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State-space supervisory control of reconfigurable discrete event systems

HUMBERTO E. GARCIAT and ASOK RAY}

The discrete event theory of supervisory and state feedback control offers many
advatages for implementing supervisory systems. Algorithmic concepts have been
introduced to ensure that the supervising algorithms are correct and meet the
specifications. In the current methodology, it is, in general, assumed that the
supervisory specifications are invariant during the operation of the system or, at least,
until a given supervisory task is completed. However, there are many practical
applications where the supervising specifications need to be updated in real time. For
example, when dealing with complex processes, the tasks of supervisory systems
analysis and synthesis can be facilitated by partitioning the controlled Discrete-Event
System (DES) into several subprocesses. This partitioning is based on operational or
physical considerations and a unique supervisor is assigned to control each
subprocess at a given instant of time. When a decision maker at a higher level of
hierarchy decides to change the supervising algorithm, switching to a new supervisor
takes place. For this adaptive implementation, the decision-maker or coordinator
first decides the set of acting supervisors based on the requested supervisory tasks or
current system performance requirements and then exercises control over the enabled
supervisors in real time. Specifically, in a Reconfigurable Discrete Event System
(RDES) architecture, a bank of supervisors is defined to accommodate each identified
operational condition or different supervisory specifications. This adaptive super-
visory control system can change its supervisory configuration to accept coordinator
commands or to adjust for changes in the controlled process. This paper addresses
reconfiguration at the supervisory level of hybrid systems along with the underlying
architecture of RDES. In particular, the paper reviews the supervisory control
theory in the state-based framework and extends it to the paradigm of RDES,
considering process control applications. The paper addresses theoretical issues with
a limited number of practical examples. This control approach is particularly suitable
for hierarchical hybrid implementations with the capability of reconfiguration at
both the control and supervisory levels.

1. Introduction

Traditionally, control theory has been applied to systems whose dynamic
behaviour can be modelled by difference or differential equations. These systems
evolve continuously in time and satisfy the basic principles of physics. However,
modern technology has created man-made dynamic systems with no invariant physical
laws to constrain their configurations, and these systems may not be described by
ordinary or partial differential/difference equations. Specifically, the states of such
systems have logical or symbolic rather than numerical values, and advance at
discrete, unpredictable, irregular intervals, where the notion of time is replaced by
event sequences. The occurrence of physical discrete events originates a dynamic
trajectory that is piecewise constant and event driven (Ramadge and Wonham 1989).
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The events describe the system behaviour and represent control decisions or changes
in the physical state of the process. Dynamic discrete systems described by events are
called discrete event systems (DES). A comparison between the dynamics of
continuous variable and discrete event systems can be found in Cao (1989). This paper
focuses on the control of a class of DES.

In many control applications, the supervisory system is often required to be
adaptive and flexible enough to accommodate time-varying supervisory specifications
or persistently changing environments. Discrete event implementations with time-
varying specifications or unknown disturbance are here loosely defined as time-
varying DES. For offline design, a supervisor is required to achieve a closed-loop
behaviour based on given specifications or an assumed system response. Adaptive
behaviour can be incorporated by using learning algorithms (Narendra and That-
hachar 1989) to evaluate and define these modifications. Adaptability is also desired
in those cases where the dynamics of a given plant are partially known. In general, to
deal with model uncertainties, two approaches can be mentioned (Lin 1992), namely,
robust supervision and adaptive supervision. In robust supervision, a given supervisor
is designed so that it can perform adequately in the event of identified uncertainties.
However, uncertainties are not resolved. On the other hand, an adaptive supervisory
system resolves uncertainties by identifying the plant conditions and updating the
control algorithms accordingly. Among the growing literature on DES, reported work
in uncertain and/or time-varying systems has been rather limited. Recently, the
concepts of robust and adaptive supervision have been introduced (Lin 1992) under
the Ramadge-Wonham framework (Ramadge and Wonham 1987, 1989, Wonham
and Ramadge 1987) to deal with time-varying systems. However, this technique may
not be computationally feasible in some practical cases, such as large complex
processes or under partial observation. In Chung et al. (1993), a supervisory control
scheme based on limited look-ahead control is described. In this online scheme, the
next control action is determined based on the projection of the process behaviour.
Procedures to perform this calculation are given by Chung ef al. (1992, 1993).
However, this scheme may not be feasible in some complex, real-time applications,
especially, under partial observation. To deal with these problems partially, a
definition of stability in the sense of Lyapunov is introduced for logical DES in Passino
et al. (1991). Although this approach offers low computational complexity, the major
difficulty lies in finding the Lyapunov functions (similar to the classical control
theory). In Passino and Michel (1992), the notions of uniform boundedness, stability
and finite time stability are extended for the case of DES defined on a metric space.

For supervision of complex dynamic processes, the approach taken in this paper is
based on the principle of divide-and-conquer. Specifically, the controlled DES along
with its operating conditions is partitioned into subprocesses and operating regimes,
and a supervisor is devised for each pair of subprocesses and their operating condition.
In general, more than one supervisor may be synthesized for a given subprocess
(Garcia 1993, Garcia and Ray 1992). However, because a process is in exactly one
operating condition at a given instant of time, one and only one supervisor for each
subprocess is operational at that instant. As time evolves, based on the current
operating condition, a supervisor is identified among the available ones to act directly
on the plant. Changes in supervisors may also result from time-varying supervisory
specifications. The class of discrete event systems that can reconfigure its supervisory
algorithms, called Reconfigurable Discrete Event Systems (RDES), is investigated in
this paper. In the RDES architecture, a bank of supervisors is defined for each



Supervisory control of reconfigurable discrete event systems 769

controlled DES and supervisors are designed for each identified operational condition.
When a decision maker at a higher level in the hierarchy decides to change the
supervising algorithm, switching to a new supervisor takes place. To this effect, a co-
ordinator is defined as a decision-making entity having two main responsibilities. First,
it decides the set of active supervisors based on the current system performance or
specifications. Secondly, it exercises control over the enabled supervisors in real time.
In the extended context of hybrid systems (Gollu and Varaiya 1989), reconfiguration
at both the control and supervisory levels results in reconfigurable hierarchical hybrid
supervisory control systems, as introduced by (Garcia 1993, Garcia and Edwards
1993a, Garcia and Ray 1992, Garcia et al. 1995).

Reconfiguration requires diagnostic and decision-making algorithms. Diagnostic
or performance evaluation routines such as those used by Garcia and Edwards
(1993b), Garcia et al. (1991) may be utilized to identify current operating conditions.
Subsequently, decision-making algorithms (e.g. Lapin 1985) select the set of
operational supervisors for a given time period. Examples are given by Garcia (1993),
Garcia and Edwards (1993a, 1993b), Garcia and Ray (1992), Garcia et al. (1990, .
1991a, 1991b, 1995). This paper focuses on the issues for the underlying RDES
architecture created by the proposed reconfigurable supervision scheme. To this end,
a review of basic ideas of supervisory control in the state-based framework is provided
with modelling aspects introduced considering process control applications. They are
then applied to furnish analytical guidelines related to the implementation of RDES.
However, limited examples are given here. It is then assumed that the particular
application requiring a RDES theory has been identified and that the techniques for
plant identification, asserting supervisor performance and supervisor selection have
already been devised for the given application. To partially provide documentation
for the feasibility of the ideas presented here, the following section and Garcia et al.
(1995) contain instances for using the RDES paradigm when designing reconfigurable
supervisory systems. However, it is expected that the paper can also be useful to
practitioners in other potential application domains.

The organization of the paper is as follows. After presenting an application of the
RDES concept, the framework used to describe DES is given in §3 and the statement
of the problem and its solution is given in §4. A re-configurable supervisory
architecture is then described in § 5 while the problems resulting from this supervisory
adaptability are postulated in §6. In §7, the supervisory tasks required in a
reconfigurable configuration are presented, and their solutions are derived in §8. In §9,
topics on convergence among predicates are discussed. Section 10 suggests a
probabilistic setting for specifying supervisory tasks. Finally, §11 summarizes and
concludes the paper.

2. [Engineering applications of reconfigurable discrete event systems

The concept of reconfigurable discrete event systems (RDES) is applicable to
diverse disciplines including command and control (C?) of battlefield management,
computer-integrated manufacturing (CIM), and process control. Specifically, RDES
is well suited to describing and synthesizing supervisory algorithms for decision and
control of complex dynamic processes such as power plants. In such cases, the decision
and control system must have adaptive behaviour to ensure desired plant operations
under uncertain or unfamiliar situations. Therefore, different control policies should
be available to manoeuvre the plant under different operating conditions, and the
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Figure 1. A reconfigurable supervisory control system.

decision and control system should be capable of supervising the operation of these
control modules to achieve the mission objectives. In this respect, Garcia (1993),
Garcia et al. (1995) have proposed a supervisory control system (SCS) architecture
and evaluated the efficacy of this control concept via an in-plant test of a nuclear
reactor.

The proposed SCS, shown in Fig. 1, is hierarchically structured into three levels,
namely, the execution, supervision, and coordination levels. The execution level
generates direct control actions over the process (or subprocesses). The entities
responsible for implementing the control policies are named executors. In general, an
executor is capable of exercising more than one control algorithm. These executors are
governed by supervisors at the supervision level. The supervisors assign control
patterns to the executors to select the control policies used on the plant. At the highest
layer of the hierarchical structure, the coordination level overlooks the operations of
the supervisors. An entity called the coordinator is defined to select appropriate
supervisors dynamically and assign strategy patterns to them to ensure that the
processes behaves in a desirable manner.

Notice then that the described SCS introduces reconfiguration at both execution
and the supervision levels. A reconfigurable strategy is a dynamic scheme that
identifies the current operating status of the controlled environment, evaluates control
performances by dynamically monitoring process behaviour, and then selects the
appropriate system configuration. In particular, reconfiguration at the execution is
used because there may not exist a single control algorithm that can satisfy the
performance criteria for the complete spectrum of process operating conditions.
Reconfiguration at the supervisory level is used because a single ‘overly complex’
supervisor might be required to accommodate the overall supervising process
requirements that would unnecessarily complicate the formulation, verification,
maintenance, and upgrading of the supervisory scheme. Thus, the given control
system is constituted from a mix of reconfigurable continuous/discrete time and
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Figure 2. Resulting reconfigurable hybrid control system.

discrete event processes and is structured in two levels as shown in Fig. 2. The low-level
controllers represent the control algorithms that reside in the executors and the high-
level controllers represent the decision-making algorithms that implement the co-

“ordinator and supervisors. While low-level controllers compute control actions based

on the current process dynamics, the high-level decisions are based on current
observations in the supervised world. To achieve proper system response, control
systems analysis and synthesis techniques must be provided to ensure appropriate
operation of each level under the figure of reconfiguration. For the low-level case,
control synthesis tools have been extensively reported. For the high-level case, the
paradigm of reconfigurable DES is initially addressed in this paper, as presented
below, to address reconfigurable supervisory implementations.

3. Framework for DES
3.1. The discrete event model

Based on Liand Wonham (1988 a), the following discrete event model is introduced
by Garcia (1993) to represent the DES

M=(I,¥) (1

where M is called the discrete-event mechanism and I” and ¥ are called the static and
dynamic components of M, respectively. Specifically, I"is defined over the following 3-
tuple

r=,x2,2) ?2)

where 77, 2, and 2 are finite sets. Specifically, ¥” is the non-empty set of internal state
variables of M defined over an index set # = {1,2,...,n}. These variables are used to
represent internal system dynamics. Therefore, they can be classified as latent variables
(Sreenivas & Krogh 1991). The set X' is the event space or input alphabet representing
the set of events defined for the process M. It is customary to observe the rule that no
two events in 2 are mutually exclusive. Finally, the set 2 is the collection of state
predicates defined on the state space . A predicate Pe£ is a Boolean map
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P: % —+{0,1} that holds on xe % if P(x) = 1. With every Pe 2, a state region Z, can
be associated such that, for all xe &, P takes the value one. Consequently, the names
of predicates and state regions will be used interchangeably on what follows next. On
the other hand, each internal variable x;€ 7", also called a state variable, has an
associated range called range (x,) which can be finite or infinite. Then, the range set of
" is the state-space &, given by the product of the ranges of the variablesin ¥". That is

¥, = X range(x,) 3)
ieh
where X represents the cartesian product. (For brevity of notation, the dependence

of the state-space &, on ¥~ is dropped in the following.)
On the other hand, the dynamic component ¥ of a DES model is defined over the

following 4-tuple

where I(-) is called the input function, O(-) is the output function, d(-) is the possible
events function and f{-) is a partial function called the state transition function. The

input and output functions /() and O() are, in general, mappings of the form

I XEXESTXE

2

O: X XX>J°X2*

where %, is the state-space of the ith mechanism attached to M and Z° is the output
state-space of M. The possible events function d: & —2* is a set-valued function that
specifies the set of possible events defined at each state. Formally

d(x)={ceZ:D.c.x =1} (5)

where the mapping D.o: & - {0, 1} is a Boolean-valued expression in the variables of

v representing the enabling condition for the event ¢; that is
1, ifoed

D.o*.x=={ , ifoedx)

0, otherwise

The state transition function /> & X X2 — % defines the dynamics of a given DES. It
indicates how changes in states occur in a given DES due to incoming events. The
partial function f{x, g) can be extended to a subset of 2* as

fix,e)=x, or f(x)=x, Vxe& (6)

where ¢ denotes the empty sequences in 2*. The implication of (6) is that every point
is a fixed point of the mapping f;; and .

undefined  if either f{x, s) or f{f(x, s), o) is undefined

s, sh0) = { f(f(x,s),0) otherwise 0

where 5 is a given trace (sometimes also called a word), and "¢ is the concatenation of
r and ¢ with r, te Z*. The dynamics of M are then modelled by f{-) as follows:
xlk+1] = f(x[k], o[k +1]); with P).x[0] =1 ®)

where x[k]eZ is the state after the kth event, o[k] is the kth event, and x[0] is an
initial state satisfying a given initial predicate F,. A mechanism M is deterministic
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Figure 3. Input/output signal flow of a discrete event mechanism M.

when f(x[k], o[k + 1]) is a singleton for every x[k] and o[k + 1]. Specifically, M can be
interpreted as a device that starts within an initial state region %, (i.e. x[0]€ %,) and
executes state transitions as a response (or cause) of a sequence of events and state
conditions. Notice that o € d(x[k]) implies that f{x[k], o) is defined. Therefore, the next
event o[k + 1] in (8) must satisfy ofk + 1] e d(x[k]) for all k. It is customary to observe
the rule that no two transitions fire simultaneously. Following Sreenivas and Krogh
(1991), Fig. 3 shows a representative input/output signal flow of a discrete
mechanism M.

3.2. Control approach

“To control DES, certain events in the system are enabled or disabled by the choice
of control inputs thus governing, whenever possible, transitions among states. Here,
control specifications are given in terms of predicates on the set of states. The design
problem is then to formulate a control agent, hereafter called the supervisor, that
assigns control patterns (to be defined below) at each environment state so that a
specified predicate can be satisfied. In general, an event may or may not be under the
control of a supervising agent. Based on their controllabilty, events can be classified
into controllable and uncontrollable events. While controllable events can be disabled
or prevented from occurring whenever desired, uncontrollable events are those whose
occurrence cannot be governed by a supervisor. Thus, the set X' is partitioned into two
disjoint subsets, 2, and 2. The subset X', represents the set of controllable events, X'
represents the set of uncontrollable events with X, = X' — X' . The control law for a
discrete event process is then realized by a control pattern for M.

Definition 3.1: A control pattern for a mechanism M is defined as a Boolean function
U.o: & {0, 1} that specifies if a controllable event ¢ is allowed to occur at a given
state x. Specifically, an event o is enabled by U.o at x if U.g.x = 1; it is disabled,
otherwise. O

Definition 3.2: The control input u[k]e2*: is the set of controllable events that are
allowed by the supervisor to occur (i.e. not disabled) at the instant k£ on a controlled
DES. This can be expressed as follows:

ulkl ={ce2,:oed(xk]),U.0.x = 1} O

Asindicated previously, the supervisor has authority only over controllable events.
In addition to these enabled events, other events that are out of the authority of the
supervisor may occur at a given plant state x[k]. These events are called disturbing
events or disturbances.
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Figure 4. Discrete event model for closed-loop supervision.

Definition 3.3: The disturbances acting on a DES, denoted by w[k], are the set of
uncontrollable events that may occur at a given state x[k] defined as follows

wlk] = {oe X, : oed(x[k])} O]

Notice that wk]e 2% for all k. With the introduction of uncontrollable events, the set
of current possible events for the present state x[k] is dynamic and equal to the union
of disturbances and the set of control inputs. That is

alk+1]eulk] U wlk] ‘ )

The controlled discrete-event process M ,, which results from the original machine M
under the context of X, emphasizes the event constraints and control mechanism
explicitly indicated by (9). M, can be interpreted as a version of M that admits external
control (Ramadge and Wonham 1989). The resulting control system, that is, the
controlled DES process M, with a supervisor M, generating u[k], is called the
supervised system. We will restrict our attention to the case where the plant is driven
by events and generates outputs that the supervisor monitors. Thus, the supervisor
design problem can now be defined as the problem of finding a supervisor that disables
certain events at the appropriate time so that the controlled discrete event process M,
behaves according to certain predicate constraints. Figure 4 illustrates a closed loop
arrangement, denoted by (M, M,), conformed by M, and M, where two types of
channels can be identified: condition channels, which transport piecewise constant
signals representing state conditions; and event channels, which transport discrete
(delta) signals representing system events (Sreenivas and Krogh 1987). The plant M,
influences the state transitions of M, by means of the observed plant state and,
possibly, incoming events, while M, is driven by a sequence {w[k]} of disturbances and
by a sequence {u[k]} of control inputs determined by the consecutive states x[k] of M.
This class of supervision will be called event/state feedback control. Under the
illustrated event/state feedback control, the input and output mappings /(-) and O(-)
defined in §3.1 can be expressed for each case as follows.

Plant:  IF:2* X% OF: A" X Z>F° X Z,
Supervisor:  F: XX T >Z5X X 05 I5-»2%

where Z* and % represent the state-space of the plant and the supervisor, respectively;
&, represent the state-space of the ith mechanism M, attached to a given supervisor;
and X, and 2, are the controllable and uncontrollable subsets of 2. While the space
0 is the output space of the plant and usually equal to ¥, ® is formed in general as

5= X ¥, XX

int
i

.

TN
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Figure 5. Plant/supervisor pair in an event/state feedback loop.

where &7, is defined as the internal state-space of the supervisor. Specifically, Z3, is
introduced to allow a given supervisor to record process history information. This
auxiliary information may be required when enforcing supervisory constraints derived
from dynamic specifications. Supervisors observing an internal space are called
dynamic supervisors; otherwise, they are called static or ‘memoryless’ supervisors
(Kumar et al. 1993, Li 1991). In view of these mappings, Fig. 4 is expanded as in Fig.
5. Notice from Fig. 5 that given an ‘event/state’ feedback configuration involving an
initially (dynamic) supervisor, an equivalent ‘state’ feedback configuration involving
a (static) supervisor can, in general, be found by defining a new ‘extended’ plant as
well as a ‘reduced’ supervisor as indicated in Fig. 5. This observation will be used later
in the derivations.

4. Control of time-varying DES

The objective of a supervisor is to modify the open loop response of a given DES
M, to track the desired response as close as possible. Let M [k] denote the discrete
event model of the time-varying discrete event mechanism M, to be controlled, where
the explicit dependence on ‘time’ is indicated by the variable k. Without loss of
generality, only plant/supervisor pairs arranged in state feedback configurations (i.e.
involving static supervisors) are considered here. If this is not the case, equivalent
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Figure 6. Single robust supervisor approach.

relations can be first formulated, for example, as the plant-extension/supervision-
reduction procedure mentioned for Fig. 5. Furthermore, it is assumed that M [k]
belongs to a finite set of DES models M, at any time, as follows

M [k]e{M}, | (10)

where m denotes the number of possible operating conditions. To control M [k], two
supervisory approaches can be used.

4.1. Single robust supervisor approach

Conceptually, a single robust supervisor M, can be designed to account for all
possible variations of M [k] as seen in Fig. 6. In this case, M [k] can be viewed as

M k] = M, +AM [k] (11)

where M, is the nominal time-invariant model of the controlled DES and AM _[k]
represents the time-varying modelling uncertainties. A supervisor M, is thus
synthesized to handle the plant. However, this approach suffers from several problems.
First, the variability of 4AM [k] could be large enough that a single supervisor may not
exist for all cases. Even if a supervisor exists, it may become too complex to be
analysed and synthesized. The supervisor thus developed may also be overly
conservative and not satisfy the given performance specifications. Such a design is
hard to justify if large uncertainties occur rarely. On the other hand, if these rather rare
cases are not considered, the control system design is vulnerable to operational risk
over the service life of the plant. Thus, system performance may be signficantly
degraded to ensure robustness of the supervisory scheme.

4.2. Reconfigurable supervisor approach

An alternative approach to control DES with large operational changes is based on
the concept of reconfiguration. In this case, instead of supervising the controlled DES
with an unique supervisor M, the control efforts are exercised by employing a time-
varying supervisor M [k] as indicated in Fig. 7. Here, a finite set of possible supervisors
is defined as .

MJkle{M,}i., (12)

where #n indicates the number of designed supervisors. In general, n < m. However, to

i



Supervisory control of reconfigurable discrete event systems 777

ufk]
Mkl f—

wik] x[k]

M,[K]

Figure 7. Time-varying supervisor approach.

simplify the description, it is assumed that » = m and that control specifications are
given on the basis of predicates F, for each plant operational condition M, with
i=1,...,n. Therefore, the problem is to design a set M[k] of supervisors such that

(VM. )3M, subjectto R(M,/M,,F)<F, (13)

where M, / M, is the feedback composition of M, and M, R.(M, P) is the reachable
predicate from an initial predicate P under the discrete mechanism M, as given in the
Appendix, and < is the partial ordering defined as P, < P, if P, A P, = P,. Thus,
supervisors are designed to accommodate only a restricted subset of all possible plant
variations. Recall that a set of supervisors may also be required to enforce online
changing supervisory specifications present in reconfigurable supervisory systems.
This approach simplifies the design of supervisors as the tasks of analysis, synthesis,
verification, upgrade and maintenance become easier. In addition, from the practical
point of view, a reconfigurable system does not enforce a complete modification of an
existing configuration, but instead it extends the current system to accommodate
additional requirements.

Remark 4.1: Equation (13) implicitly assumes that the plant/supervisor pair starts
operating in a space-state region where the corresponding predicate is satisfied.
However, this is not essential. |

5. Reconfigurable supervisory architecture

This paper particularly addresses hierarchical DESs that can reconfigure their
supervisors based on operational system changes. This class of DES will be called
reconfigurable discrete event systems (RDES). These and other DES arrangements are
discussed further by Garcia (1993) while a reconfigurable hybrid system for process
control that requires RDES techniques is given by Garcia et al. (1995). In a RDES
architecture, as illustrated in Fig. 8, a bank of supervisors is defined for each controlled
DES and supervisors are designed for each identified operational condition. Only one
supervisor in each bank is acting at any time. When a higher decision maker in the
hierarchy (in this case, the coordinator) decides to change the supervising algorithm,
a switch to a new supervisor takes place. This supervisory strategy introduces a
transient period, which is expected to die out, based on the designing criteria used to
implement any supervisor. Eventually, a set of target states is reached from where the
new desired behaviour can be achieved.

Figure 8 introduces a new component in the RDES system; namely, the control
channel. Via the control channel Con,, the ith supervisor applies control to the
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Figure 8. Simplified diagram of a reconfigurable discrete event system.

controlled DES M,. The ith control channel is a mapping Con,: 2%c x {0, 1} — 2% U {&}
implemented as the following conditional identity function:

Con,(u, 7,) = {u ify, =1

& otherwise (14)
where y,[k]€ {0, 1} is a control signal generated by the coordinator to govern the Con,
output. The scalar y, acts as a supervisor enabling signal. Specifically, the output of a
given supervisor M, is communicated to the controlled DES M, if its respectlve
control channel has been enabled (i.e. y, = 1) by the co-ordinator. This, in turn, is
equivalent to enabling or disabling a given supervisor’s operation.

Remark 5.1: Reconfiguration masks control outputs. Therefore, supervisors’ actions
are conditioned to the coordinator’s decisions. On the other hand, to reduce the time
period of any future transient, it is desirable continually to provide each supervisor
with information about the current state of the controlled plant. To this end, it is
enforced that the coordinator has no influence on the observability aspects of any
supervisor, and plant state changes (and event occurrences) are ‘continually’
transmitted as inputs to each supervisor. Because no supervisor is ‘blind’ at any time,
transfers from one supervising algorithm to another are performed more effectively. If
that were not the case, a just activated supervisor might require an extensive period
before gaining enough event history to reach a good system state estimation. O

6. Problems resulting from reconfiguring supervisors

It is often assumed in the DES literature that the initial state of a given
plant/supervisor pair is assumed to be fixed, a priori known and one of the ‘legal’
states. Starting from a pre-defined initial region, the objective of a supervisor is then
to confine the process behaviour within specified bounds. This corresponds to a
regulatory problem. However, under reconfigurable supervision, the initial state-space
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region may not be the legal region for the current supervising condition. Switching
from a given supervisor to another introduces new important aspects, particular to
RDES, as discussed next.

Let M denote the plant model and M, the supervisor that has been used so far. If
M, has umquely been acting over M fora suﬂimently large period, it is safe to say that
an operatlonal steady-state has been reached. Under proper supervision, any state
- trajectories generated by the close loop system, conformed by M, and M, , have been
confined to the desired state region. That is,

(Vk > ty Ak < t) MJk] = M, A P.x[K] = 1 (15)

where 7, and ¢, denote given instants and the predicate P, defines the control
specification for the M./M, pair. Assume that at ¢, the current supervisor M, is
disabled and a new (prevmusly unattached) supervisor M starts to act directly on the
plant M. Let P, denote the ‘target’ predicate for the new plant/supervisor
configuration M, /M At time ¢, while F,.x[f] = 1, it is possible that P.x[t] = 0.
Because the current state x[t,] may not satisfy the new control specification P, it must
be ensured that the next desired predicate can be satisfied after a finite number of state
transitions from the current valid predicate. Therefore, convergence from 7, to P, must
be guaranteed for proper operations of the system. This forces a transition period of
the supervising response. During this period, the new (M,, M, ) pair moves to certain
conditions from which the new desired supervising behaviour P can be guaranteed. A
transitory and a steady-state period can be identified and supervisory algorithms must
be then designed to ensure that the transient and steady response have the desired
form. The following sections address these problems.

7. Control tasks on reconfigurable discrete event systems

To limit the unsupervised behaviour of the plant M, a supervisor M, is employed
in a feedback configuration with M, as indicated in § 3. This control is achieved by the
function u(-) generated by M. Following the control requirements indicated in §6,
the control tasks required in a reconfigurable architecture are formulated as the fulfil-
ment of the next three constraints.

7.1. Task 1—Control invariance

This is achieved by a supervisor that ensures, by control actions, that a given
predicate on the state space & of M, remains invariantly true whenever it is initially
satisfied. Thus, given that a pair (M,, M, ) has reached a steady-state condition, it is
required that the specified predicate P, be invariantly satisfied whenever it is initially

satisfied. That is

(VxeZp)(Voeulk]Uwlk]) sp.f,. B, < P, (16)
or equivalently

(VxeZp)(Voeulk] U wlk]) P, < wip..f,. P, (17)

where u[k] is the control input to M, generated by M, wlk] is the externally induced
disturbance at the instant k, and sp and wlp are the strongest postcondition and the
weakest liberal precondition predicate transformers, respectively, as presented in the
Appendix. This task usually occurs in regulatory problems. The idea is to maintain the
state of the system inside a certain region despite disturbances. A set-point, specified in
terms of conjunction and/or disjunction of predicates, is then ‘closely’ followed. The
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proximity or satisfaction to a given specification is generally measured by defining an
index on the state space.

7.2. Task 2—Region avoidance

This is achieved by a supervisor that ensures, by control actions, that a given region
characterized by a certain predicate will never be reached. In reference to RDES, at
some point, the coordinator switches from a supervisor M to another M _and a new
predicate P, is desired to be satisfied. For the general case of P + P, the superv1sory
system must then try to reach the target region F, from this 1n1t1a1 condmon P. To this
end, a series of state trajectories leading to P]. can be generated. However, in this
process, it must be ensured that the system does not enter into ‘bad’ regions where it
may fail to converge. Let P;e 2 denote a bad predicate that defines a forbidden state
region. Then, a correct supervisor M, must guarantee that, for any sequence of next
possible transition, the following equation holds

(VxeZ.p)(Voeulk] Uwlk]) sp.f,. P, < - By (18)

Equation (18) ensures that all subsequent state trajectories leaving £, stay out of Py.

7.3. Task 3—Convergence

This is achieved by a supervisor that ensures, by control actions, that a given region
characterized by a certain predicate can be reached from a specified starting space.
Thus, the convergence of the supervisory system to the target predicate must be
ensured. That is, starting from a state satisfying P, the system should converge to a
statein F, after, at most, countably many transitions. This can be seen as an asymptotic
convergence. However, it is often desired to achieve convergence in a finite number of
transitions. In that case, there must exist a positive integer value ‘¢’ such that

dgeZ subjectto PBAR(M,PB,q) + Py, (19)

where R (M, P, q) is the reachable predicate that can be reached from a given predicate
P in g event transitions. This capability is particularly important in many situations
such as error recovery and system reconfiguration.

From the above discussion, it can be concluded that the concept of reconfiguration
relies on the possibility of driving a process under supervision from an arbitrary initial
region to a specified target subspace of the state-space universe following permitted
state paths, and then keeping it there as required.

8. Solutions to the control tasks for RDES

The closed loop system consisting of a controlled DES or plant M, and a
supervisor M will be denoted by M,/M,, hereafter called the system. If M is
characterized by a feedback control law u, then the system can be written as M \u to
emphasize the control action, u, performed on the plant M. The task of supervisory
control synthesis is facilitated if the state feedback approach is adopted and the
control specifications are given by predicates (Ushio 1989). To this end, solutions to
the control tasks based on (static) state feedback control, as indicated in §3, are
presented next. For event/state feedback configurations involving dynamic super-
visors, techniques such as that discussed in Fig. 5 can be used to apply the results

—
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presented here. A formal extension to event/state supervision will be given in a sequel
to this paper.

8.1. Task I—Control invariance

Let a given predicate P be initially satisfied. It is required that, after any event firing
sequence, the process continues to satisfy P under the current closed-loop system

M, /M. Formally
(VoeulkJuwlk) P < wlp.f,. P (20a)

or equivalently,
d (Voeulk]uwlk])sp.f,.P< P (20b)

Proposition 8.1:  The task described by (20) can only be satisfied if the predicate P is
2 -invariant (Ramadge and Wonham 1987).

Proof: Intuitively, (20) indicates that, under any sequence of events, the state of the
system must be invariantly maintained within the region defined by the predicate P.
This condition must be satisfied for any possible event sequences. If there were no
disturbances, (20) can be achieved by solely imposing restrictions on the supervisory
policies. However, in the case of X, + ¢, predicate invariance under disturbances
must also be enforced to guarantee (20). This additional restriction, denoted by X -
invariant, is a property of the plant and not of the supervisory scheme employed. The
rationale is that uncontrollable events admit no control. A formal proof of this
proposition can be found in Ramadge and Wonham (1987). O

Remark 8.1: It may be quite possible that certain applications call for satisfying
more stringent requirements during Task 1. For example, it may be required that the
state trajectories starting from a region defined by a given predicate P, not only remain
confined to the regioin defined by another predicate P, but also that all the states where
F, holds are visited. In this case, the supervisory control problem can be solved if and
only if B, is controllable from P,. That is, controllability is a necessary and sufficient
condition for the existence of a supervisor that ensures proper execution of Task I.
Definitions for controllability and alike can be found in Kumar (1993), Li (1991), Li
and Wonham (1988a), Ramadge and Wonham (1987), Ushio (1989) while a method
for computing the weakest controllable predicate is given by Kumar et al. (1993). (]

8.1.1. Algorithms to synthesize supervisors to achieve Task I: To synthesize super-
visors that guarantee that Task I is achieved, the following algorithms, which are
equivalent to each other, are proposed.

Synthesis algorithm 8.1.1

Given that the desirable predicate P is X -invariant and M, is in a state x where P
is satisfied, a controllable event o is enabled at x if and only if its firing implies that the
control-invariant condition given by

(VoeulkDP<wlp.f,.P k=0,1,2,...
(Voeulk])sp.f,.P<P k=0,1,2,...

or

is preserved. That is
(el )P<(U.o=wlp.f,.P)

(ceZ)U.o=(sp.f,.P< P)
In this case, it is said that U.¢ is an o-friend (Ramadge and Wonham 1987) of P.

or equivalently
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Synthesis algorithm 8.1.2 (derived from Lemma 2.2 of Li and Wonham 1988 a)

Given that M, is started in any state satisfying a given predicate P,, and a weaker
predicate P, > P, iscontrol-invariant, the following condition on predicate reachability

R(M\u, P) < I

holds if the corresponding feedback predicate U. o for the (static) feedback u is chosen

as follows
(NVoeZ )U.o=wlp.f,. P,

where R.(M\u, P) denotes the predicate reachable from P under the mechanism M
having, as control input, u.

Synthesis algorithm 8.1.3

Given that P is valid at the current state x, a controllable event ¢ is enabled if and
only if, upon firing o, P continues to be valid under any possible subsequent sequence
of uncontrollable events. That is,

(VoeX)oeu(x) ff R.(*M,sp.f,.P)<P

where P, is the predicate valid exactly at x (ie. P,:(x=x)) and “M is the
submechanism of M generated by disabling all controllable events.

Computationally efficient implementations of algorithm 8.1.3 can be found in, for
example, Li (1991) and Garcia (1993), where the specified supervisory problem (i.e.
guaranteeing Task I) is re-formulated as integer linear programming problem
(Kaufmann and Arnaud Henry-Labordere 1977).

8.2. Task II—Region avoidance

The objective of this task is to avoid a certain region in the state-space. This is
particularly important when traversing from a given state region to another, a
situation that may occur whenever the initial state x, of the DES is not one of the legal
states of the current plant/supervisor closed-loop system.

Let P, denote the (target) predicate that is valid in the legal states for the current
plant/supervisor closed-loop system; and let P, denote the predicate that defines the
‘bad’ or prohibited region in the state-space. Starting from the initial state x,, the
requirement is to arrive at a state y where P, is valid without validating P, at any time.
Avoidance of P, must be satisfied not only at the given current state of the DES but
also at any state that may uncontrollably lead to P,. That is, the predicate to be
avoided is

BV RW("M,, P) (21)
with R;'(M, P) denoting the attractable predicate from where P can be reached under
the mechanism M. Since P, < R;'(*M,, P;) always holds, (21) can be uniquely
characterized by

RI("M,, Fy) (22)
Thus, to avoid Py, a given o€ X, is enabled if, after its firing, the trajectory does not
enter a region where (22) is valid; i.e.

(ceZ)oeu(x) if RA(*M,,Py).fi(x) =0 (23)

L
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Notice, though, that (23) should not uniquely define the condition needed for an event
o to belong to u(x) as seen below.

Assume that the evolving state trajectory has entered the region defined by (22) due
to a given uncontrollable reason. Then, the only way the closed loop system can move
out of this region, which could potentially lead to B, is to enable a certain controllable
event at x; i.e.

(cgeX)oecu(x) if R;'(*M,, By).x=1 (24)

Thus, conditions (23) and (24) define the instances when a given controllable event
may be enabled at any given state, as indicated in the following (synthesis) algorithms.

8.2.1. Algorithms to synthesize supervisors to achieve Task II. To synthesize
supervisors that will guarantee that Task II can be achieved, the following equivalent
algorithms are proposed.

Synthesis algorithm 8.2.1
The following implication should be always satisfied

(VoeZ)U.o.x= R (*M,, By).xV ~R*(*M,, B,) .f,(x)

The above implication can be substituted by an equality if (23) and (24) are the only
criteria used to enable controllable events.

Synthesis algorithm 8.2.2

- Let the system be at the current state x. Then, a controllable event ¢ is enabled if
and only if, upon firing o, the permissible region - P, continues to remain valid under
any possible subsequent sequence of uncontrollable events or if at the current state the
trajectory can uncontrollably reach the undesirable region P,. That is

VoeS)oeu(x) iff (R("M,3p.f,. B) < =PV (B, < R(*M,, By)

A computationally efficient implementation of algorithm 8.2.2 can be found in Garcia
(1993) where the specified supervisory problem (i.e. guaranteeing Task II) is
formulated as an integer linear programming problem.

8.3. Task III—Convergence

The task is to reach a target state region from the given initial conditions. Let P,
and P, denote the predicates defining the starting and target regions, respectively. The
synthesized supervisor must be capable of driving the state of M, from P, to B, without
violating the mentioned system constraints. In what follows, it is assumed that the
reader is familiar with the notion of controllability of predicates and the like, as
presented in, for example, Kumar ez al. (1993), Li (1991), Li and Wonham (1988 a).

Definition 8.1: Let P -and P, denote the initial and target predicates, respectively. Let
A" denote a set of non-negative integers such that

,%/‘ = {jEZ+: Re('Mc/MS’ 1)13.]) /\PZ :i: P@}

where Z* denotes the set of all non-negative integers; R (M, P, q) is defined as in (19)
and F denotes the predicate defined such that (VxeZ)P,.x =0. If & + J for a



784 H. E. Garcia and A. Ray

given plant/supervisor configuration, then the (minimum) predicate for convergence
from Pto P,, denoted as P,(P, B,), is defined as follows:

P(P,P)=R(M /M,P,:) where: =min(j) (25)

jeK
|

Proposition 8.2:  Let 4(P,, P,) denote the set of state paths &* defined as follows
AP, P)={ITeZX*: P,.II(1) = P,.1I(q) = 1, (Vie{l,...,q) F(P, R) . 1I()) = 1
with q = |I1]}

where I denotes a given state path on &, I1(i) denotes the ith state on the state sequence
imposed by II, and |I1| is the length of I1. Assume that A + (. Then

B B) + &

Proof: From Definition 8.1, 2" = (J implies that there must exist a state x in &
reachable from a state in P, that validates F,. Therefore, there must exist a state
trajectory leaving from a state in P, that ends in x, which completes the proof. [J

Theorem 8.1: Let IT denote a given state path on & and I1(i) the ith state on the state
sequence imposed by II. Let 4(P,, B,) be defined as given in Proposition 8.2. Assume that
A+ & and P(P,, B,) is controllable from P,. Then

(YxeP)3[[e (P, B,)  subjectto x=]](1)

Proof: From the definition of controllability (Kumar et al. 1993, Li 1991), P(P, P,)
is the minimal predicate, weaker than P,, which is valid on states reachable from
the region defined by P, and valid on at least one state where P, is also valid. From
the assumption %" + &, P(P,, B,) must be valid in some states on the state space.
In addition, from Proposition 8.2, there must exist a state trajectory (contained in
PP, P,)) leading to a state in P, from a state satisfying F,. However, from Proposi-
tion 8.2 and the assumption of P(P, P,) being controllable, any state in P,(P,, B,)
can be reached. This implies that there must exist a state trajectory leading to a state
in P, from each state satisfying P,. This completes the proof. O

Remark 8.2: From Theorem 8.1, it can be seen that there exist state paths leading
from any state satisfying P, to P, contained in P(P,, B,), given that any state in
PP, P, is reachable. O

Theorem 8.1 indicates that there exists a state feedback supervisor that satisfies
(19) if and only if P, is controllable from Z,.

8.3.1. Algorithms to synthesize supervisors to achieve Task III. To synthesize
supervisors that will guarantee that Task III can be achieved, the following equivalent
algorithms are given. First, in light of Theorem 8.1 and Theorem 2.1 in Li and
Wonham (1988 a), the synthesis of a supervisor that ensures convergence is presented
below.

Synthesis algorithm 8.3.1
(1) Let F(P, B) + By

(i) If R(P,P,) is not controllable from P, find the supremal sub-predicate of
R(P,, B), i.e. sup C(B, R(P, B).
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(i11)) Assume then that
sup C(P, PP, PN B + & (26)

If (26) is not satisfied for the current R,(P,, P,), increase the value of ; in (25)
until (26) is valid.

(iv) Then, any controllable event o may be enabled at a state x only if its firing
leads to a state from where it is known that P, can be reached; that is,

(VoeZX)oeu(x) ifsp.f,.P, <supC(P,P(P,P,))

Next, based on Theorem 8.1 and Theorem 3.1 in Li and Wonham (1988b), an
alternative algorithm for supervisor synthesis is given below.

Synthesis algorithm 8.3.2
(i) Assume the conditions (i)(iii) taken by Algorithm 8.3.1.

(if) Then, any controllable event o may be enabled at a given state x if and only if,
after the firing of o, the predicate sup C(P,, R,(P,, B,)) is satisfied under any
possible subsequent sequence of uncontrollable events. That is

(YoeZ)oeux) iff R(“M,,sp.f,. B) < sup C(P, BB, B)

Synthesis algorithm 8.3.3

On certain occasions, it may be difficult or computationally intractable to verify
the conditions imposed by algorithms 8.3.1 or 8.3.2 for offline synthesis of a
supervisor. An algorithm may also be formulated to define online the supervisory
control policies as the system evolves. Specifically, such an algorithm would identify
the current system state and then only enable those controllable events that can ensure
convergence from the given state to the target state region P,. To ensure that the
closed-loop system M,/ M, eventually reaches B, from another region P,, a constraint
on state trajectories starting at P, and ending in P, must be imposed. Failure to impose
(minimal) uncontrollable constraints may cause the system to diverge from reaching
the target region P,. For example, it may be required that P, be evolved by the state
region from where there exists an uncontrollable event sequence that will eventually
lead to B,; that is

P, < R;'(*M,,B,) @

Thus, a controllable event o may be enabled iff, after its firing, the resulting state still
remains in the state region defined by the right-hand term of (27); i.e.

(Voe2y)sp.f,. B, < (U.o=RI("M,, F,)) (28)

If (28) is enforced by an online converging algorithm whenever controllable events are
considered, it would be guaranteed that no uncontrollable sequence of events would
lead the closed loop system out from convergence. In fact, if no controllable event is
enabled, (28) indicates that the system will eventually converge to the desired state
region. However, because uncontrollable events are out of any control from the given
supervisor, (28) ensures convergence in no ‘time’ span. Thus, the system may loop
around F, from intolerable periods of time. To improve convergence response, other
criteria can be used to select controllable events such as, for instance, reducing the
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state distance between target region and current states. To preserve consistency in this
paper’s presentation, the reader is referred to Garcia (1993) where an online algorithm
devised to achieve predicate convergence is discussed.

Next, the general problem of predicate convergence is presented.

9. Predicate convergence defined on regions of attraction
9.1. Introduction

The possibility of driving the controlled DES from arbitrary initial states to a
specified target region is of interest in a more general framework. To this end,
stabilization properties and asymptotic behaviour of a given DES needs to be defined
and investigated. To the best of the author’s knowledge, the first study involving
concepts of stabilization of DES was introduced by Brave and Heymann (1989),
followed by a redefinition of classical concepts of dynamics as invariant sets and
attractors for DES modelled by finite state-machines (Brave and Heymann 1990). This
section extends some of the results of Brave and Heymann (1990) for the case of the
infinite state DES model of the proposed framework presented in §3. To this effect,
some characteristics of open-loop processes are discussed next.

9.2. Region of strong attraction

Definition 9.1: Let P, < P, where P, and P, are two predicates on Z. Then F, is a

concentric strong attractor for P, under the discrete event mechanism M, denoted as
M
P, <= P, if the following conditions are met:

() (YoeZ)B, <wlp.f,.P, (tel By
(i) R.(M,P)< R (M,F,)
(iii) (VxeZ with R(M,P).x==-PFP.x=1)flx,s) =x=>s5=¢

where & denotes the empty event sequence. : O]

Strong attraction ensures that the system eventually converges to a specified target
region if it is initialized in a state belonging to its region of attraction. Condition (i)
indicates that any state in the region defined by P, will stay inside it under any event
firing. Therefore, X-invariance is a necessary condition for a given predicate P to be a
concentric strong attractor. Condition (ii) indicates that any state reachable from P, is
attractable to P,. Therefore, any state trajectory leaving P, can be then conducted to
end in P,. Finally, condition (iii) indicates that for any state reachable from P, but not
in P, there exists no sequence of events other than the empty string that causes no state
changes. Notice that for any predicate P, the smallest region of attraction of P is P
itself. However, it will be of interest to find the largest predicate for which P is a strong
attractor. To this end, the following theorem is given.

Theorem 9.1: Let SA(M, P) denote the class of predicates for which P is a concentric
strong attractor; i.e.

SAM, P)=1{0e?: P < Q,PiiQ}

Then, SA(M, P) has a maximal element.
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Proof: It suffices to show that SA(M, P) is non-empty and closed under disjunction.
First, notice that for any predicate P, the smallest region of strong attraction of P is
P itself. Therefore, SA(M, P) is non-empty. To prove that SA(M, P) is closed under
disjunction of predicates, it must be shown that

V0., 0,€SAM, P))(Q,V Q,) e SA(M, P)

To this end, (Q, vV Q,) must satisfy conditions (i)-(iii) of Definition 9.1. For any two
predicates Q, and Q,, Proposition A.2 in the Appendix indicates that

wip./f,. 0, Vwip.f,.Q, < Wlp.f,.(Q,V Q) (29)
Because Q,e SA(M, P) for i = 1,2, then Q, < wlp.f,.Q, and (29) becomes

0,V Q, swlp.f,.(Q, vV Q)

and condition (i) is satisfied. To verify (ii), notice that by the definition of R (-, -) given
in the Appendix, the following equality holds

Re(M, Q1 v Qz) = Re(M’ Ql) \ .RE(M, Qz) (30)

Because Q,e SA(M, P) for i = 1,2, then R(M,Q,) < R;}(M, P) and, together with
(30), it follows that R(M, O,V Q,) < R;} (M, P) and condition (ii) satisfied. To prove
that (ii1) is satisfied, assume to the contrary that

dsel*, xeXZ subjectto(wPAR(M,Q,VQ,).x=1, flx,s)=x

- Let I7, denote an instance of such a cycling state trajectory; i.e. IT,,(1) = IT,,(|IT,,]).
Without loss of generality, assume that /7, starts in the region reachable from Q, and
outside of P; i.e. ‘

(= PAR(M, Q). My(1) = 1 (31)

Equation (31) does not invalidate our assumption because, as seen from (30),
R.(M,0,) < R(M,0,VQ,). Based on Q,e SA(M, P) for i = 1,2, then there exists no
cycle, neither in the region defined by = P A R, (M, Q,) nor in = P A R(M, Q,). This
and (31) imply that 3je{l,...,|1,,|} such that

(-' P A Re(M7 Ql) A~ Re(Ma Qz)) . H12(.]) = 1 (32)
and
(PAR(M, Q) A~ R(M,Q,)). IT1,(j+1) =1 (33)
Because I1,,(j+ 1) follows I7,,(j), there must exist an event ¢ such that
IL,(j+1) =fa(n12(])) (34)
Equation (34) implies that R,(M, Q). IT,,(j+ 1) = 1 which contradicts (33). Therefore,
condition (iii) is also satisfied. O

Corollary to Theorem 9.1:  Let SA(M, P) denote the class of all predicates for which P
is a concentric strong attractor. Then, a maximal element of SA(M, P) exists, denoted by
SA,...(M, P) such that

- 30eSA(M,P) subjectto SA,, . (M,P)<Q (395)

Proof: Let Q, and Q, denote any two predicates such that Q,,Q,eSA(M, P).
Theorem 9.1 shows that SA(M, P)is closed under disjunction of predicates. Therefore,
(Q,V Q,)eSA(M, P). Notice that for i = 1,2 Q, <(Q, V Q,). Then, (Q, Vv Q,) is the
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‘maximal element for the set {Q,,Q,} = SA(M, P). If there exists another element
Q,e SA(M, P) different from Q, and Q,, the same reasoning can be applied to obtain
(Q,+Q,+Q,), which is the maximal element for {Q,, Q,, O;}. The procedure above is
repeated until all the elements of SA(M, P) are considered to end with a maximal
element. O

Definition 9.2: The maximal element satisfying (35) is called the ball of strong
predicate attraction of P under M. O

If P is not X-invariant, then SA4,,. (M, P) = &. In such a case, the maximal 2-
invariant subpredicate of P is found to replace P in the above equations. Convergence
from a given region P, to another, P, can now be ensured as indicated by the next
proposition.

Proposition 9.1: A4 rarget region defined by a given predicate P, can be reached from
another region P, if P, is contained within the ball of strong predicate attraction of P,;
that is

P, < SApa(M, P) (36)

Proof: From Theorem 9.1 and Definition 9.2, it is implied that, for any predicate
QeSA(M,P), P is a strong attractor for Q. In addition, (36) indicates that
P, e SA(M, P,). This and Theorem 9.1 result in P, being a strong attractor for P,
asserting that P, can be reached from P,. O

The implication of Proposition 9.1 is that convergence to a given new state region
P, from another region P, is guaranteed after reconfiguration. Notice that definitions
9.1 and 9.2 characterize discrete-event mechanisms without external control. This may
result in (36) being rather restrictive for system design. A weaker form of attraction
obtained under supervision is given next.

9.3. Region of weak attraction

Definition 9.3: Let P, < P, where P, and P, are two predicates on Z. Then, F, is a
M,
concentric weak attractor for P, with respect to the plant M, denoted as Py<— P, if

there exists a supervisor M such that, for the closed-loop system M /M, P, is a
Mo/ Mg
concentric strong attractor of P;i.e. B, < P, (I

Remark 9.1: It follows from Definition 9.3 that a predicate can become a strong
attractor for another predicate if suitable control inputs are generated under
supervision. Therefore, strong attraction implies weak attraction. O

Proposition 9.2: Let P, < P, where P, and P, are two predicates on & such that P, is
X -invariant. Then, P, can be a concentric weak attractor for P, if there exists a supervisor
M, such that the following conditions hold

() R(M/M,, P) < RMM,./M,, P
(i) (Vxe& with (= P,AR(M,/M_,P)).x=1)f(x,s) =x=>s=¢
where ¢ is the empty event sequence.

Proof: Condition (i) ensures that any state reachable from P, is attractable to B,.
Therefore, any state trajectory leaving P, can then be dragged to P,. Because it has been
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assumed that P, is X -invariant, trajectories entering P, will remain there under any
sequence of uncontrollable events. Condition (ii) guarantees that for any state
reachable from P, but not in P, there exists no sequence of events other than the empty
string that causes no state changes. This ensures that the system can eventually
converge to F,. O

Corollary to Proposition 9.2: If all events are controllable, then the necessary and
sufficient condition needed to ensure convergence is given by

P < RA(M /M, Fy) (37

Proof: Equation (37) indicates that for any state in P, there exists a state trajectory
leading to P,. If ~, = X, all such trajectories are driven by sequences of controllable
events. Therefore, it is guaranteed that a supervisor can exert complete control on the
plant to drive the system directly from P, to P,. In addition, notice that if X, = X, a
proper supervision can avoid cycles in the state space. O

Remark 9.2:  Proposition 9.2 establishes the necessary conditions for a predicate P,
to become a strong attractor for another P, under supervision. Notice that, unlike
strong attraction, 2 -invariant is a necessary condition for weak attraction. O

Similar to the case of strong attraction, it is of interest to find the largest predicate
for which a given predicate P is a weak attractor. To this end, the following theorem
is given.

‘Theorem 9.2: Let WA(M,, P) denote the class of aZl predicates for which P is a weak
attractor; i.e. M,
WAM,, P)={Qe: P< Q,P<+—Q}

Then, WA(M ,, P) has a maximal element.

Proof: It suffices to show that WA(M,, P) is non-empty and closed under predicate
disjunction. First, notice that for any predicate P, the smallest region of weak
attraction of P is P itself. Therefore, WA(M,, P) is non-empty. To prove that
WA(M,, P) is closed under disjunction of predicates, it must be shown that

(VQ,, 0, WA(M,, P))(Q, V Q,) € WA(M.,, P) (38)

To this end, (Q, v 0,) must satisfy conditions (i) and (ii). To verify (i), notice that if
0,,0,€ WA(M_, P) then there must exist supervisors M, and M, such that the
following inequality holds

R(M./M,, Q) < R(M,/M,, P) (39)

for i=1,2. Let uy,(-) denote the control input policy enforced by an extended
supervisor M, defined for (Q, v Q,) with

115(X) = u3(x) U uy(x) (40)

Equation (40) implies that
R(M /M, , 0,V Q5) = R(M,/M,,0,)VR(M /M, ,Q,) (41)
RAM /M, , PV F)=RNM,/M,,P)V R}M,/M,,P,) (42)

Thus, from (39)-(42), it follows that
,Re(Mc/MSH, 0,vQ, < R;I(MC/MSM, P)
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and condition (i) is satisfied. To verify (ii), assume first that ~PAR(M. /M, ,
0,V Q,) is originally cyclic and find the conditions on supervisors’ synthesis that
guarantee the terms given by (i) and (ii). Thus

IseZ* xeZ subjectto (" PAR(M /M, .0,V QD,).x=1fx5)=x

Let I1,, denote an instance of such a cycle with I7,,(i) = f(Il,,(i—1),0,), I1,,(1) =
I1,,(|IT,,)) and | I1,,| denoting the length of IT,,. Without loss of generality, assume that
I, starts in the region reachable from Q, under the supervision of M, and outside of
P;ie.

(" PAR(M /M, 0). I1;,(1) =1 (43)
Because Q,e WA(M,, P) for i = 1,2, then there exists no cycle either in the region
defined by = P A R(M /M, ,Q,)norin = P A R(M./M, , Q,). This and (43) imply that
die{l,...,|[1,,]} such that

d (_' P A Re(Mc/Msl’ Ql) A= Re(Mc/Msea Q2))H12(l) =1 (44)
an
(" PARM /M, ,0) A= R(M./M,,0,)). IT,(i+1) =1 (45)
Because I7,,(i+ 1) follows I1,,(i), there must exist an event o;,; such that
I1,,(i+ 1) = fUI,,(i), 64,1) (46)

Equations (44)-(46) result in two conclusions. First, o,,, must be a controllable event.
If 0,,, were an uncontrollable event, R(M./M,,Q,).I1,,(i+1) =1, which would
contradict (45). Secondly, to satisfy (44) and (45), the following condition must hold

geu,(Il,(i—1)) and g, € u,(I1,(1)) — u,(I1,5(1) 47)

Because (47) can be possible, = P A R (M ,/ M, .0,V 0,) is not necessarily acyclic and
condition (ii) is not surely satisfied. To meet (ii), the cycle I1,, must be eliminated, which
can be achieved by removing g,,, from u,,(-). That is, if the control law is redefined as

fi,(x) = {(ul(x) Uy(x)—0,,, if x = I1,0i) )
1y (X) U uty(x) otherwise

for a new supervisor Msm, then /7,, does not exist in = P A R (M, /Msw, 0,V 0,).
Assume IT;, was the only (original) cyclein = P A R,(M,/ Msm, 0,V Q,). Thus,i,,(-)as
given by (48) will ensure fulfilment of (ii). Let us verify that this modification of the
control law from u,(-) to 7i,,(-) has not affected the validity of condition (i). To this
end, notice that from (46) the elimination of g,,, might affect only the connectivity of
I1,,(i) and any other state connected to P through I7,,(i). However, from (39) and (47),
there must exist a state trajectory from /7,,(7) to P that does not travel g, ,. Therefore,

Re(Mc/Msm’ Ql v QZ) < Rgl(Mc/Msm’ P)

and condition (i) is satisfied. Equation (38) is then proved under #,,(). If there exists
other cycles in = P A R(M./M, ,0,V Q,) besides IT,,, this procedure is repeated for
each of them and, following a similar argument, the resulting supervisor will ensure
fulfilment of conditions (i) and (ii) hence of (38) under ,,("). O

Corollary to Theorem 9.2: Let WA(M,, P) denote the class of all predicates for which
P is a concentric weak attractor. Then, a maximal element of WA(M,, P) exists, denoted
by WA,,.(M., P), such that

-10e WA(M_, P) subject to WA, (M, P)<Q (49)

ma.x(



Supervisory control of reconfigurable discrete event systems 791

Proof: Let O, and Q, denote any two feedbacks such that 0,,0,e WAM,, P).
Theorem 9.2 shows that WA(M,, P) is closed under disjunction of predicates.
Therefore, (Q,V Q,)e WA(M,, P). Notice that for i=1,2,0,<(Q,Vv Q,). Then,
(0,V Q,) is the maximal element for the set {Q,,0,} = WA(M,, P). If there exists
another element Q,e WA(M_, P) different from Q, and Q,, apply the same reasoning
to get (@, vV 0,V Q;) which is the maximal element for {Q,,0,, 0,}. The procedure
above is repeated until all elements of WA(M,, P) are considered to end with a unique
maximal element. Od

Definition 9.4: The maximal element satisfying (49) is called the ball of weak
predicate attraction of P with respect to M., O

If P is not X -invariant, then W4, (M,, P) = J. In this case, the maximal X e
invariant sub-predicate of P is found to replace P in the above equations. Convergence
from a given region P, to another P, can now be ensured under supervision as indicated
next.

Proposition 9.3: A4 target region defined by a given predicate P, can bé reached from
another region B, under suitable supervision, if the latter is evolved by the ball of weak
attraction of the former; that is

P < WApo(M, By) (30)

Proof: From Theorem 9.2 and Definition 9.4, it is implied that, for any predicate
Qe WA(M,, P), P is a weak attractor for Q. In addition, (50) indicates that P e
SA(M,, F,). This and Theorem 9.2 result in P, being a weak attractor for P, asserting
that 7, can be reached from P, under proper supervision. O

Thus, if, when the predicates P, and P, are being defined, (50) is enforced to be
valid, convergence to the new state region defined by P, from another defined by P, can
be achieved after reconfiguration, assuming that a suitable set of control inputs is
commanded on the controlled process. This argument is summarized in the following
synthesis aigorithm.

Synthesis algorithm 9.3.1

Let P, and P, denote the predicates specified to be enforced whenever the closed-
loop system is characterized by the plant/supervisor pairs M, /M, and M,/M,,
respectively. If the coordinator decides a reconfiguration from supervisor M, to M,
then the plant is needed to be moved from P, to the region defined by P,. Therefore,
convergence to F, from P, must be guaranteed. To ensure this convergence, an
algorithm can be devised that enforces (50) to be valid. Specifically, if the given
predicates £, and 7, satisfy (50), Proposition 9.3 ensures that a supervisor exists that
can drag any state in P, to a state in B,

10. A concept of stochastic modelling approach for specifying the supervisory tasks

To describe a given process, its discrete event representation M can explicitly
incorporate modelling features reflecting the stochastic nature of the underlying
system. With respect to the supervisory tasks, it may be beneficial to model explicitly
the stochastic characteristics of event occurrences. For the discrete event model
discussed so far, an event can be characterized based on the possibility of its
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occurrence using the enabling function d(x) or, similarly, using the set-valued functions
u(x) or w(x) defined in §3. For example, it is known with certainty that an
uncontrollable event ¢ will not occur at x if o¢ w(x). However, for any oew(x), it
cannot be guaranteed that ¢ will actually fire. The current definition of w(-) does not
provide for a continuum measure of confidence for event occurrence.

It is important for many practical implementations to distinguish among events
that may occur at a given state x from those that will certainly not occur at x. This
might be useful when relaxing some of the controllability constraints imposed by the
mentioned supervisory tasks. For example, Task I (control invariance) requires that
the specified predicate be X -invariant. This condition may be difficult to meet in
general. However, the designer may be content if it is satisfied within a certain degree
of confidence. To incorporate the above ideas, the discrete event model presented in §3
is extended as follows.

Let Prob(-, -) denote a mapping from the set of events and states to the real line
segment between 0 and 1; i.e. Prob: ' x & [0, 1]. For a given event g, Prob (o, x)
indicates the probability that o may occur at the current state x. Thus, the definition
of d(x) given in (5) can be rewritten as follows

d(x)={oeX: Prob (a,’x)’ > 0} | (51)

Notice that from (51), (Vo ¢ d(x)) Prob (¢, x) = 0 and Prob (g, x) = 1 for a controllable
event ¢ forced to occur at x by the supervisor.

Definition 10.1: Let P denote a given predicate, x a given state satisfying P, and p a
real number between 0 and 1. P is said to be X -invariant at x with probability p if and
only if

(Voew(x):sp.f,.P > P)Prob(ag,x) < (1—p) O

Definition 10.2: A predicate P is said to be X -invariant with probability p if, for any
state x satisfying P, P is X -invariant at x with probability p. O

Definition 10.1 says that for all uncontrollable events that might occur at a given
state x and push the state of the system out of P, their probability of occurrence is less
than or equal to (1—p). For p = 1, Definition 10.2 reduces to the standard definition
of X -invariance (Ramadge and Wonham 1987).

The function Prob (-, -) can then be used when specifying the supervisory tasks.
For example, if the statistics of event occurrences is known, the X -invariance
condition imposed by Task I can be relaxed by requiring that the given predicate P be
X -invariant with probability p. In general, this condition can be more easily met and
still be acceptable for certain supervisor designs. Extensions of these ideas to the other
supervisory tasks can also be formulated. However, this is a subject of future research
and is not addressed in this paper.

11. Summary and conclusions

Reconfiguration refers to the capability of changing system configuration based
on operational conditions. It is applied to control processes with time-varying
specifications or with large operational changes. In reconfigurable supervisory
systems, the sets of supervisory specifications or operating discrete event processes,
could be time-dependent. This paper proposes a reconfigurable supervisory approach
to control plants subjected to unknown disturbances, including time-varying discrete

AT
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event systems (DES). In a reconfigurable approach, the controlled DES process along
with its operating conditions are partitioned into sets of subprocesses and operating
regimes, and a supervisor is devised for each pair of subprocess and subprocess
operating conditions. The current operating condition of the plant is identified, and a
supervisor is selected by a high level decision-maker (e.g. a coordinator) among the
available ones to act directly on the plant. Issues concerning the class of discrete event
system resulting from reconfigurable supervision, named reconfigurable DES (RDES),
are addressed in this paper. In particular, the paper addresses basic ideas of
supervisory control in the state-space framework and discusses analytical guidelines
related to RDES implementations. These implementations are particularly important
in reconfigurable hierarchical hybrid control systems (Garcia 1993, Garcia and
Edwards 1993a, Garcia et al. 1995).

A structured discrete event framework is proposed and discussed in this paper. The
proposed model possesses a discrete finite-dimensional space generated by a finite set
of state variables with control specifications given in terms of predicates on the set of
states and system dynamics expressed as predicate transformations. To modify the
open loop response of a given DES, event/state feedback control is employed where
supervisors act on observed event or state signals received from the plant through
event and condition channels. In addition, the controllable actions are logically
separated from the uncontrollable disturbances. This results in a closed-loop
configuration that is consistent with the classical control theory for continuously
varying processes and facilitates analysis and synthesis of algorithms with a special
emphasis on process control applications.

Besides the simple feedback arrangement, this paper presents an architecture of
RDES where a bank of supervisors is identified for each controlled DES, with one and
only one supervisor acting at any instant of time. Each supervisor is designed to
accommodate a restricted subset of all possible plant operational conditions.
Switching among supervisors is based on the supervisory command or on the
performance of the overall process. Changes in the assignment of supervisors may
introduce transients that are designed to decay sufficiently fast so that the new desired
behaviour is achieved. To this effect, three supervisory tasks are identified: control
invariance, region avoidance and convergence. The control invariance task requires
that, after an event firing sequence, a specified predicate remains invariantly satisfied
whenever initially satisfied. The region avoidance task requires that the system must
not satisfy undesirable predicates when traversing the state space. Finally, the
convergence task requires the system to converge to a specified target predicate from
given initial conditions. This paper defines and discusses the methodology and
algorithms for these tasks. Computationally efficient solutions to these tasks have been
identified from cited references.

The potential of driving a controlled DES from arbitrary initial states to a specified
target region is of interest in a more general framework. To this end, the issue of
convergence under the proposed framework has been investigated. A stochastic
setting for supervisory task specifications is also outlined. Experimental evaluations of
the ideas presented in this paper have been partially reported by Garcia (1993), Garcia
and Edwards (1993a), Garcia et al. (1995). Additional experimental work is needed
and tests are currently being planned for future research.
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Appendix

Predicate transformers. Predicate transformers were introduced by Dijkstra and
Scholten (1990) to define precedent or successive predicative conditions with a special
emphasis on computer semantics. A predicate transformer f maps a family 2 of
predicates into itself. To express these transforming operations under a given
operation, the following notation (Dijkstra and Scholten 1990) is used

Q=(fOp).P=f.Op.P
where

P is a given predicate

Op is a specified (process) operation or execution

f is a defined predicate transformer (e.g. wp, wlp, or sp)

Q is the resulting predicate after transformation of P under f.Op
Therefore, f.Op: # -~ 2 is a pre or post-conditionai predicate transformer under the
operation Op. To study the dynamics of certain DES, the predicate transformers, wp,
wlp, and sp, were introduced to the DES arena by Ramadge and Wonham (1987),
Wonham and Ramadge (1988) where the specific computational operation is given by
the event transition function f,. While wp.f,. P is the weakest precondition under
which f, is guaranteed to establish the post condition P; wlp.f,.P is the weakest
precondition under which £, is guaranteed to establish the post condition P if the event
o fires. On the other hand, sp.f, is the strongest post condition under which f; is
guaranteed to establish the post condition sp . f,. P whenever started from P. Formally,

wlp.f,. P holds in those states where each computation of f, results in a state that
satisfies P, or for which £ is undefined; i.e.,

wlp.f,.P=Q, where %Z,={xeZ:P.f(x)=1Vao¢dx)}

and d(-) is defined in (5). Similarly, wp.f,. P holds only in those states where each
computation of £ results in a state that satisfies P; i.e.,

wp.f,.P =0, where Z,={xeZ:P.f(x)=1}

On the other hand, sp.f,. P holds in those states for which there exists a computation
that starts in an initial state satisfying P; i.e.,

sp.f,.P=Q, where %, ={xe%:dye%, subject to f(y) = x}
Proposition A.1: wlp.f, is conjunctive.
Proof: It is required to show that
VP, QeP)wlp.f,.PAwlp.f,.Q =wlp.f,.(PAQ) (A1)

The proof is done in two steps.
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Step 1
Show that wip.f,.PAwlp.f,.Q < wlp.f,.(PA Q).
The proof is by contradiction. Assume that
IxeX:(wlp.f,.PAwlp.f,.0).x=1 and wlp.f,.(PAQ).x=0

By definition, if wlp.f,.P.x =1 and wlp.f,.0.x = 1, this indicates that after the
firing of o, the resultant image of x satisfies P and Q or f, fails to terminate. However,
this contradicts the assumption that wlp.f,.(PA Q).x =0.

Step 2
Show that wip.f,.(PA Q) < wlp.f,. PAwlp.f,. Q.

The proof is by contradiction. Assume that
IxeZ:wlp.f,.(PAQ).x=1 and (wlp.f,.PAWIlp.f,.0).x=0

By definition, wlp.f,.(P A Q).x = 1 indicates that after the firing of o, the resulting
image of x satisfies P and Q or f, fails to terminate. However, this contradicts our
assumption that wlp.f,. P.x = 0 and wlp.f,.Q.x = 0. From Steps 1 and 2, the proof
is completed. “ O

Proposition A.2: (VP,QeP)wlp.f,.Pvwlp.f,.0 <wlp.f..(PV Q)

Proof: First, notice that (YP,Qe#?) P< Pv Q and Q < PV Q. From Proposition
A.1, it is known that wlp.f, is conjunctive. Because wlp.f, is conjunctive, it has been
proved (Ushio 1989) that wlp ./, is strict and monotone. Using monotonicity property,
it can be concluded that (VP,Qe?)wlp.f,.P < wlp.f,.(PV Q) and wlp.f,.0Q <
wlp.f,.(PV Q). These two inequalities indicate that (VP,Qe ?)wlp.f,. PV wlp.f,.Q <
wlp.f,.(PV Q) and the proof is completed. d

Reachable and attractable predicates. Let us denote the disjunctive and conjunctive
DO-loops predicate transformations as follows

g-DO(f)*=V g.f, and g.0D(f) = /}gfs
rsT;k T3T=k
with g denoting a given predicate transformer, s denoting a given event sequence of
length |s| and f, denoting the transition function extended for s.

Definition A.1: For a discrete event mechanism M, the reachable predicate generated
after k (or less) event transitions, starting from a given predicate P, is given as

R.(M,P, k)= V\ sp.DO(f)).P

0<i<k
If the number of transition steps is not bounded, the generated predicate becomes

R(M,P)=V R(M,P,k) O

k=0

Definition A.2: Fora DES M, the attractable predicate denoted by R;(M, P, k) from
which a given predicate P is reachable in no more than & steps is defined as

R:A(M,P,k)= V wlp.OD(f)'".P

0<igk
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If there is no bound on k, then the above definition is modified as

R:M, P)=V wlp.OD(f,)". P 0

i20
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