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The concept of information-based maintenance is that of updating decisions for inspection,
repair, and maintenance scheduling based on evolving knowledge of operation history and
anticipated usage of the machinery as well as the physics and dynamics of material
degradation in critical components. This paper presents a stochastic model of fatigue crack
damage in metallic structures for application to information-based maintenance of operating
machinery. The information on operation history allows the stochastic model to predict the
current state of damage, and the information on anticipated usage of the machinery facilitates
forecasting the remaining service life based on the stress level to which the critical
components are likely to be subjected. The Karhunen—Lo&ve expansion for nonstationary
processes is utilized for formulating the stochastic model which generates the crack length
statistics in the setting of a two-parameter lognormal distribution. Hypothesis tests are built
upon the (conditional) probability density function of crack damage that does not require
the solution of stochastic differential equations in either Wiener integral or Itd integral
settings. Consequently, structural damage and remaining life of stressed components can be
predicted to make maintenance decisions in real time. The damage model is verified by
comparison with experimental data of fatigue crack statistics for 2024-T3 and 7075-T6
aluminum alloys. Examples are presented to demonstrate how this concept can be applied
to hypothesis testing and remaining life prediction.
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Decision systems for maintenance of operating machinery are synthesized by
taking mission objectives, (e.g., productivity and performance), service life, and over-
all cost into consideration [14]. The current state-of-the-art in synthesizing decision
systems for maintenance of operating machinery focuses on enhancement of reliability
and diagnostic capabilities under constraints that often do not adequately represent
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the material degradation aspects of critical plant components [8]. The reason is that
traditional design methodologies are usually based upon the assumption of invariant
characteristics of structural materials. However, in reality, since structural integrity of
critical components monotonically degrades with age and cycles of operation, the
maintenance strategies for new and old machinery are likely to be significantly dif-
ferent even if they are identically operated. Therefore, it is highly desirable to update
operation and maintenance strategies as new information on history of machinery
operation and anticipated usage becomes available.

The overall concept of information-based maintenance is that of updating deci-
sions for inspection, repair, and maintenance scheduling based on evolving knowledge
of operation history and anticipated usage of the machinery, as well as the physics and
dynamics of material degradation in critical components. The key steps in the synthesis
of maintenance strategies are formulations of

» Physics-based dynamic models of material degradation including identification
of failure precursors.

« Statistical models of hypothesis tests for risk analysis and remaining life predic-
tion under different operating conditions.

¢ Decision algorithms for maintenance scheduling based on the information
derived from operation history (e.g., sensor data and expert knowledge) and
anticipated usage of the machinery.

This paper addresses the issues of reliability and maintenance in operating
machinery where the major source of failures is the fatigue crack damage of metallic
structures. Specifically, the statistics of (nonstationary) fatigue crack damage in metal-
lic materials are generated from

* the information on operation history that allows the fatigue crack model to predict
the current state of damage; and

« the information on anticipated usage of the machinery that facilitates forecasting
the remaining service life based on the (time-dependent) stress level to which
the critical components are likely to be subjected.

For example, at any given time, mechanical stress on a critical component of the
machinery can be calculated based on the (recorded and anticipated) load profile using
either an operational model of the plant or archived operational data. The resulting
stress profile can, in turn, be used to excite a stochastic damage model for predicting
the current damage state of the critical component and also its remaining service life.

The specific objectives of this paper are (i) to formulate a (real-time) stochastic
model of the fatigue crack propagation in metallic structures that is based on the
physics of material degradation, and (ii) to make use of the fatigue crack model along
with the information on operation history and anticipated usage of the machinery for
risk assessment, remaining life prediction and maintenance scheduling.
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This paper is organized into five sections including the introduction. Section 2
presents an overview of the state-of-the-art of stochastic modeling of fatigue crack
propagation. Section 3 provides details of model formulation. Section 4 shows how
the statistics of fatigue crack damage can be utilized for failure prognosis, risk analysis,
and decision-making for maintenance. Section 5 summarizes the paper and concludes
the major benefits and applications of this maintenance concept.

2. Stochastic modeling of fatigue crack propagation

Stochastic modeling of fatigue crack propagation in metallic materials is a rela-
tively new area of research. An extensive list of technical literature representing
the state-of-the-art is cited by Sobczyk and Spencer [19], and the special issue of
Engineering Fracture Mechanics [18] presents recent developments in this field. One
approach to stochastic modeling of fatigue crack growth is to randomize the coef-
ficients of an established deterministic model to represent material inhomogeneity
[4]. Another approach is to generate the necessary stochastic information by multiply-
ing the deterministic dynamics of fatigue crack growth with a non-negative random
process [2,20]. The process of fatigue crack propagation is thus modeled by non-
linear stochastic differential equations in the Itd setting [11]. Specifically, Kolmogorov
forward and backward diffusion equations, which require solutions of nonlinear partial
differential equations, have been proposed to generate the statistical information
required for risk analysis of mechanical structures [1,9]. These nonlinear partial dif-
ferential equations can only be solved numerically; the computational procedures,
however, are computationally intensive as they rely on fine-mesh models using finite-
element or combined finite-difference and finite-element methods [19]. Therefore,
although this numerical approach might be useful for making off-line decisions for
design analysis and predictive maintenance, it is not sufficiently fast for on-line
damage monitoring, failure prognosis, and prediction of remaining service life.
Casciati et al. [3] have analytically approximated the solution of It6 equations by
Hermite moments to obtain a probability distribution function of the crack length. To
enhance the computational efficiency for on-line execution of the damage estimation
and life prediction algorithms, Ray and Tangirala [16] have developed an algorithm
for real-time estimation of fatigue crack damage based on the underlying principle of
extended Kalman filtering. In this approach, the first two moments of the stochastic
damage state are computed on-line by constructing the stochastic differential equations
in the Wiener setting as opposed to the Itd setting. This damage estimation algorithm
follows the two-state model structure of Spencer et al. [20], where the shaping filter
is constructed with additive white Gaussian noise. The concept of extended Kalman
filtering has been used without any sensor(s) for continuous measurements of the crack
length. The absence of sensor data is equivalent to having the inverse of the intensity
of measurement noise covariance tend to zero, implying that the filter gain approaches
zero. Consequently, the conditional density function generated by the filter becomes
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identical to the prior density function whose evolution is governed by the Kolmogorov
forward equation [10].

The dynamic model of fatigue crack damage presented in this paper is formulated
based upon the underlying principle of Karhunen—-Lo¢ve expansion of nonstationary
processes, and does not require solutions of the extended Kalman filter equation in
the Wiener integral setting or the Kolmogorov forward equation in the Itd integral
setting for identification of the probability density function of crack damage. There-
fore, structural damage and remaining life of stressed components are then predicted
in real time by utilizing up-to-date knowledge of operation history and anticipated
load profile. As such, maintenance decisions can be updated as new information
becomes available. The damage model has been verified by comparison with experi-
mental data of fatigue crack statistics for 2024-T3 and 7075-T6 aluminum alloys.
Examples are presented to illustrate how the stochastic damage model can be used to
generate hypothesis tests for reliability analysis of critical components.

3. Modeling of fatigue crack damage for real-time applications

The stochastic model of fatigue crack damage presented in this paper is built
upon a deterministic model of fatigue crack growth [13], which is based on the
principle of short crack growth. The Newman model represents the mean value of the
fatigue crack growth process down to micro-cracks of the order of material defect
size and has the following form:

dp. (1) = C(AK )™ dt; given p, (tg) = feo > 0 and > £, (1)
AKe]j‘ = (Smax = S0)+ U F, (2)

where p, is the estimated mean of the (time-dependent) crack length process c(w, 1)
conditioned on the initial crack length c(@, t;); a sample of the stressed component is
indicated by ®; the time ¢ is expressed in units of number of cycles and ¢, is the initial
time; d /L. is the so-called differential of 1., as commonly used in the fracture mechan-
ics literature [21]; AK 4 is the effective stress intensity factor range; the constants C
and 7 are material-dependent; S,,,, is the maximum applied remote stress; S, is the
crack opening stress; and F is the correction factor for geometrical configuration.
Details of this model are reported by Newman [13]. It should be noted, however, that
any deterministic fatigue crack growth law can be used in this formulation provided
that the average characteristics of the crack growth profile are accurately represented.

Ray and Tangirala [17] have modeled the crack length process c(@, t) to be
implicitly dependent on the (discrete) time parameter, ¢, and the (estimated) variance
o2(t) to be explicitly dependent on the (estimated) mean 1.(t), which is directly
obtained by solving equations (1) and (2). Our approach is to model c(w, ) with a
continuous function of y () as the independent variable in lieu of time, ¢. To this
effect, we introduce a continuous function of the (estimated) mean crack length, 11.(?),
as
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T(t):= (M -—1) Vit € [tg,ty] for ty < oo. (3)
U (t 0 )

The dimensionless parameter 7, which is a monotonically non-decreasing continuous

function of ¢, is used as the independent variable in the sequel. In view of the definition

in (3), the stochastic process {c(w, f) : t 2 t5} is denoted as {c,(w) : T2 0}.
Assuming that the initial crack length, co(®@) = c;(®)| =g, of a critical component

can be directly or indirectly measured by inspection, the normalized crack length

process conditioned on the initial crack length is defined as

cr (@)
co (@)

v, (w):= { } for 7 2 0. 4)
(9]
(Note that y = 1.)

Since {c(w, 1) : t 2 1y} is a continuous function of ¢ (and hence {c,: 720} is a
continuous function of 7) in the mean square sense, ¥, has a continuous covariance
function [10] and, therefore, can be expressed via the Karhunen—Loéve expansion
[5]. Let the continuous process Y, be discretized at m points beyond 7= 0 as an m-
dimensional random vector ¥ = [y, ¥;,... ¥,] T where Vii=vy,j=1,2,..,m The
covariance matrix of the random vector ¥ can be expressed as Kyy = ®ADT, with
®'® =1 and A = diag[A,,..., A, ordered as A, = A, > --- > A,,, which are the m eigen-
values of Kyy. The deterministic matrix @ is composed of columns, ¢/, which are the
eigenvectors of Kyy. Therefore, the random vector ¥ can be defined as

¥Y(w):= E[Y]+ ®Z(w) and Cov(Z) = A = diag[Ay,..., Ap]. (5)

Orthogonality of the Karhunen—Lo¢ve expansion ensures that the random vector Z =
{21, 22,-..,2,5] 18 a set of zero-mean independent random variables. This leads to

m

Vi = Ely 1+ Y (9iz;), k=1,2,...,m, (6)

j=1

where Y := W, and E[W; ] = Elcg, /coleg=p.o] = e (Tk)/Meo, and ¢ := ¢(7) is
the kth element of the eigenvector ¢’. If the first M eigenvalues are dominant, then
the random variable y; can be approximated as (M) by truncation of the last
(m — M) terms in (6) as

M
Vi (M) := E[yil+ ) (#z;), k=12,...,m, 1< M <m. (7)
j=1

Consequently, because of the orthogonality property of the Karhunen—Loéve expan-
sion, the covariance of the continuous process, 1/, , can be expressed as

M .
Ky (T, T0) = Cov(Wie, W) = Y, 4;0]9] (8)

j=1
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having the associated minimum mean square error

m
£2(M) = E[(¥ - ¥ ()T (¥ - M)l = Y, 4. )
j=M+1

Statistical information generated from each of four sets of fatigue test data [7,22]
shows that A, is the dominant eigenvalue. The mean square error in (9) is in the range
of 1.0 to 3.5% if M is chosen to be 1, i.e., if only the principal eigenvector, ¢'(7),
associated with the dominant eigenvalue, A, is used to model the process . A consti-

tutive relationship is proposed for ¢'(7) as a continuous function of 7:

g _
9! () = (V Qc/1 ) (e 1). (10)

§

The covariance in (8) is modified by (10) as

§(z+6) _ &t _
KW(T+0,7)=QC(6 z INeél], an

and Ky (7,7) = KW, (r,7) = 0',%, (7) is readily obtained from (11). Based on sta-
tistical fatigue test data, the model parameters £ and Q. are found to have the following
characteristics:

 &is material dependent but it is independent of the peak stress and stress ratio to
which the specimens were subjected.

* (. is both material dependent and stress dependent.

Remark 1. Separation of the stochastic process (¥, — E[y;]) into (deterministic) 7-
dependent and (random) w-dependent variables follows by choosing M =1 in (7). If
M > 1 is chosen, then the additional terms to be included in the model of (11) will act
as small perturbations.

Standard statistical tests (e.g., chi-square and Kolmogorov—Smirnov) conducted
on the fatigue test data revealed that the crack length is approximately lognormal
distributed [17,23]. Based on this information, a lognormal random variable is defined

as
(@) := (Y0 M )21 (@) (12)

with E[nlc():ﬂco] = 0 and Var[n|c° =u,4] = Qc- Setting M =1 in (7), and following
(3), (6), (10) and (12), the fatigue-induced crack length is modeled as

_ (o) _ ( : (eéf—l) )
v (w) co(@) o T+1+ £ n(w)
= dy () = L) = (1 + " n(w))dx. (13)
Co(®) co (W)= fleo




A. Ray, S. Phoha / Stochastic modeling of fatigue crack damage 197

Remark 2. The dynamics of fatigue crack growth are represented in (13) in terms of
the dimensionless parameter 7, which is a monotonically increasing function of time
(or cycles) as defined in (3).

The physical phenomena, cy(®) > 0 and dc,(w) 2 0, V @V 72 0, satisfy the con-
ditions u.o >0 and du,(7) 20, and imply that the model in (13) must satisfy the
inequality constraint dy/,(®)/d7 20, V@V 72 0. Therefore, the inequality

inf(w) >0 = inf (@) > —e & (14)
® dart ®

must be satisfied for all 7< 77 up to the critical crack length, i, at which the service
life of the stressed structure is considered to be completely expended. Following (3),
the dimensionless parameter, 7, can be defined as

:ucf
Hco

Following (13), if (dy;(®)/d7) ;= 7, = 0 for some , then dy/; (w)/dt)=20,Vre
[0, 77), for the same . Therefore, settmg inf, (dy,(®)/dT) ;- o = 0 guarantees a
non-negative crack growth rate for all cracks less than the critical crack length .

Tp = ~1. (15)

Remark 3. In general, usrepresents the critical crack length beyond which the crack
growth rate becomes very large, rapidly leading to complete rupture [9]. Therefore,
M.s (and hence 77) depends on several factors, including the geometry and dimensions
of the stressed structure, the allowable factor of safety, and sensitivity and resolution
of the inspection equipment.

The zero-mean lognormal-distributed random variable 1(®) in (12) is expressed
in terms of a Gaussian variable, y(®), as

(@) =@ - E[eX@] .y, | v~ N(m 02 |cp=p,, ) (16)
The following two coupled algebraic equations are derived from (12), (14) and (16):
igfn(a))=——exp(—§rf)=>m+92—2-=—§rf, a7
2
eXP(Z(m + ———)) (exp(c?)-1) = Q.. (18)

Equations (17) and (18) are solved simultaneously to yield

2
=In(1+ Q, exp(2&1f)); m = - («’j’t'f + 9—2——) (19)
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Given &, Q. and T, the unknowns m and &2 in (19) can be evaluated to specify the
probability density function (pdf) of the Gaussian random variable y(®) in (16). This

information, in turn, prescribes the lognormal (conditional) pdf of N(®) = ¢”® —
em+0'2/2 as

exp[ 210_2 (ln(0+e”‘+‘72/2)—m)2}
- 2
Fateo (Bl o ) = 62 -emto'/2 (20)

8 +em*9 /%) [2rc2

0 otherwise.

Using (3), (13) and (20), the conditional pdf of

J{eeee(55 o)
= +7T+ no
co=Hco 5 1

cr ()
co (@)

V(o) = (
becomes

Fyle (e’Tlueo )

’ 2
exp et -1
) m+c? /2 T _
o © DE 20 . for0=27t+1- i é(e 1),
-T— 2 e’ —
m /2 2
(G2 eemme | Wowo
L0 otherwise. 21

The (unconditional) statistics of crack length c,(®) can be obtained in terms of the
(conditional) statistics of y,(w) in (22) and the (unconditional) statistics of the initial
crack length as

Fe G0 = Fyiey (5%l ) X Foo (Beo). (22)

Hence, if f, () is available, (22) provides an analytical expression for f.(-, 7).

4. Usage of the fatigue crack model for information-based maintenance

Models of damage statistics are integrated with the available information on
operation history of the machinery and its anticipated usage to formulate viable alter-
natives for maintenance strategies. Traditionally, the risk index and remaining service
life [1] of mechanical structures and machine components are calculated off-line, based
on statistical models of material degradation, operating history and anticipated disrup-
tions in the plant operation (i.e., the stress levels to which critical components are
expected to be subjected). Since the service life of a critical component is finite (as
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the damage accumulation is monotone with time), scheduling of plant operation and
maintenance is based on the fact that damage accumulation is likely to be accelerated
or retarded in the event of unscheduled operations. Therefore, on-line computation
of damage statistics allows refinements of the risk index and residual service life
prediction [1,2] as time progresses. Specifically, on-line damage prediction supports
decision making that influences safety procedures, mission accomplishments, and the
time interval between major maintenance actions. In the absence of any change in
plant operations after the current time, the maintenance strategy may remain unaltered.
However, under unscheduled changes in operation, statistics of fatigue crack damage
in critical components become different due to different stress levels and hence the
maintenance strategy may have to be updated. Since the crack damage is modeled as
a Markov process, its statistics are dependent on the initial state of damage (e.g., the
initial crack length c;) aad the stress profile to which the cracked component is
subjected. As new information on operation history and anticipated usage becomes
available, the damage statistics (and hence the failure hypotheses) are updated in real
time. In this context, we illustrate how the fatigue crack statistics can be used to
estimate the current state of damage and remaining service life of critical components
to issue warnings and alert and influence maintenance strategy.

" Let (M + 1) hypotheses be defined based on a partition of the crack length in the
range [ €y, ), where T is the (known) minimum threshold of the initial crack length.
The first M hypotheses are defined on the range [Ty, Tj], where Ty = L is the critical
crack length beyond which the crack growth rate becomes very large, rapidly leading
to complete rupture (see remark 3 in section 3), as

HO: CTG[EO'JEI)’

Hy: c; €[C1,T), (23)

(Cy —7Top)

i=1,2,...,(M-1).
Y, ( )

Hpy_1: ¢ €[Cpy-1.Cpy ), WhereT;=7co +i

The last, i.e., the Mth, hypothesis is defined as H;: ¢; € [Ty ,°°), which is popularly
known as the unstable crack region in the fracture mechanics literature [21]. Each of
these (M + 1) hypotheses represents a distinct range in the entire space of crack lengths
from an initial value of p . until rupture occurs, and together they form an exhaustive
set of mutually exclusive regions in the damage space. For the special case of the
initial crack length being measured precisely, (i.e., 65 = 0 = c;|,=0 = cp = U,,), the
minimum threshold is set as ¢ = [, and the first M hypotheses are expressed as

_ - c ¢ G . '
CTGHiz[ci’ci+1)::>.i =lI/T€ ‘i ,__1__'{_'__1__), l=0,1921-°',M'—1- (24)
CO C0=ﬂc() :uCQ uCO
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The probability that the jth hypothesis, H;, holds at any instant of time, 7, is then
obtained from the instantaneous (conditional) probability distribution function (PDF)

Fyle(- s T/ Heo) of 5 as

- Cj+1 ¢j .
P[H; ()] = Fy, (-—-;7) ~ Fylc, (-—-———;1], i=0,1,2,...,M -1,
Heo Heo
(25)
M-~1
P[Hy (t)]=1- Y PIH; (7],
j=0

where Fy,(-; T|ico) is generated from the probability density function (pdf)
fule+ s Tlheo) in (21) without (computationally expensive) integration. Since fy |, is
lognormal-distributed, conversion of the range of integration in the log scale allows
evaluation of the error function via table-lookup. (These details are straightforward
and are not presented in this paper.) Following (25), probabilities of each of the (M + 1)
hypotheses can thus be computed in real time as a function of the dimensionless
parameter 7, which is a monotonically increasing function of time (or cycles) as
defined in (3). From the perspective of operation and maintenance, it is more con-
venient to express probabilities of these hypotheses as functions of time rather than
functions of 7. Therefore, in the sequel we present these results as functions of time
(or cycles) by making use of (1) and (2) in (3) and (15).

To elucidate the concept of hypothesis testing for maintenance decision support,
we present examples based on the fatigue test data sets [7,22]. The probability that
the random crack length {c(w, 1): t 2t} at a given time ¢ is located in one and only
one of these segments is computed in real time by using (25). For each data set, .=
9.0 mm and 0% = 0, implying that the minimum threshold of the initial crack length
is Ty = U, = 9.0 mm. The critical crack length is chosen based on the geometry of the
test specimens: For the Virkler experiment (in which the specimen half-width is 76.2
mm), €, =45.0 mm; for the Ghonem experiments (in which the specimen half-width
is 50.4 mm), ¢, =27.0 mm. The damage state space [ ¢, o) is partitioned into (M + 1).
In these examples, we have chosen eleven hypotheses (i.e., M = 10) for both the Virkler
and Ghonem data sets. The range of each hypothesis is defined as depicted in tables 1
and 2, respectively. The time evolution of probability of the hypotheses for the simu-
lation of the Virkler experiment is shown in figure 1 and for the three Ghonem experi-
ments in figures 2, 3, and 4. In each case, the plot of Hy begins with a probability
equal to 1 at time ¢ = ¢; and later diminishes as the crack grows with time (i.e., number
of load cycles applied). The probability of each of the remaining hypotheses H; to Hyg
is initially zero, and then increases to a maximum and subsequently decreases as the
crack growth process progresses with time. The probability of the last hypothesis
H, (on the extreme right in figures 1—4) of unstable crack growth beyond the critical
crack length, €y, initially remains at zero and increases rapidly only when the speci-
men is close to rupture. At this stage, the probability of each of the remaining
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Table 1

Crack length hypotheses for the Virkler data.

Description Range
Hypothesis Hy 9.00 mm < ¢(f) < 12.6 mm
Hypothesis H, 12.6 mm < ¢(f) < 16.2 mm
Hypothesis Hg 41.4 mm < ¢(f) < 45.0 mm
Hypothesis Hyg 45.0 mm < ¢(t) (unstable crack growth)
Table 2

Crack length hypotheses for the three Ghonem data sets.

Description Range
Hypothesis Hy 9.00 mm < ¢(¢) < 10.8 mm
Hypothesis H, 10.8 mm < ¢(f) < 12.6 mm
Hypothesis Hy 25.2 mm < ¢(f) < 27.0 mm
Hypothesis H\g 27.0 mm < c(f) (unstable crack growth)

hypotheses is either zero or rapidly diminishes to zero. For example, the space of
crack lengths, defined by [Ty, ), can be partitioned into four hypotheses, denoting
three regions of green, yellow and red alert conditions for the first three hypotheses
and catastrophic conditions for the fourth hypothesis.

While alerts and warnings are useful for operational support and safety enhance-
ment, operations planning and maintenance scheduling require remaining service life
prediction. Equipment readiness assessment and failure prognosis based on current
condition and projected usage of the machinery are important tools for operations and
maintenance planning, especially in an information-based maintenance environment
where access to all pertinent information is enabled. Remaining life prediction can be
obtained based on the stochastic fatigue damage model in section 3.

Using pdf fy |, in (21), the remaining service life T(¢, Y;(2), €) can be computed
at any specified time instant, ¢, based on a desired plant operational profile Y, () =
{y(6): 6 =t} and a confidence level (1 — €). The algorithm for predicting the remaining
service life is obtained as

T(t;Yy(2); €) = sup{6 € [0, e): Plc; 9 < Tyl > (1 - £)}. (26)

Equation (26) implies that if the plant operation is scheduled to yield the desired out-
put, then T(t, Y, (), €) is the least upper bound of the time of operation such that the

probability of the crack length c,,; not exceeding ), is greater than (1 — €). The
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Figure 1. Probabilities of hypotheses. Figure 2. Probabilities of hypotheses.
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Figure 3. Probabilities of hypotheses. Figure 4. Probabilities of hypotheses.

prediction algorithm in (26) is executed in real time based on the current information.
The generated results are then conveyed to a decision-making module (for example, a
discrete-event supervisor [6]) at a higher level for failure prognosis, life extending
control, and maintenance scheduling, or simply for generation of warnings and alerts.
(These results may also be displayed as a decision support tool for human operators.)
The objective is to determine the statistical confidence with which plant operations
can be planned for a specified period of time or to evaluate alternative operational
scenarios. This is also of considerable importance in the scheduling of maintenance to
avoid untimely shutdowns since failure prognostic information is inherent in remaining
life prediction. Some of these issues have been addressed by Ray and Phoha [15] in
the context of information-based maintenance.
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5.  Summary and conclusions

The overall concept of information-based maintenance is that of updating deci-
sions for inspection, repair, and maintenance scheduling based on evolving knowledge
of operation history and anticipated usage of the machinery. In this context, this paper
presents a formulation and verification of a stochastic model of fatigue crack damage
in metallic structures. The stochastic model allows updating of the damage statistics
in real time based on the recent information to synthesize decision policies for risk
assessment and maintenance. The information on operation history and anticipated
usage of the machinery allows the stochastic model (i) to predict the current state of
damage, and (ii) to forecast the remaining service life based on the stress level to
which the critical components are likely to be subjected. The generated statistical
information is essential for failure prognosis and reliability analysis of critical machinery
components and also for development of a maintenance strategy. Maintenance decision
‘algorithms can be formulated by the use of failure hypotheses that are generated based
on the probability density function of crack damage, which does not require solutions
of stochastic differential equations in either Wiener integral or It6 integral settings.
The two-parameter lognormal-distribution of fatigue crack statistics, developed in this
paper, has been verified by comparison with experimental data of 2024-T3 and 7075-
T6 aluminum alloys at different levels of stress excitation. Examples are presented to
illustrate how the stochastic damage model can be used to generate and update failure
hypotheses based on current information.

Potential applications of information-based maintenance include (i) formulation
of decision policies for maintenance scheduling in real time based on up-to-date infor-
mation of machinery operation history and anticipated usage, (ii) generation of alerts
and warnings for operational support and safety enhancement, (iii) equipment readi-
ness assessment and failure prognosis based on current condition and projected usage,
and (iv) remaining life prediction of machinery components.

The condition monitoring and maintenance strategies presented here are suitable
for machinery operated under constant load excitation. Extension of the stochastic
crack damage model to varying amplitude load excitation is a subject of current
research. While the stochastic modeling approach presented in this paper focuses on
inherent material uncertainties, there are two other major sources of uncertainties,
namely, random loading and unknown initial conditions. Although random loading
has not been considered here, uncertain initial conditions can be incorporated into
this formulation. A unified model that accounts for all three primary sources of un-
certainties in crack growth needs to be developed before practical applications become
viable.
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