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Fig.2 Angular velocity about e3 vs time.

the angular velocity about axis 3. A similar statement is true for
the angular velocity about e,, although a figure is not included for
succinctness.

Conclusions

Underactuated spacecraft can be detumbled using a variable struc-
ture controller. The algorithm converges to a sliding surface on
which exponential decay of the angular velocities occurs. Lower
maximum torque magnitudes results in slower convergence to the
sliding surface. Once the spacecraft is at rest, a series of at most
three rotations about the two active axes is used to reorient the
spacecraft. Simple linear controllers can be used for the reorienta-
tion maneuvers. A
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Modeling of the Planar Motion
of a Flexible Structure
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Introduction

LEWING and vibration control of flexible structures have re-

ceived a considerable amount of attention in recent years. A
common control objective is to translate and/or rotate a structure
from an initial position to a more desirable final position. Unfor-
tunately, since the structure is flexible, any movement will induce
vibration. Thus, the control action should also attempt to suppress
any vibrations. i

One example of flexible structure control is the fine pointing of a
space structure. Vibrations will cause error in the fine pointing and, if
severe enough, could even damage the structure. Lim and Balas’ in-
vestigate the fine pointing performance of the controls-structures in-
teraction evolutionary model, which is a laboratory model of a large
flexible spacecraft assembled at NASA Langley Research Center.
They consider structured and unstructured modeling uncertainties
and use p synthesis to obtain a robust controller.?

The objective of the research reported here is to support the plan-
ning and fabrication of an experimental facility to study the dynam-
ics of a flexible structure. This involves proposing and modeling
the plant, performing computer simulations on the model, and fi-
nally building the structure in the laboratory. The ultimate goal is
to synthesize a robust control law for the slewing maneuver of the
flexible structure. The contribution of this Engineering Note is the
derivation of a nonlinear, small-order model for a two-dimensional
flexible structure.

Modeling of the Flexible Structure

Figure 1 shows the configuration of the laboratory flexible struc-
ture, which was originally proposed by Lim.3 This structure consists
of a rigid body, which undergoes frictionless planar motion in the
reference X frame. The center of mass (denoted c.m. in Fig. 1) of
the rigid body relative to the X frame is represented by the time-
dependent variables x; (r) and x,(¢). The x frame of the rigid body
has a time-dependent angular orientation 6(¢) with respect to the
X frame. A slender flexible beam is connected to the rigid body via
a torsional spring at the point (0, ) in the rigid body’s x frame. The
beam is free to vibrate only in the plane of the X frame so that the
system as a whole can be treated as a two-dimensional problem. The
deflection of the flexible beam is expressed in terms of its own local
coordinates of the ¢ frame. When the flexible beam is undeformed
in the equilibrium position, it lies along the ¢; axis. Since the bear:
is rigidly connected to the top end of the spring and the shape of the
beam is expressed by a smooth function of the local (¢ frame) coor-
dinates, both the displacement and the slope of the beam are zero at
the origin of the ¢ frame. As the spring twists, the beam’s ¢ frame is
rotated by an angle of ¢ (¢) with respect to the rigid body’s x frame.
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Fig. 1 Schematic diagram of the flexible structure.

There are atotal of three torque wheel actuators clamped to the
beam whose mass is lumped at points —£/2, 0, and £/2 on the
¢, axis. The purpose of these actuators is to damp out unwanted beam
vibrations. There are also two thrusters connected at point (by, b2)
on the rigid body with respect to the x frame. These thrusters are
oriented at a constant angle of y and are used to move the structure
within the X frame. A total of five sensors are located at points —£/2,
—£/4,0, £/4, and £/2 on the ¢, axis. Thus, the plant will be modeled
with five accelerometer sensor outputs and five control inputs. If
the plant model is found to be unobservable or poorly observable,
however, additional sensors on the rigid body will be required. The
following assumptions are made in the modeling of the plant:

1) The deflection of the flexible beam is assumed to be small,
which implies that the beam deformation is elastic (i.e., the Young’s
modulus is constant) and the ¢; coordinate of the beam ends remain
constant at z = ££/2. '

2) The sensors are represented as point masses on the beam, i.e.,
the moment of inertia of each sensor is negligible.

3) One-half of the spring’s mass and moment of inertia is lumped
with the rigid body and the other half with the center node of the
flexible beam.

4) The cross-sectional dimensions of the flexible beam are small
relative to its length. Therefore, both the shear and rotary inertia
effects of the beam cross section are neglected. In essence, the
flexible beam follows the Euler-Bernoulli equation.

The rigid body modes of the plant are denotedas q; = x1,42 = X2
g3 = 0,94 = @, gs = V1, g6 = Vg, and g7 = V3, where x1, X2, 0,
and ¢ were discussed previously, and vy, vy, and vs are the relative
angular positions of the actuator rotors with respect to the stators
(clamped on the flexible beam) at points z = —£/2, z = 0, and
z = £/2, on the ¢ axis, respectively.

The bending modes of the flexible beam are represented using
the theory of finite elements. The beam is divided into four evenly
spaced elements resulting in five nodes. Since the flexible beam is
attached to the rigid body with the torsional spring, the beam has
zero displacement and slope with respect to the { frame at the center
node. Thus, there are no states associated with the center node. The
plant states gg —q;5 represent the displacement and slope of the beam
at the nodes. The amount of displacement of the beam at location z
on the ¢ axis is approximated as

8
Y@ )~ Y @;@)g;470) )

j=1

where the @ ;(z) are constructed using Hermite shape functions.

The kinetic energy of each part of the system needs to be com-
puted. This includes the translation and rotation of the rigid body,
the kinetic energy associated with the flexible beam, and the rotation
and translation of various lumped masses on the beam.
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The kinetic energy (KE) of the rigid body is
KEsgia = (mz/2) (i +%3) + (Iz/2)6* @

where mp is the mass of the rigid body including the mass of the
thrusters, sensors, half of the spring mass, and any other connected
accessories. Iy is the mass moment of inertia about the rigid body’s
center of mass.

The KE of the flexible beam is

/2 )

P . .

KEfexbeam = > / P @7 plz. g dz 3)
/2

where p is the mass density of the beam (mass/unit length) and
p(z, q) tepresents the location of a point on the deformed beam
with respect to the X frame.

Next consider the translational KE of the masses attached to the
flexible beam. These masses will be lumped at the five nodes: sensors
and actuators at z = —£/2 and z = £/2, sensors only at z = —£/4
and z = £/4, and a sensor, an actuator, and half of the spring’s mass
atz = 0. Letzy = ~£/2, 20 = —£/4,23 = 0, z4 = £/4, and
75 = £/2. Also let m; be the total mass lumped at point z;. Then

N -

5
KEmassras. = 5 9 miB(, )7 P(1,9)- @
i=1

The rotational KE of the actuator stators and the portion of the
spring lumped at the center beam node is determined as follows.
The beam’s actuators are located at points z; = —£/2,z2 = 0, and
73 = £/2. Also, half of the spring’s mass is lumped at z = 0. It

is assumed that the moment of inertia of the sensors is negligibly
small. The KE of the stator and spring rotation is
2
5
z=2zj
where

3 .
.. df3dy
Zlm_,l:9+¢+a;<5—z'
i=1
dy 3 d [dy u
P Y : _f =) = 4 3
3 =2 P@a 0= d,( az) _;cb(z)q,” ©

i=1

KEnpassro. =

=

I, and I, are the moments of inertia of the stators at points z; and
23 and I,,, is the moment of inertia of the stator at point z = 0 plus
half of the spring’s moment of inertia. Note that

ay
dz

=0

z=0

since the slope of the beam is zero at z = 0.

The actuator rotor rotational KE is derived as follows. The beam’s
actuators are located at points z; = —£/2, z2 = 0, and z3 = £/2.
The KE of the actuator rotors is

2
) +v j:\ )]
=z

3 L|6+¢+ d 2y

(") T\ oz
j=1 z

where ,; is the moment of inertia of the rotor at z; and v; is the

angular position of rotor j relative to stator j.

The potential energy (PE) of each part of the system will be
computed next. This includes the PE stored in the flexible beam and
the torsional spring.

The flexible beam has PE

PE 3 EI /C/Z azy(z’ t) Zdz
beam = 7o pl 082

TR 2
ey Y @) | dz ®

KErtorrot. =

N

j=1

where E is the elasticity of the beam and [ is the area moment of
inertia.
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The torsional spring connecting the flexible beam to the rigid
body has PE

PEspr‘mg = %Kspring‘p2 (9)

where Kping is the spring constant.
It is possible to write the total kinetic and potential energy of the
plant in the form

KB = 14" [Ao + A1(q) + A2(g) + A3 + Aslg  (10)
PEiw = 347 (B1 + Ba)g (11)

The seven energy contributions can be summarized as follows:

Ao = KE of the rigid body

A1(g) = KE of the flexible beam

A,(q) = translational KE of the masses lumped on the beam

As = rotational KE of the actuator stators and the portion of the
spring’s mass lumped at the center beam node

A4 = rotational KE of the actuator rotor

B; = PE stored in the flexible beam

B, = PE stored in the torsional spring

The virtual work done by the thrusters and the torque wheel ac- -

tuators is now calculated. The thruster inputs u, and u, are the only
forces contributing to the rigid body s virtual work. The virtual work
done on the rigid body can be shown to be

5Wﬂgid = [u1 COS(Q -+ '50) - Uy sin(f) + 1/l)]6x1
+ [y sin(0 + ¥) + ua cos(6 + ¥)16x;2

+[by(u; siny + us cos ) — by(uy sin Y — uy cos y)186
(12)

The beam actuators located at z; = —£/2, z; = 0, and z3 =
£/2 contribute to the virtual work done on the flexible beam. The
actuators provide a torque of u; at beam position z;. The virtual
work done on the flexible body is

+ Uj)
z=2zj

3
d
Wiox = ) {u;+za(9+¢+ o
1} (13)

i=1
a
—uj+25|:+(9+qo+——z )
dz | _ _!
z=2j

where the first term is a result of the angular displacement of the
rotors and the second term is a result of the angular displacement of
the stators. This can also be written as

3
SWaex = Y 1128V (14)

j=1
The total virtual work done on the system can be expressed as
- 15
SWiow = Y 0idg; (15)
i=1
where
Q1 = ujcos(gs + ¥) — uz sin(gs + ¥)
02 = u; sin(gs + ¥) +uz cos(gs + )
Q03 = by (u siny + us cos ¥) — ba(u; cos Y — uasinyy) (16)

04=0, Qiva =Uisa, i=1,2,3
Qi+7=0, i=1,2,...,8
The Lagrangian of the system is
L = KEuu — PEyul an

or, using KEqa and PE,q just derived,
L = 14"[Ap+A1(@+Ax@)+As+Adg— 1" (Bi+B)g  (18)

Using the Euler-Lagrange equation

d/dL aL :
5(@3)"53=Q A (19)

yields

d
[Ao+ A1) + Aa(q) + A3 + Aslg + a‘t'[Al(Q) + Az (q)]g

10 -
-3 55{¢T[Al(q) + Az(q)]q} + (B1 + B2)g = Q(g, u) (20)

as the equation of motion, where A; and B; are 15 x 15 matrices
and g and Q are 15 x 1 vectors.

The plant model as given in Eq. (20) contains no damping term.
Although the d/dt (e) term looKs like damping, it comes about be-
cause of the nonlinearities in the system and not because of any
damping effect. In the actual plant, however, there will be some
damping present (e.g., the bending of the flexible beam and the
twisting of the torsional spring will produce heat). It is possible to
artificially add damping to the plant model. The term Dg can be
added to the left-hand side of Eq. (20), where D is a diagonal ma-
trix which contains positive damping terms for each plant model
state. For example, a positive real number in D (4, 4) element will
account for the damping resulting from the torsional spring. To ob-
tain matrix D, one must either estimate the damping effects of the
plant or determine them experimentally.

It is necessary to reformulate the equations of motion as just

V developed into a more convenient form to facilitate the writing of

an efficient simulation code. This involves finding solutions of the
spatial integrations a priori and using algebraic and trigonometric
properties to simplify the model equations.’ A numerically efficient
simulation program has been coded based on these considerations.
Simulation results for a given set of system parameters are reported
elsewhere.’

Summary, Conclusions, and Future Work

A 30-state nonlinear model for a two-dimensional flexible struc-
ture has been developed and tested by performing computer simula-
tions. The method of Lagrangian mechanics has been used to model
the plant. Finite elements methods were used to describe the motion
of the Euler-Bernoulli beam contained in the structure,

The modeling of the structure is a necessary first step to finding
a robust controller that along with an a priori determined open-loop
input sequence will transfer the plant from an initial state to a desired
final state. :

To verify the validity of the model, the actual flexible structure
should be built and tested in the laboratory. Comparisons between
laboratory measurements and computer simulation results will in-
dicate the accuracy of the mathematical model. If the model is not
sufficiently accurate, it could be very difficult to design a controller
that satisfies the robust performance criteria.b In such a case the
model will need to be refined. For example, a larger number of nodes
may be necessary in the finite element formulation. The accuracy
of the finite element model of the flexible beam has been examined
for a given set of parameters as presented in an earlier report,” The
finite element description of the beam is the source of 16 out of the
30 states in the plant model if a total of five nodes are selected in the
flexible beam model. Increasing the number of finite element nodes
from five to a larger number would add four more states for each
additional node. Also, to keep the nodes symmetric across the beam
(with a node at the center of the beam), additional nodes would need
to be added in pairs. Thus, an attempt to improve accuracy by adding
more nodes will greatly increase the number of states in the model.
Moreover, the addition of more nodes may increase accuracy on}y
marginally. The task of control synthesis requires a tradeoff between
the accuracy and complexity of the plant model that should be made
based on the parameters of the flexible beam.




The next step in the design process is to determine an open-loop
control law. This can be accomplished by minimizing an appropriate
cost functional under specified state and control input constraints.
A nonlinear programming package (e.g., NPSOL’) can be used to
generate the optimal time history of the control inputs.

The open-loop control policy, when applied to the actual system,
may not produce the desired output because of modeling uncertain-
ties, external disturbances, and a mismatch in the initial conditions.
Techniques such as the structured singular value (1) (Ref. 6) for
energy-bounded signals, or £; (Ref. 8) for amplitude-bounded per-
sistent signals, can be used to synthesize a robust controller, which
will attempt to eliminate these errors.
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Self-Sensing Magnetostrictive
Actuator for Vibration
Suppression
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Nomenclature -
A = area
B = flux density
d,é = piezomagnetic constants
H = magnetic field
i = current
L = inductance
£ = length
n = number of wire turns
R = resistance
S,e = strain
s = elastic compliance
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T,o0 = stress

v = voltage

Y = elastic stiffness
72 = permeability
o] = magnetic flux

Introduction

T HE concept of a self-sensing actuator originated in the control
of electromagnetic mechanisms used in ordinary speakers.!
The technique was proposed as a simple method for adding damping
to their resonant modes. By using simple bridge circuitry, a signal
could be generated independent of the applied control voltage that is
proportional, albeit with some frequency dependence, to the velocity
of the coil being driven in the magnetic field.

Recent -work has applied the self-sensing concept to the control
of smart materials, specifically piezoceramics and magnetostric-
tives.>~7 Pratt and Flatau® first investigated the concept of a
self-sensing magnetostrictive actuator. A self-sensing model was
proposed as was an initial investigation into the use of a magne-
tostrictive actuator for active isolation. The experiments were lim-
ited in their success because of the high bandwidth the actuator sys-
tem was trying to control. Fenn and Gerver’ also developed models
and produced data, which supported the use of magnetostrictive
materials in a self-sensing configuration. The success of applying
the self-sensing technique to a magnetostrictive active strut as it is
presented in this Note is largely due to focusing on the damping of
low-frequency modes of a truss structure.

Magnetostriction Overview

Even though magnetostriction, like electrostriction, is inherently
a second-order effect, it is common to treat it as a problem in linear
elasticity using the approximation of small strain theory.®® Treat-
ing the effects in this fashion results in a one-to-one analogy to
the constitutive relations defining linear piezoelectricity theory.*10
Thus, a practical form of the magnetostrictive constitutive relations
is expressed as follows:

Sij = sf,-’k,nz +dyij Hi 1
B; = éuSu + ui Hy )]

This form is more practical because of its ease of use in approxima-
tion methods.

Since we are only concerned with a one-dimensional case where
the stress, strain, and fields are applied/measured in the same direc-
tion and the magnetostrictive material is assumed to be isotropic,
these tensor equations can be compressed into the following set:

e=(o/Y)+dH 3)
B=ée+uH 4)

For experimentation, it is helpful to further manipulate Eqs. (3)
and (4) to gain some intuition for the problem as well as simplify-
ing the simulation process. Using a priori knowledge of the active
magnetostrictive element, i.e., the actuator, some simplifying as-
sumptions can be made. The actuator can be modeled as a simple
wire-wound solenoid assuming the wires are thin, the spacing be-
tween the wires is small relative to the solenoid’s radius, the solenoid
is long relative to its diameter, and the magnetostrictive material en-
closed has a constant permeability. The field induced by current flow
in a simple solenoid is given as

H = (n/0)i ®
'When' Eq. (5) is substituted into Eq. (3) the following results:
£ =(0/Y) +d(n/0)i (6)

Equation (6) shows the strain to be clearly a result of two effects,
one of an imposed stress and an imposed current through the wire.

Turning now to Eq. (4), we can use fundamental laws of mag-
netics to derive an equation in terms of voltage and current instead




