of the three
stations have any waiting message(s) and station 1 just received the token. Each token pass
is assumed to take one unit of time including the time required for the source station to
transmit the token and that for the destination station to respond. The nominal length of
TRT is taken to be seven units of time.

On the nominal path (focusing on S, S, and S; in Figure 7), since the queue of station
1 is empty, the token is passed to station 2 immediately after resetting and restarting its
THT and TRT. At ¢ = 1, station 2 receives the token. This process continues until station
2 receives the token again at ¢ = 4. At this moment, its queue contains two messages and
TRT is not yet expired. Therefore, station 2 resets and starts its THT having the remaining
time of its TRT (4 units) at disposal, and resets and starts its TRT. Almost simultaneously
(it is assumed that timers are reset and started instantaneously), station 2 begins to transmit
its first message M,(1) which takes three units of time to be transmitted. When the first
message is finished, THT still has one unit of time left and the second message M,(2)
is started. After finishing M,(2), the token is passed to station 3 which starts its TRT and
passes the token to station 1. Upon token arrival at # = 11, station 1 has one waiting message.
However, its transmission is not allowed because of TRT expiration at ¢+ = 10 before the
token reception. When station 3 receives the token ¢+ = 13, it can transmit M;(1) of two
units since the message is already in the queue and TRT still has four units of time left
to its expiration. When the token returns to station 1 at # = 17, station 1 finds one unit
of time left on its TRT and starts transmitting M, (1) of four units. After this transmission,
the network becomes empty resulting in token circulation without any message transmission.
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For the perturbed path (S, S, and S5 in Figure 7), the TRT in station 2 has been per-
turbed by -2 units of time while keeping TRT unchanged in stations 1 and 3. This change
is solely for the purpose of illustration since a timer is usually set identically for all sta-
tions in standard protocols. Effects of the perturbation do not appear on the perturbed path
until M,(1) is finished at t = 7 (compare S, and S, at z = 7). Due to the reduced length
of TRT, THT of station 2 has started with only two units when the token is received and
expires while M,(1) is being transmitted. Therefore, no further transmission is allowed and
M,(2) should wait for the next opportunity. Due to the deferred transmission, stations 3
and 1 receive the token two time units earlier (which is required for transmission of M,(2))
on the perturbed path. At t = 9, station 1 has one unit of remaining TRT due to earlier
token reception and it can transmit M;(1). When the token returns to station 2 at t = 14,
station 2 is again disallowed to transmit M,(2) because of TRT expiration. Station 3 also
loses the opportunity to transmit M3(1) due to the same reason. Eventually, M,(2) and M;(1)
are transmitted at ¢+ = 17 and ¢ = 20, respectively.

After transmission of M3(1) on the perturbed path, the perturbed instant of the token
reception by station 1 at z = 24 coincides with that on the nominal path even though the
status of its tRT is different from each other. This implies that the instants of token recep-
tion by a given station on the nominal and the perturbed path become identical after transmis-
sion of all messages that are affected by the timer perturbation. The timer status on the
perturbed path also becomes identical to that on the nominal path after one more token
circulation (from ¢t = 27) except station 2 where the timer is perturbed.

It follows from figure 7 that it is impossible to predict the time of M,(2) transmission
on the perturbed path without considering the queue contents and timer status after detect-
ing that M,(2) cannot be transmitted at ¢ = 7 due to the perturbation in TRT. This is
because the order of transmissions is dependent on the status of TRT which is, in turn,
dependent on the previous token circulation. Therefore, in order to compute the perturbed
performance, the only choice is to construct the perturbed path, which is essentially ex-
tended perturbation analysis with brute force algorithm (EPA/BFA) (Ho and Cao 1991).
However, the brute force construction of the perturbed path is required only for the por-
tion of the perturbed path which differs from the nominal one because the queue contents,
timer status, and event sequence of the perturbed path become identical to those on the
nominal one as shown in Figure 7. Therefore, the PA algorithm for this problem needs
to check whether the perturbed path begins to differ from the nominal one while the both
paths are identical. After a difference between the two paths is detected, the algorithm
constructs the perturbed path until it coincides with the nominal one again.
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