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This paper establishes necessary and su� cient conditions for existence, uniqueness and global optimality of the Linear
Quadratic Coupled Delay Compensator (LQCDC) which is designed to circumvent the detrimental e� ects of randomly
varying delays from sensor to controller and from controller to actuator as well as the time skew caused by mis-
synchronization of sensor and controller sampling instants. These conditions are derived on the basis of the concepts
of stabilizability, detectability and compensatability in the mean square sense. In the absence of random delays from
sensor to controller and from controller to actuator, it has been shown that LQCDC problems reduce to the classical
Linear Quadratic Gaussian (LQG).

1. Introduction

Randomly varying distributed delays, induced by a
computer communication network, may degrade stabil-
ity and performance of real-time systems because timely
transfer of sensor and control signals from one device to
another is not guaranteed (Ray and Halevi 1988,
Nilsson 1998). Delay problems, in general, have been
investigated by many researchers. For example,
Bernstein et al. (1986) address the issues of data pro-
cessing delays in the computation of control laws
where the command, computed in the previous sampling
period, is applied during the current sampling period.

An output feedback controller, called the Linear
Quadratic Random Coupled Compensator (LQCDC),
has been proposed by Tsai and Ray (1997) to circum-
vent the detrimental e� ects of the randomly varying dis-
tributed delays from sensor to controller and from
controller to actuator. The concept of composite design
of the stochastic controller and state estimator is
brought into the LQCDC to resolve the problem of
violation of the certainty equivalence principle. Two
pairs of modi® ed matrix Riccati and matrix Lyapunov
equations for LQCDC are coupled by a projection
matrix whose column and row spaces are respectively
the control and estimation subspaces. Due to the coup-
ling of control and estimation in the presence of ran-
domly varying distributed delays, the essential role
that projection matrix and its factorization play is inves-
tigated. Unlike full-order or reduced-order output feed-
back compensation (Kwakernaak and Sivan 1972), the
LQCDC has a full-order state estimator and a state-
augmented controller.

De Koning (1992) introduces the concept of com-
pensability for analysis of dynamic systems with multi-
plicative white noise where optimality and stabilizability
under random delays are not considered. The present
paper is an extension of our earlier work (Tsai and
Ray 1997) and addresses the issue of optimal compensa-
tion of the LQCDC in the mean square (ms) sense. A set
of ms compensatability conditions (for the closed-loop
control system) and ms detectability conditions (for the
models of performance cost evaluation and noise covar-
iance) is shown to be necessary and su� cient, in general,
for the existence of a unique optimal LQCDC. The con-
ditions reduce to those for stabilizability and detectabil-
ity in the standard LQG setting in the absence of
random delays, both from sensor to controller and
from controller to actuator, and the time skew, caused
by mis-synchronization of sensor and controller sam-
pling instants.

2. System model and the LQRDC law

Let the plant dynamics and disturbances, and the
(delayed and noisy) sensor data be modelled as

Çx(t) = a(t)x(t) + b(t)u(t) + g(t) x (t) (1)

y(t) = c(t)x(t) + t (t) (2)
where the plant state vector x(t) 2 < n, the control vector
u(t) 2 < m, the measurement vector y(t) 2 < r, the real
deterministic matrices a(t), b(t) and g(t), and the stoch-
astic matrix c(t) are of compatible dimensions, the
vectors x (t) and t (t) represent zero-mean, mutually
independent and strictly stationary white noise for the
plant and sensor models, with covariance matrices,
V1 0 and V2 > 0, respectively. For discrete-time con-
trol, let the sensor and controller have an identical sam-
pling period T although their sampling instants may not
be synchronized. The time di� erence between sensor and
controller sampling instants is called the time skew, ¢,
which is bounded by the sampling period T . In order to
distinguish the sensor time frame from the controller time
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frame, the superscript s̀’ is used to indicate signals based
on the sensor time frame, i.e. ( )s

k =( )k­ d where ( ) is
any arbitrary vector or matrix; the normalized time
skew d in the subscript is de® ned as d ¢/ T . Unless
otherwise speci® ed, the discrete-time frame k is based
on the controller time frame instead of the sensor time
frame.

Following Ray et al. (1993) and Tsai and Ray (1997),
the sensor data for generating the (k + 1) th control
command, denoted as zk, is subjected to binary random
delays such that either zk =ys

k or zk =ys
k­ 1, depending

on whether the fresh sensor data or the previous data is
to be used for generation of uk+1. That is

zk =(1 ­ | k)ys
k + | ky

s
k­ 1 (3)

where the white delay sequence f | k g from sensor to con-
troller, which is independent of disturbances f x s

k g and
sensor noise f t s

k g , has a binary distribution having the
expectation

E[| k]= 1 ­ ak and E[( | k)2]=1 ­ ak (4)

where ak is the probability of timely arrival of sensor
output ys

k at the controller.
With the augmentation of plant state to include state

estimate and the three past consecutive control com-
mands, the closed-loop system under randomly varying
distributed delays is therefore established as follows.

Closed-loop model:

~xk+1 = ~Ak
~xk + ~Gk

~
k (5)

where

~xk = [(xs
k)TuT

k­ 1u
T
k­ 2u

T
k­ 3(

^xs
k)T] (6a)

~Ak =
Ak

au + ¢k
A Bk

au
^

Fk

^
KkC

k
au + ¢k

C
~L c°

(6b)

^
L c° = L k + ¢k

0 (7a)

¢k
0 = b k

0 + ^
Fk (7b)

¢k
A = Bk

auP01 (8a)

01 = [03m n I3m] (8b)
^
f k
au = [ ^

f k
1

^
f k
2

^
f k
3 ] (8c)

¢k
C = [0n ¢k

q1 ¢k
q2 ¢k

q3] (9a)

¢k
q1 = b k

1 + b k
1

^
f k
1 (9b)

¢k
q2 = b k

2 + b k
0

^
f k
2 (9c)

¢k
q3 = b k

0
^
f k
3 (9d)

~Gk =

In n 0 0 0

0 0 0 0

0 0 0 0

0 gk
q1 gk

q2 gk
q3

(10a)

gk
q1 =­ | k

^
Kkc

s
k­ 1( U s

k­ 1)­ 1 (10b)

gk
q2 =(1 ­ | k)

^
Kk (10c)

gk
q3 = | k

^
Kk (10d)

~
X k =[( x s

k)T ( x s
k­ 1)T ( t s

k)T ( t s
k­ 1)T] (11)

Remark 1: if ¢k
A = 0 and ¢k

C = 0, the closed-loop
system matrix, ~Ak, becomes similar to that in the Lin-
ear Quadratic Guassian (LQG) model.

Tsai and Ray (1997) have constructed the linear
quadratic coupled delay compensation (LQCDC) law,
characterized by f

^
Lk,

^
Kk , ( ^

Fk
au) g , in order to minimize

the following performance cost functional
~Jk(

^
L+

k , ^
K+

k , ^
Fk

au,
~Zk­ 1) = 1

2 E[~xT
k

~Rk
~xk j ~Zk­ 1]

+ E[~Jk+1( ~Zk) j ~Zk­ 1] (12a)
~Jk( ~Zk­ 1) = ~Jk(

^
L k,

^
Kk , ( ^

Fk
au) , ~Zk­ 1) (12b)

~JN( ~ZN­ 1) = 1
2 E[~xT

N
~Rk

~xN j ~ZN­ 1] (12c)

~Rk =
R1 0n (n+3m)

0(n+3m) n (Fk
au)TR1F

k
au

(12d)

RN =
R 0n (n+3m)

0(n+3m) n 0(n+3m) (n+3m)

(12e)
The superscript `*’ is used to denote that optimality is
achieved. ~Zk f | k, | k­ 1, . . . , | 1; tk, tk­ 1, . . . , t1 g is the
random delay history; N is the time horizon over
which the performance is evaluated; R1 0 and
R2 > 0 are the state deviation and control penalty
matrices, respectively, for k < N; and R 0 is the
state deviation matrix at k = N.

3. Compensatability and adjoint systems

Let Bs
k be the discretized input matrix corresponding

to the whole sensor sampling period. That is

Compensatability and optimal compensation 827



Bs
k =

(k+1­ d )T

(k­ d )T
d¿ U ((k + 1 ­ d )T , ¿)b(¿) (13)

where U ( , ) and b( ) are the continuous-time transi-
tion matrix and the input matrix, receptively.

De® nition 1: In the absence of plant disturbance and
sensor noise

~Xk+1 = ~Ak
~Xk fork = 0, 1, 2, 3, . . . (14)

where ~Xk 2 R2n+3m is the augmented state vector and ~Ak
is the stochastic closed-loop system matrix for the
system in (14), characterized by ( U s

k, Bs
k, cs

k, ¢, tk, | k),
which is called ms compensatable if there exists a com-
pensator triplet ( ^

Lk,
^

Kk,
^

Fk
au) such that ~Ak is ms

stable.

The following properties of ms compensatability are
stated below:

(1) If U s
k is stable, ( U s

k, B
s
k, c

s
k, ¢, tk, | k) is ms compen-

satable.
(2) Both ( U s

k, B
s
k) and (( U s

k)T, (cs
k)T) are stabilizable

i� ( U s
k, B

s
k, c

s
k, 0, 0, 0) is ms compensatable 8 k.

Property (1) is evident because
^
L k = 0,

^
Kk = 0 and

^
Fk

au = 0 is a solution for the regulator problem, i.e. the
closed-loop system remains stable under zero input. The
second property of LQCDC, as a matter of fact, reduces
to typical characteristics of LQG. In other words, stabi-
lizability of the state feedback system and its adjoint
ensures compensatability of the closed-loop system
and vice versa. Equivalently, in LQG, the concept of
compensatability in the usual sense reduces to stabiliz-
ability and detectabilty. However, in LQCDC, mean
square stabilizability and detectabilty jointly do not
imply mean square compensatabilty because of break-
down of the separation principle. Conversely, it is shown
that mean square compensatability indeed implies mean
square stabilizability of LQCDC and its adjoint.
Therefore, mean square compensatability is a stronger
condition than the combination of mean square stabiliz-
ability and detectability.

This concept motivates the construction of the
adjoint of LQCDC so that the important features of
ms compensatability can be revealed. For the adjoint
system

~Xad
k­ 1 = ~AT

k
~Xad

k + ~Gad
k

~
X ad

k f ork = N ­ 1, N ­ 2, . . .

(15)

where the state vector ~Xad
k 2 < 2n+3m; the stochastic

matrix ~Ak is as de® ned in (6b), and the system noise
vector, ~

X ad
k , and its input matrix, ~Gad

k , are de® ned as
follows

~
X ad

k =
x ad

k

t ad
k

; and ~Gad
k =

In n 0 0 0 0

0
^
f k
1

^
f k
2

^
f k
3

^Fk

T

(16)
where zero-mean x ad

k and t ad
k are mutually independent

with covariance matrices R1 and R2 respectively. The
® nal state ~Xad

N­ 1 is zero-mean with covariance ~R. The
system (15) has the following conditional covariance
dynamics as a regulation problem

Pk­ 1 = E[~AT
k Pk

~Ak j ~Zk]+ ~Rk f or1 k N ­ 1
(17a)

where conditional covariance

Pk E[~Xad
k ( ~Xad

k )T j ~Zk+1]
with terminal condition PN­ 1 = ~R. In contrast, the orig-
inal conditional covariance dynamics of LQCDC (equa-
tion (30) in Tsai and Ray 1997) is described as

Qk+1 = E[~AkQk
~AT

k j ~Zk]+ ~V k
eq f or0 k N ­ 1

(17b)
~V k

eq = diag[V1 0 0 0 ~V k
2] (17c)

~V k
2 = ^Kk(V2 + E[| 2

k j ~Zk]cs
k­ 1( U s

k­ 1)­ 1

V1[cs
k­ 1( U s

k­ 1)­ 1]T)KT
k (17d)

with a given initial condition for Q0. Since (17a) can
also be directly constructed by interchanging the roles
of system noise covariance and state deviation penalty
matrix under the closed loop of LQCDC, the system in
(15) is hereby de® ned and named as the adjoint of
LQCDC with replacement of the system matrix by its
transpose and reversal of the time frame in the back-
ward direction. It is noted that the conditional covar-
iance Pk of the adjoint is also the adjoint of the
conditional covariance Qk of the origianl system. That
is, based on the adjoint system in (15), the same LQCDC
law can be induced via exchange of the roles of Qk and
Pk. On the basis of the de® nitions of ms compensat-
abilty and adjoint system, the next section is devoted
to development of the conditions for the existence and
uniqueness of LQCDC. To conclude this section, a de® -
nition is stated that will be used later.

De® nition 2: (Ak, Bk, Ck) is called ms detectable if
(Ak, Ck) and (AT

k , BT
k ) are both ms detectable.

4. Necessary and su� cient conditions for optimality of
LQCDC

The control and estimation laws and the two pairs
of modi® ed matrix Riccati and Lyapunov equations
exactly constitute the necessary optimality conditions

828 N.-C. Tsai and A. Ray



of LQCDC (Tsai and Ray 1997). Therefore, this section
will be mainly devoted to the establishment of su� cient
optimality conditions. As de® ned earlier, a compensator
is called ms stabilizing if the mean square value of the
state vector converges to zero as time runs to in® nity, i.e.
E[k ~Xk k 2] ! 0 as k ! 1 . The incremental cost func-
tional, ^Jk

1
2 E[~XT

k
~Rk

~Xk j ~Zk­ 1], will be shown to be
independent of the initial values of plant state and its
estimate as the steady state of LQCDC is reached. Let
the closed-loop system matrix of LQCDC ( ~Ak) be ms
stable. Then, the compensator ( ^

L k,
^

Kk,
^

Fk
au) is ms stabil-

izing and, therefore, from the equation set (17), the
steady-state expected values of conditional covariance
matrices, Qs E[limk ! 1 Qk] and Ps E[limk ! 1 Pk],
both exist. Their uniqueness will be discussed later.

Remark 2: If ¿k = In+3m, then the modi® ed matrix
Riccati and Lyapunov equations are separable, i.e. the
projection matrix becomes trivial. In other words, if
the state estimator is augmented from dimension n to
dimension n + 3m, the property of certainty equiva-
lence holds. However, it is redundant to estimate the
exactly known values of the three consecutive past
control commands, namely f uk­ 1, uk­ 2, uk­ 3 g , which
are already stored in the control bu� er at time k (Liou
and Ray 1991, Ray 1994). On the other hand, if the
states of the estimator are augmented to include the
three consecutive past control commands, the closed-
loop model becomes non-minimal since the three con-
secutive past control commands are twice accounted
for. It is inappropriate to let ¿k = In+3m and hence the
projection matrix may not be identity in the LQCDC
problem. It is not necessary to be symmetric, either.

Lemma 1: If R1 > 0 or ( U s
k, R

1/2
1 ) is ms detectable,

then ( ~Ak,
~R1/2

k ) is ms detectable.

Proof: If R1 > 0, there exists a g 2 (0, 1 ) such that
g ~Rk I2n+3m. Hence, E[~xT

k
~xk] g E[~xT

k
~Rk

~xk]8 k. There-
fore, E[~xT

k
~Rk

~xk]= 0 8 k ) E[~xT
k

~xk]= 0 as k ! 1 . That
is, ( ~Ak,

~R1/2
k ) is ms detectable.

Next we prove that ( U s
k, R

1/2
1 ) ms detect-

able ) ( ~Ak,
~R1/2

k ) ms detectable. Let E[~xT
k

~Rk
~xk]=

0 8 k; then

E[~xT
k

~Rk
~xk]=E[(xs

k)TR1xs
k]+ E[uT

k R2uk]=0 8 k

which implies E[uT
k R2uk]= 0 8 k. Since R2 > 0, then

uk = 0 8 k almost surely. Under the LQCDC law (Tsai
and Ray 1997), uk = ^Fk

^xs
k + ^

f k
1 uk­ 1 + + ^

f k
2 uk­ 2 + ^

f k
3 uk­ 3.

Therefore,

uk = 0 8 k almost surely )
^xs
k = 0 8 k almost surely

for any choice of uk =
^

Fk
^xs
k + ^

f k
1 uk­ 1 + + ^

f k
1 uk­ 2+^

f k
3 uk­ 3. From de® nition of ms detectability of ( U s

k, R
1/2
1 ),

E[(xs
k)TR1xs

k]= 0 8 k ) E[(xs
k)Txs

k] ! 0ask ! 1

Since uk = 0,
^xs
k =0 8 k almost surely

E[~xT
k

~Rk
~xk]= 0 8 k ) E[~xT

k
~xk] ! 0ask ! 1

That is, ( ~Ak,
~R1/2

k ) is ms detectable. h

Corollary to Lemma 1: If V1 > 0 or (( U s
k)T, V 1/2

1 ) is
ms detectable, then ( ~AT

k , ( ~V k
eq)1/2) is ms detectable.

Proof: The proof is based on the duality of the re-
sults in Lemma 1 (see Tsai (1995) for details). h

Remark 3: In the LQR problem, detectability of the
system matrix and a square root of the state penalty
matrix ensure closed stability. On the basis of this con-
cept, Lemma 1 is applied to the LQCDC system to
ensure ms stability. However, unlike LQG, since the
LQCDC system is not decoupled for control and esti-
mation, the concepts of conventional stabilizability
and detectability in the usual sense are extended to
mean square detectability in the triplet (Ak, Bk, Ck), so
that the convergence and mean square compensatabilty
of LQCDC are guaranteed.

Up to now, the LQCDC has been described as time
varying. As the recursive relations in (17a) and (17b)
proceed, the solutions of the modi® ed matrix Riccati
and Lyapunov equations exist and are unique in a
® nite-time horizon. However, as time goes to in® nity,
the recursions may not be unconditionally convergent,
and the problem of existence of an LQCDC solution
arises. Moreover, uniqueness of the LQCDC solution
is not assured even if convergence is reached. In other
words, the steady-state solution of LQCDC needs to be
speci® ed. Especially in numerical analysis and imple-
mentation, the steady-state compensator, instead of
the time-dependent compensator, is usually employed.
Nevertheless, in the following proposition it will be
proved that ms stability and quadratic optimality of
time-varying LQCDC can also be guaranteed provided
that the randomly delayed system, ( U s

k, Bs
k, cs

k, ¢, tk, | k),
is ms compensatable and the triplet f U s

k, V 1/2
1 , R1/2

1 g is
ms detectable, or simply f R1 > 0, V1 > 0g , where U s

k, B
s
k

and cs
k denote the system, input and output matrices of

the plant respectively; ¢, tk and | k are the time skew,
input delay sequence and output delay sequence in order
while R1 and V1 are the state deviation and plant dis-
turbance matrices respectively.

Proposition 1: For a ® xed projective factorization,
¿k =GT

k+1 C k, a unique steady state-linear quadratic
coupled delay compensator (LQCDC) exists if the
random delay compensated system, characterized by
( U s

k, Bs
k, c

s
k, ¢, tk, | k), is ms compensatable and either the

triplet f U s
k, V 1/2

1 , R1/2
1 g is ms detectable or the state

deviation matrix and plant disturbance covaraince are
both positive de® nite, f R1 > 0, V1 > 0g .

Compensatability and optimal compensation 829



Proof: Since ( U s
k, Bs

k, c
s
k, ¢, tk, | k) is mean square com-

pensatable, there exists a compensator triplet
( ^
Lk,

^
Kk,

^
Fk

au) such that the closed-loop system matrix ~Ak

is ms stable 8 k. Hence, for such a compensator triple
( ^
Lk,

^
Kk,

^
Fk

au), the pair of necessary optimality conditions
(17a) and (17b) at least have a non-negative de® nite
solution, (Qk, Pk) 8 k, because (Qk, Pk) 8 k always exists
and ( ~AT

k , ( ~V k
eq)1/2, ~R1/2

k ) is ms detectable from Lemma
1 and its corollary; ~Ak is ms stable 8 k. That is, the sol-
utions calculated from the necessary optimality con-
ditions ensure the existence of LQCDC such that the
closed-loop system is stable in the mean square sense.
This concludes that a stabilizing LQCDC, restricted to
the set of stable minimum compensator, exists. There-
fore, the rest of this proof is devoted to uniqueness of
LQCDC.

De® ne the operator, ~Rk~
A : < 2n+3m ! < 2n+3m as the

conditional Riccati transformation, i.e. ~Rk
~AX =

E[~AkX~AT
k j ~Zk] for any square matrix X 2 < 2n+3m. Since

( U s
k, B

s
k, c

s
k, ¢, tk, | k) is ms compensatable and ~Ak has

been proved ms stable above, under the LQCDC
law, Qs limk ! 1 Qk and Ps limk ! 1 Pk are existent
and unique. They can be presented as follows (Chen
1984)

QS =
1

k=0

k

j=0

~Rk
~A

~V j
eq (18a)

PS =
1

k=0

k

j=0

~Rk
~AT

~Rj (18b)

where

k

j=0

~Rk
~A

~Rk
~A ~Rk­ 1

~A
. . .

~R1
~AI2n+3m

By partitioning Qk and Pk into (n + 3m) (n + 3m),
(n + 3m) n and n n submatrices respectively, the
following two sets of equations hold:

Qk
x = Qk

x ­ ^
Qk

x (19a)

^
Qk

x = Qk
xq(Qk

q)­ 1(Qk
xq)T (19b)

Pk
x = Pk

x ­ ^
Pk

x (20a)

^
Pk

x = Pk
xq(Pk

q)­ 1(Pk
xq)T (20b)

where

Qk =

Qk
x Qk

xq

(Qk
xq)T Qk

q

(21a)

Pk =
Pk

x Pk
xq

(Pk
xq)T Pk

q

(21b)

^
Qk+1

x =¿k
^̂

Qk+1¿T
k (22a)

^
Pk

x =¿k
^̂

Pk
x¿T

k (22b)

Therefore, the limits Qs
x limk ! 1 Qk

x,
^

Qs
x limk ! 1

^
Qk

x,
Ps

x limk ! 1 Pk
x and

^
Ps

x limk ! 1
^

Ps
x limk ! 1

^
Pk

x are
all unique, for (Qs, Ps) is unique. So is the steady-state
projection matrix, ¿s limk ! 1 ¿k, for
¿k =

^
Qk+1

x
^Pk
x(

^
Qk+1

x
^Pk
x) # where `#’ indicates general

group matrix inverse. From De Koning (1992), the con-
ditional Riccati transformations of the modi® ed matrix
Riccati and Lyapunov equations in LQCDC, character-
ized by [Ak

au + ¢k
A ­ ^

Qk
s (

^V k
2s)­ 1Ck

au ­ GT
k+1¢k

C]and [Ak
au­

Bk
au(

^
Rk

2s)­ 1 ^
Pk

xs], are both ms stable since ~Ak is ms stable.
For ® xed ¿s and (Qs

x, Ps
x), and ms stability of

[Ak
au + ¢k

A ­ ^
Qk

s (
^

V k
2s)­ 1Ck

au ­ Ck
au ­ GT

k+1¢k
C] and

[Ak
au ­ Bk

au(
^

Rk
2s) ­ 1 ^

Pk
xs] for any k, the modi® ed matrix

Riccati and Lyapunov equations both converge to
unique values, i.e.

^̂
Qs

x limk ! 1
^̂

Qk
x and

^̂
Ps

x limk ! 1
^̂

Pk
x are unique. Since (Qs

x,
^̂

Qs
x, P

|
x,

^̂
Ps

x) is
unique, so is LQCDC for some ® xed projective factor-
ization. h

It follows from Proposition 1 that the condition,
either f U s

k, V 1/2
1 , R1/2

1 g is ms detectable or simply

f R1 > 0, V1 > 0g , assures the convergence of recursions
of (Qk

x,
^̂

Qk
x, Pk

x,
^̂

Pk
x) as long as ( U s

k, Bs
k, cs

k, ¢, tk, | k) is ms
compensatable. Evidently, it is the su� cient optimality
condition. On the other hand, if the convergence of

recursion (Qk
x,

^̂
Qk

x, Pk
x,

^̂
Pk

x) is assured, what condition

will make ( U s
k, Bs

k, cs
k, ¢, tk, | k) ms compensatable?

Since (Qk
x,

^̂
Qk

x, Pk
x,

^̂
Pk

x) converges, there exists a pair
(QS, PS) which satis® es equations (17a) and (17b) as
time goes to in® nity. Once (QS, PS) exists, ( ~Ak) is
ensured to be mean square compensatable by the con-
dition that either f U s

k, V 1/2
1 , R1/2

1 g is ms detectable or
simply f R1 > 0, V1 > 0g , using the same argument as
in the proof of Proposition 1. In other words, it is also
a necessary condition. This result is summarized in the
following proposition.
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Proposition 2: If the triplet f U s
k, V 1/2

1 , R1/2
1 g is mean

square detectable or f R1 > 0, V1 > 0g , the random delay
compensated system, ( U s

k, Bs
k, c

s
k, ¢, tk, | k), is mean

square compensatable , (Qk
x,

^̂
Qk

x, Pk
x,

^̂
Pk

x) converges to
unique value.

Proof: Under the condition given in Proposition 1, it
has been proved that ( U s

k, Bs
k, cs

k, ¢, tk, | k) is ms
compensatable ) (Qk

x,
^̂

Qk
x, Pk

x,
^̂

Pk
x) converges to the

unique value. The rationale for the reverse logic is the
same as stated above. h

5. Summary and conclusions

This paper establishes necessary and su� cient con-
ditions for existence, uniqueness and global optimality
of the Linear Quadratic Coupled Delay Compensator
(LQCDC) stochastic optimal control law (Tsai and
Ray 1997) based on the concepts of stability, detectabil-
ity and compensatability in the mean square sense.
These conditions also guarantee ms stability of the
closed-loop control system. It is shown that, via con-
struction of an adjoint system, the LQCDC law is devel-
oped from a pair of dual conditional covariance
dynamics. The projection matrix and its factorization
play an essential role in the formulation of LQCDC,
which dictates the portrayal and connection of control
and estimation subspaces. The coupling of control and
estimation in the LQCDC problem is once again veri® ed
by an oblique projection matrix. The major issues of
steady-state properties of LQCDC are summarized
below.

(i) Conditions for existence of LQCDC involve the
coupling e� ects of control and estimation due to
the presence of induced delays and mis-synchro-
nization between sensor and controller sampling
instants. This is in contrast to the stabilizability
and detectability conditions of the standard
LQG where control and estimation are
decoupled. In the formulation of LQCDC, the
concept of mean square compensatability is
introduced to integrate the properties of stabil-
izability and detectability in the stochastic sense.

(ii) The pairs of modifed matrix Riccati and Lya-
punov equations constitute the necessary con-
ditions for LQCDC. Since the control and
estimation are coupled, the column and row
spaces of the projection matrix form the sub-
spaces of control and estimation, respectively.
These relationships are established through an
additional pair of modi® ed matrix Lyapunov
equations. For the standard LQG, the projec-
tion matrix becomes the identity matrix so that
the control and estimation problems become

separable. The above necessary conditions are
precisely the LQG gain relations, together with
a pair of matrix Riccati equations which are
used to compute the control and estimation
gain matrices.

(iii) Su� cient conditions for LQG are the unique
non-negative de® nite solutions of a pair of
matrix Riccati equations. Once the state devi-
ation penalty matrix in the performance cost
functional is non-singular, R1 > 0, or its cost
evaluation model, characterized by the pair of
( U s

k, R
1/2
1 ), is detectable, where U s

k is the dis-
crete-time system matrix, the non-negative de® -
nite solution of the Riccati equation for
calculation of control gain is assured unique.
On the other hand, the uniqueness of the esti-
mation gain (i.e. Kalman gain) is guaranteed by
non-singular covariance of plant disturbance,
V1 > 0, or the plant disturbance model, charac-
terized by the pair of (( U s

k)T, V 1/2
1 ), is detect-

able. These conditions have been derived in
the stochastic sense in LQCDC.

The proposed LQCDC law is potentially suitable for
network-based control systems such as the future gen-
eration of aircraft which are equipped with computer
networks to serve as the communications link for the
vehicle management system. Further analytical research,
supported by experimental veri® cation, is needed before
its acceptance as a controller design tool.
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