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and Remaining Life Prediction’

This paper presents a stochastic model of fatigue crack damage in metallic materials that
are commonly encountered in structures and machinery components of complex mechan-
ical systems (e.g., aircraft, spacecraft. and power plants). The constitutive equation of the
damage model is based on the physics of fracture mechanics and is validated by

Karhunen-Loéve analysis of test data. The (nonstationary) probability distribution func-
tion (PDF) of fatigue crack damage is generated in a closed form without numerically
solving stochastic differential equations in the Wiener integral or 116 integral setting. The
crack damage model thus allows real-time execution of decision algorithms for risk
assessment and life prediction on inexpensive platforms such as a Pentium processor. The
model predictions are in close agreement with experimental data of fatigue crack growth
statistics for 2024-T3 and 7075-T6 aluminum alloys.

1 Introduction

Traditionally, the risk index and remaining service life (Bolotin,
1989) of machinery are calculated off-line based on statistical
models of material degradation, operating history and anticipated
disruptions in the plant operation (e.g., postulated stress levels).
Since the predicted service life of an operating machinery is likely
to be altered in the event of unscheduled operations, on-line
computation of damage statistics allows continual refinement of
the risk index and remaining life prediction as time progresses. In
this context, this paper focuses on stochastic modeling of fatigue
crack damage in metallic materials, which is a major source of
failures in structural components of operating machinery (Ozekici,
1996).

Stochastic modeling of fatigue crack phenomena in ductile
alloys is a relatively new area of research, and a list of the
literature representing the state of the art is cited by Sobczyk
and Spencer (1992) as well as in the March, 1996 issue of
Engineering Fracture Mechanics. Bogdonoff and Kozin (1985)
proposed a Poisson-like independent-increment jump model of
fatigue crack phenomena. The underlying principle of this
model agrees with the theory of micro-level fatigue cracking.
An alternative approach to stochastic modeling of fatigue crack
damage is to randomize the coefficients of an existing deter-
ministic model to represent material inhomogeneity (Ditlevsen,
1986). Another alternative approach is to augment a determin-
istic model of fatigue crack growth with a random process (Lin
and Yang, 1985; Spencer et al., 1989; Ishikawa et al., 1993, for
example). The fatigue crack growth process is thus modeled by
nonlinear stochastic differential equations in the Itd setting
(Kloeden and Platen, 1995). Specifically, Kolmogorov forward
and backward diffusion equations, which require solutions of
nonlinear partial differential equations, have been proposed to
generate the statistical information required for risk analysis of
mechanical structures (Tsurui and Ishikawa, 1986; Bolotin,
1989). These nonlinear partial differential equations can only be
solved numerically and the numerical procedures are computa-
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tionally intensive as they rely on fine-mesh models using finite-
element or combined finite-difference and finite-element meth-
ods (Sobczyk and Spencer, 1992). Casciati et al. (1992) have
analytically approximated the solution of Itd equations by Her-
mite moments to generate a probability distribution function of
the crack length.

This paper presents a stochastic model of fatigue crack damage
in metallic materials that are commonly encountered in structures
and machinery components of complex mechanical systems (e.g.,
aircraft, spacecraft, and power plants). The fatigue crack damage at
an instant (i.c. at the end of a stress cycle) is expressed as a
continuous function of the current and initial crack lengths. The
(nonstationary) probability distribution of crack damage is ob-
tained in a closed form without numerically solving stochastic
differential equations in the Wiener integral or Itd integral setting.
Model predictions are shown to be in close agreement with the
fatigue test data of 2024-T3 and 7075-T6 aluminum alloys. The
paper also illustrates how the stochastic model can be used in
making decisions for risk analysis and life prediction that are
necessary for health management and life extending control of
mechanical systems. The paper is organized in four sections in-
cluding the introduction. Section 2 provides details of model
formulation, identification of the model parameters, and their
probability distributions along with the results of model prediction.
Section 3 deals with risk analysis and remaining life prediction.
The paper is summarized and concluded in Section 4 with recom-
mendations for future research.

2 Modeling of Fatigue Crack Damage

Fatigue crack growth models have been formulated by fitting
estimated mean values of fatigue crack length, generated from
ensemble averages of experimental data, as functions of time in
units of cycles (Paris and Erdogan, 1963; Schjive, 1976). Follow-
ing Sobczyk and Spencer (1992) and the pertinent references cited
therein, the stochastic model of fatigue crack damage, presented in
this paper, is built upon the structure of the following mean-value
model (Anderson, 1995; Suresh, 1991):

8é(t) = h{AK (1)) 8t, for
AK (1) = AS() yme(r) F(é(r))
AS(r) = §™*(r) — S°(1) ¢))]

where ¢ is the current time upon completion of a stress cycle, and
t, is the initial time (e.g., when the machine component is put in

t=1, and given é(t,)
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service after a major maintenance or inspection); é(t) is the esti-
mated mean value of (time-dependent) crack length; 8é(¢) is the
increment of the estimated mean crack length over one cycle after
time ¢, and &t indicates the time increment over that cycle; A(:) is
a non-negative continuous function which is dependent on the
material and geometry of the stressed component; and AS(¢) is the
effective stress range during one cycle (after time r) with the
corresponding crack opening stress $°(r) and peak stress S™(r).
The (dimensionless) correction factor F is dependent on geomet-
rical configuration (e.g., thickness, width, and the crack type in the
stressed component) and the crack length. For example, F =
Vsec (mwé(1)/(2w)) for center-cracked specimens of half-width w.
There are several empirical and semi-empirical methods (e.g.,
Newman, 1984) for calculating §°. For constant-amplitude load,
Ibrahim et al. (1986) have formulated a simple algebraic relation to
obtain S° as a function of peak stress S™ and stress ratio R =
Smlﬂ/SmaX.

It has been shown in the fracture mechanics literature
(Anderson, 1995; Suresh, 1991) that, for a given geometry (i.e.,
thickness and width) of center-cracked specimens, the function
h(:) is separable as a product of two functions, #,(AS(¢)) and
h,(E(1)). Accordingly, for center-cracked specimens with 0 <
é(t) R wVt = t,, Eq. (1) is modified via series approximation
of the (m/2)™ power of the secant term in the correction factor
F as:

a2
8é(t) = QAS(:)"’E(:)""Z<1 - m<m> c‘(t)z) 8t
t =1, and given é(z,) (2)

where the constant parameters ) and m are dependent on the
specimen material, geometry, and fabrication. For constant-
amplitude load, Eq. (2) reduces to the well-known Paris equation
(Suresh, 1991). For varying-amplitude load, Patankar et al. (1998)
have shown the validity of Eq. (2) under time-dependent stress
range AS(r) = (S™(r) — S°(1)) by having S°(t) as a state
variable.

Ditlevsen (1986) has shown that, under constant load amplitude,
the randomness of fatigue crack growth accrues primarily from
parametric uncertainties. The stochastic process of crack growth is
largely dependent on two second-order random parameters—a
multiplicative process (1({, AS) and an exponent parameter m({).
Ditlevsen (1986) has suggested the possibility of one of the above
two random variables being a constant for all specimens {. Statis-
tical analysis of the experimental data for 2024-T3 and 7075-T6
aluminum alloys reveals that the random exponent m({) can be
approximated as a constant for all specimens (i.e., m({) = m with
probability 1) at different levels of constant stress range AS for a
given material. Based on this observation and the (deterministic)
model structure in Eq. (2), we postulate the following constitutive
equation for fatigue crack growth in the stochastic setting (Sob-

czyk and Spencer, 1992) partly similar to what was originally
proposed by Paris and Erdogan (1963) in the deterministic setting:

Bc(L, ) = QU AS(O))ASE) e (L, )™

T 2 -1
(1l 2) ) ot e

=1,

and given ¢({, t,) (3)
where the second order random process (£, AS) represents
uncertainties of a test specimen { for a stress range AS (i.e.,
is a constant for a given specimen under a constant stress
range); the second order noise process p({, ¢) represents un-
certainties in the material microstructure and crack length mea-
surements that vary with crack propagation even for the same
specimen {. The multiplicative uncertainty p(Z, ¢) in the crack
growth process is assumed to be a stationary white noise
process that is statistically independent of (¢, AS). The
rationale for this assumption is that inhomogeneity of the ma-
terial microstructure and measurement noise associated with
each test specimen, represented by p({, r), are statistically
homogeneous and are unaffected by the uncertainty Q(Z, AS)
of a particular specimen caused by, for example, machining
operations. With no loss of generality, u, = E[p({, 1)] = | is
set via appropriate scaling of the parameters in Eq. (3).

Since the number of cycles to failure is usually very large in the
crack growth processes (even for low-cycle fatigue), a common
practice in the fracture mechanics literature is to approximate the
difference equation of crack growth by a differential equation.
Therefore, for t+ = ¢,, Eq. (3) is approximated as the following
stochastic differential equation:

(umwrM—m@%)umOVWﬂmuJ>

= Q(4, AS())(AS()"p(&, 1)dt;
c(f 1) (4

t=¢, andgiven

which is integrated pointwise (i.e., for the individual {’s) as fol-

lows:
fcu. 0 dg w\? [« gg
Tz oMy E—2+mi2
£ (4w) g
(g, 10) (L, o)

=J dr(AS())™QUL, AS()p(L, 1) given c(L, 1) (5)

to

to yield the following (almost sure) solution

stress ratio ($™/S™); autocor-

maximum time of operation

confidence level for risk analy-

= dummy variable

= (diagonal) eigenvalue matrix
eigenvalue

expected value

multiplicative white noise
standard deviation

dummy variable

discretized fatigue crack damage
continuous fatigue crack damage
multiplicative parameter of the
model

sample point (test specimen)

o

~ D4 Q9TTE >Pen

It

Nomenclature
C = autocovariance; covariance matrix R =
¢ = crack length relation
€y = critical crack length S = stress
C, = threshold of initial crack length T=
F() = probability distribution function t = time (cycles)
(PDF) . X = random vector
f = final condition x = random variable
H = hypothesis ' Y, = desired operational profile
K = stress intensity factor A = incremental range
M = number of hypotheses 8 = increment operator
m = exponent parameter of the model 8(-) = unit impulse function
o = initial condition; opening condi- l1—e=
tion sis
P[] = probability measure ¢ = eigenvector
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C(C, [)I-m/l — C(g‘ I") L-m/2

m
‘ 2
( T )2 C(Cv t)]—mll — C(g‘ tu)l-—mll
- ml —
4w m
)

=J' drQ(f, AS(T))(AS(7)"p(L 7)) (6)

to

where the constant parameter, m, is in the range of 2.5 to 5 for
ductile alloys and many metallic materials ensuring that (1 —
mi2) < 0 and (3 — m/2) > 0 in Eq. (6). Now we introduce a
stochastic process (¢, f; t,) to represent the (dimensionless)
fatigue crack damage as a function of the crack length c({, 1) after
normalization relative to the physical parameter, w, of the stressed
specimen:

C(£7 t)l'mll — C(C’ t”)l—mll

WL, 6 )) =
m
I-3
B ( m > ete 027 el 1) (m12)-1
"\ 4w -~ w
3737
[ (e(g, DIw) t=mi2 _(e(g, 1) w) T
- m
t=3
~ m(;) Hletq, 0w = (el )T

m
)

It follows from Eq. (7) that (¢, 1; ¢,) is a continuous function of
the crack length process c({, f). Since ¢({, t) is @ measurable
function, Y(Z, t; t,) is also a measurable function although the two
measure spaces are different. The probability distribution of Y(Z,
t; t,), conditioned on the initial crack length c(Z, ¢,), leads to a
measure of fatigue crack damage at the instant . The conditional
probability distribution F (- ; t! .) that depends on the stress
history {AS(t): * € [t,, 1)} plays an important role in risk
analysis and remaining life prediction as illustrated later by an
example in Section 3.

Next let us consider the special case of constant stress range AS
for which experimental data of random fatigue are available for
model validation and parameter identification. A combination of
Egs. (6) and (7) yields the following simplified relation for con-
stant AS:

(g, t; t,) = w™D HAS)"Q(L, AS)

X (r— t, + J dr(p(¢, ) — 1)) with probability 1 (8)

o

Given that E[p(¢, ] = 1; E[(p({, 1) — D(p(L, ) = Dl =
ai8(t, — t,); m({) = m with probability 1; and p({, ¢) is
statistically independent of (£, AS), it follows from Eq. (8) that:

walts £) = E[Y(L, £ 1)) = w7 (ASN 1a(AS) (e — 1) (O)

Ryy(t, 15 15) = EQY(L, 135 £)(L, 123 1))
= Wm—z(AS) zm(I'lel(AS) + O’f)(AS))((tl - [a)(t?. - ta)

+ oi(min (¢, 1) = 1,))  (10)
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where po(AS)=E[QUE AS)] and gi(AS) = Var[Q({, AS)].
The autocorrelation function R,,(¢,, t:: £.) in Eq. (10) is contin-
uous at (t,, t:)l,, -, -, forall # = r,. Hence, the process WL, 1)
is mean-square continuous based on a standard theorem of mean-
square calculus (Jazwinski, 1970; Wong and Hajek, 1985).

Remark: An examination of Egs. (4) to (8) reveals that the
modeled process ({. r; t,) is also almost surely continuous due
to the approximation of the difference Eq. (3) by the differential
Eq. (4). However, in the sequel, we only require mean-square
continuity of W({, f; ¢,) to analyze discrete experimental data.
Bogdonoff and Kozin (1985) have represented the crack propaga-
tion process by a Poisson-like Markov jump model that is mean-
square (but not almost surely) continuous. Similar results were also
experimentally obtained by Kogajev and Liebiedinskij (1983). Ray
and Tangirala (1997) and Ray et al. (1998) have validated the
postulation that the autocovariance function of fatigue crack length
is continuous by testing four different sets of experimental data of
random fatigue.

It follows from Egs. (9) and (10) that the autocovariance func-
tion of y«(Z, t; t,) for constant AS is:

Cu(ty, 1y 1,) = w™(AS) Mg H(AS)(ty, — 1,)(t2 = 1,)

+ (r3(AS) + oh(AS)) oi(min (¢, 1)) = 1,))=>
ot 1) = Var [W(Z, 13 1,)] = w3 (AS) "o {(AS)

pA(AS) + oh(AS) o) )
ah(AS) (r—1,)

for t>1,

x(:—zo)z(l +

(I

Having established mean-square continuity of the fatigue crack
damage model in Eq. (8), we proceed to justify the postulation of
the model structure laid out in the constitutive Eq. (3). To this end,
we analyze four experimental data sets of random fatigue via
Karhunen-Loéve expansion (Wong and Hajek, 1985; Fukunaga,
1990) in Section 2.1. We also use these experimental data sets to
identify the model parameters in Section 2.2.

2.1 Analysis of Experimental Data Via Karhunen-Logve
Expansion. This subsection analyzes fatigue test data via
Karhunen-Loéve (K-L) expansion (Fukunaga, 1990) to justify
postulation of the model structure in Egs. (3) and (4). We have
used experimental data of random fatigue crack growth in 2024-T3
aluminum alloy (Vickler et al., 1979) and 7075-T6 aluminum alloy
(Ghonem and Dore, 1987) for which the tests were conducted
under different constant load amplitudes at ambient temperature.
The Virkler data set was generated for 68 center-cracked speci-
mens (of half-width w = 76.2 mm) at a single constant-amplitude
load amplitude with peak nominal stress of 60.33 MPa (8.75 ksi)
and stress ratio R = §.;./Sa = 0.2 for about 200,000 cycles; the
resulting AS = (§™ ~ §°) = 21.04 MPa. The Ghonem data sets
were generated for 60 center-cracked specimens each (of half-
width w = 50.8 mm) at three different constant load amplitudes:
(i) Set 1 with peak nominal stress of 70.65 MPa (10.25 ksi) and
R = 0.6 for 54,000 cycles, and the resulting AS = 15.84 MPa;
(ii) Set 2 with peak nominal stress of 69.00 MPa (10.00 ksi) and
R = 0.5 for 42,350 cycles, and the resulting AS = 17.80 MPa;
and (iii) Set 3 with peak nominal stress of 47.09 MPa (6.83 ksi)
and R = 0.4 for 73,500 cycles, and the resulting AS = 13.24
MPa. The crack opening stress S° is calculated via the correlation
of Ibrahim et al. (1986).

Since only finitely many data points at / discrete instants of time
are available from experiments, an obvious choice is discretization
over a finite horizon [¢,, #;] so that the stochastic process Y({, t;
t,) now reduces to an [-dimensional random vector denoted as
TP(L). Consequently, the covariance function C wltes 25 2,) 10
Eq. (11) is reduced to a real positive-definite (! X [) symmetric
matrix C5. Since the experimental data were taken at sufficiently

Transactions of the ASME

AR ARSI % Ik B o b AR Y i L § e 4 Jend At etk el S ATk ek

ot AN A S A A U R § T iR il . S



|
5
ks
": 1

close intervals, Ch, contains pertinent information of the crack
damage process. The [ real positive eigenvalues are ordered as
A = Ay = ... = A, with the corresponding eigenvectors, ¢',
... ¢', that form an orthomormal basis for signal decompo-
sition. The K-L expansion also ensures that the [ random coeffi-
cients of the basis vectors are statistically orthogonal (i.e., zero-
mean and mutually uncorrelated). These random coefficients form
a random vector X({) = [x,(&) x:(¢) ... x(0)]" having the
covariance matrix Cyy = diag (A,, A, ..., A,) leading to de-
composition of the discretized signal as:

!

WP = E[W2(D] + D (¢'x,(0) (12)

j=1

It was observed by Ray and Tangirala (1997) and Ray et al.
(1998) that the statistics of crack length are dominated by the
random coefficient corresponding to the principal eigenvector (i.e.,
the eigenvector associated with the largest eigenvalue) and that the
combined effects of the remaining eigenvectors are small. There-
fore, the signal W°(¢) in Eq. (12) is expressed as the sum of a
principal part and a residual part:

{
YPQ) = PO + 2 (¢'x(0) (13)
prncipal par = Zresidu;\l pan

If the random vector W°({) is approximated by the principal part

o) = BLwo() + ¢'x, (0. (14)

then the resulting (normalized) mean square error (Fukunaga,
1990) is:

€ ms = Trace(Cov [(¥2() — WO({))])/ Trace(Cov [W2(1)])

= (2 DI\ (15)

j=t

The K-L expansion of fatigue test data shows that €2, in Eq. (15)
is in the range of 0.018 to 0.035 for all four data sets. Furthermore,
the principal eigenvector ¢', associated with the largest eigenvalue
Ay, closely fits the ramp function (¢t — ¢,) in each case and the
proportionality constants are directly related to the parameter
oa(AS) in Eq. (11) for the respective values of AS for the
individual data sets. Ditlevsen (1986) also observed somewhat
similar properties by statistical analysis. Nevertheless, the K-L
expansion provides deeper physical insight as seen below.

The terms on the right hand side of Eq. (13) are compared with
those of Eq. (8) to generate the following equivalence between the
discrete-time model from test data and the postulated continuous-
time model:

% () ~ {(AS)™(QU(L, AS) = pa(AS))(t — t,): t € [t,, 1]}
' (16)

{
> (dix(D)
j=2

discrete-time modet

derived from test data «

13

~ {((AS)’"Q(L AS)) J dr(p(¢, ) = 1): t €1, 1]y (D

2

postulated continuous-time model

Note that the entities in Egs. (16) and (17) are mutually statistically
orthogonal. It follows from Eq. (11) that the uncertainties associ-
ated with an individual sample resulting from {3({, AS) dominate
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the cumulative effects of material inhomogeneity and measure-
ment noise due to [/ d(p({, 7) — 1) unless (1, — 1,) is very
small. Therefore, from the perspectives of risk analysis and re-
maining life prediction where (1, — r,) is expected to be large, an
accurate identification of the parameters, wqo(AS) and cj(AS) of
the random process (1({, AS) is crucial while the role of p(¢, 1) is
much less significant. This observation is consistent with the
statistical analysis of fatigue test data by Ditlevsen (1986) where
the random process described by Eq. (17) is treated as the zero-
mean residual.

2.2 Identification of Model Parameters and Probability
Distributions. The model parameters, m, pa, o4, and o}, in
Egs. (9) and (10) are identified based on the four data sets de-
scribed earlier. The exponent parameter, m, is first identified as an
ensemble average estimate from the slope of the logarithm of crack
growth rate in Eq. (3) for both materials, 7075-T6 and 2024-T3.
Having known the exponent parameter m, a database for the
random process (2({, AS) is generated following Eq. (6) over a
period [t,, ;] as:

Qg AS)

C(;- t)l—m/‘z - C(g, I,,) (=m2 T 2 C(;. [)3~mll _ C({. ty)}—mlz
) () z

l-? 3*'2"

(= 1,) + f /dr(p(l. T) = 1))(AS)"

(18)

Given that Q({, AS) is not explicitly dependent on time by
construction of Eq. (4) and E[p({, ) — 1] = 0, the parameter
wa(AS) is identified as the ensemble average estimate from the
data sets for each type of material, 7075-T6 and 2024-T3 alloys.
Since the parameters o3(AS) and o cannot be separately identi-
fied from Eq. (18) alone, we use the additional information of the
eigenvalues, A,, Ay, ..., A, of C{y generated by Karhunen-
Loéve analysis. Taking expected values of Euclidean norms of the
terms on both sides of Eqs. (16) and (17) and making use of Eq.
(15), we obtain the following relations based on the experimental
data over a period {¢,, #/]:

A ) (AS) 7",
Var [(A$)"Q(Z, AS) (e, — 1,)2 = X, >0 h(AS) = =17
. (19
. 2
(89)"(7h(85) + phAN Oy = ) = 3 NSy
i=2 ’
!
2 A 2
j=2 rms

SN F (= A ThaAS) ST =z, @O

The parameters wq, 0%, and o are evaluated via Egs. (18), (19),
and (20) for different ranges of fatigue crack data (i.e., different
values of ¢, and ¢/). The results are consistent for modest changes
in t, and t, confirming that (£, AS) is a random variable for a
given constant AS and that p({, t) is a stationary white noise.
Testing with large changes in ¢, and ¢, could not be accommodated
because of the limited ranges of sample paths in the experimental
data sets.

The following generalized parametric relations are now postu-
lated for different levels of (constant-amplitude) stress excitation
for a given material:

o wo(AS) = E[Q(, AS)] is independent of AS, i.e., pq is a
constant and E[(AS)"Q(L, AS)] = (AS)"wa-

o oA(AS) = Var [Q(¢{, AS)] is proportional to (AS)™™", ie.,
Var [(AS)"QU(L, AS)] is a constant. .
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Table 1 Generalized model parameters based on Virkler et al. and Gho-
nem and Dore data

Dsta Set and Sereas Ran; m m
vt | s ey | R | (88m0q Jha| Mo (35)™ g Ju
(51 unte) (S1umis) (imensionieas) (51 urats)
(MPa}
Virklet Dua
W24T3 Al no M 6ax1077 | s634x10* 0 -4980x 107
Ghonen D 31 1584 36 7 " 1o 2
1075-T6 Al 77x10 1573%10 8426x%10
‘Ghonem Duts 92 1780 16 7 " 10 2
75T Al 17x10 7573%10 442610
Ghonetn Daua £3 1324 36 ] S 0 2
1075.76 Al 77%1077 | 7573x10 8426x 10

o Var [(AS)™ [} dr(p(¢, 7) — 1)] is small compared to Var
(ASY"U(e = 1,)] for large (¢t — £,).

The above three relations are consistent with the experimental data
sets of Ghonem and Dore (1987) for 7075-T6 aluminum alloy. The
third relation follows from Eq. (11) that provides an approximation
for risk analysis and remaining life prediction in Section 3. The
first two relations are not yet verified for 2024-T3 aluminum alloy
because the Virkler data set provides only one level of stress range.
These relations are expected to be valid for ductile alloys and
many other metallic materials because the nature of dependence of
the model parameters on the material microstructure and specimen
preparation (i.e., machining operations) is similar. Estimates of the
model parameters for 2024-T3 and 7075-T6 aluminum alloys are
summarized in Table 1.

Several investigators have assumed that the crack growth rate in
metallic materials is lognormal-distributed (e.g., citations in Sob-
czyk and Spencer, 1992). Some others have treated the crack
length to be lognormal-distributed (e.g., Ray and Tangirala, 1997)
based on the assumption that the crack growth process is highly
correlated. The results of K-L expansion in Egs. (12) to (17) are in
agreement with these claims because ({, AS) which dominates
the random behavior of fatigue crack growth can be considered as
a perfectly correlated random process whereas the white noise p(¢,
t) is a perfectly uncorrelated random process. Yang and Manning
(1996) have presented an empirical second order approximation of
crack growth by postulating lognormal distribution of a parameter

x107

12 ==
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© 1.0 } Max Stress = 6033 MPa
5 Ra02
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2 o8 Distributed
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=
g 08 Histogram of
o
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Z o4
Z
o
=
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Choanem and Dore Set #2
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=3
§ s ’ AS=17.80MP
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2 25 y m Statistical Model
3 20 Histogram of
a & Eupenm:nnl u |
Fnd
g 15 i
2 10 i.. :
E 05

00 -—/

0.4 0.5 08 0.9 1 0
Value of the Random Variable Q(5,AS) x1o“°

Fig. 1
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that does not bear any physical relationship to AS but it is. to some
extent, similar to 2({. AS) in the present model.

We hypothesize that the random process {1({. AS) is two-
parameter (r = 2) lognormal-distributed (Bogdonoff and Ko7in
1985) and its goodness of fit is examined by both x* and
Kolmogorov- Smimov tests of experimental data. Each of the four
data sets is partitioned into L = 12 segments to assure that each
segment contains at least 5 samples. With (L —~ r — 1) =
degrees of freedom, the x’-test shows that, for each of the four data
sets, the hypothesis of two-parameter lognormal-distribution of
Q(Z, AS) passed the 10% significance level which suffices the
conventional standard of 5% significance level. For each of the
four data sets, the hypothesis of two-parameter lognormal-
distribution of (£, AS) also passed the 20% significance level of
the Kolmogorov-Smirnov test.

Next we hypothesize a probability distribution of p(Z, ). Since
the crack length and crack growth rate are guaranteed to be
non-negative, Eg. (3) enforces that the random noise p({, t) must
also be non-negative with probability 1 for all r. As a viable
option, one may hypothesize the two-parameter lognormal distri-
bution for p({, f) similar in structure to that of Q({, AS). Then,
the right-hand side of Eq. (4) becomes lognormal-distributed be-
cause the product of two lognormal variables is lognormal. This
makes the rate of fatigue crack damage (see Egs. (4) and (8))
lognormal distributed.

2.3 Model Prediction. Figure 1 compares the analytically
derived lognormal-distributed probability density functions (pdf’s)
of (¢, AS) with the corresponding histograms generated from
experimental data by approximately compensating the relatively
small second-order statistics of the noise p(Z, ¢). Referring to
Table 1, the mean g in the model is identical for the three data
sets of 7075-T6 while the corresponding variance is different in
each set. This is because o5(AS) is inversely proportional to
(AS)*™ and AS is different for each data set——org is largest for the
Ghonem data set #3 for which AS = 13.24 MPa is smallest and
ot is smallest for the Ghonem data set #2 for which AS = 17.80
MPa is largest of the three data sets. However, for 2024-T3, no
such comparison could be made because only one AS is available
in the Virkler data set.
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Fig.2 Probability distribution of crack length exceeding specified limits
(Virkler et al. data)

Model predictions of crack growth are now obtained by Monte
Carlo simulation of the stochastic difference Eq. (3) using the
parameters listed in Table 1. Lognormal distributions of both Q(,
AS) and p(¢, ) are realized by taking exponentials of outputs of
the standard normal random number generator with different seed
numbers. Both test data and model predictions are used to generate
probability distribution functions (PDF’s) of service cycles to
exceed specified limits, ¢*, of crack length. Note that the Virkler
set and each of the three Ghonem sets contain 68 samples and 60
samples, respectively, while the Monte Carlo simulations for
model prediction have been conducted with 1000 samples in each
case. The PDF plots in Fig. 2 compare model predictions with the
experimental data of Virkler et al. (1979) for three different values
of ¢* at 11 mm, 14 mm, and 20 mm. Similarly, the three PDF plots
from left to right in Fig. 3 compare model predictions with the data
sets, #2, #1, and #3 (in the decreasing order of the effective stress
range AS), respectively, of Ghonem and Dore (1987) at ¢* = 11
mm. The agreement of the predicted PDF’s in Figs. 2 and 3 with
the respective experimental data is a consequence of fitting the key
model parameter (1({, AS) to a high level of statistical signifi-
cance as seen in Fig. I. The small differences between the model-
based and experimental PDF’s in Figs. 2 and 3 should be further
reduced for larger ensemble size of the data sets as the histograms
of (4, AS) in Fig. 1 would more closely fit the (right hand) tails
of the probability density function (pdf) plots.

3 Risk Analysis and Remaining Life Prediction

This section illustrates how the stochastic model can be used for
risk analysis and remaining life prediction of critical components.

[
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'fig. 3 Probability distribution of crack length exceeding a specified
limit (Ghonem and Dore data)
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As pointed out earlier. the impact of p(Z, t) on overall scatter of
the crack growth profile is not significant for large (¢ ~ ¢,). In
general, t, signifies the starting time of a machine after mainte-
nance and/or inspection. Since risk analysis and life prediction
become important after a significant lapse of time (i.e., when (¢t —
t,) is sufficiently large). it is reasonable to make these decisions
based only on the probability distribution function (PDF) of (¢,
AS). Note that the error due to ignoring the effects of p({, ¢) is on
the order of £{.. Aj/Z .., Aj that is in the range of 0.018 to 0.035
for all four sets as stated earlier in Section 2.

3.1 Hypotheses Testing for Risk Analysis. Let (M + 1)
hypotheses be defined based on a partition of the crack length in
the range [¢,, *) where ¢, is the (known) minimum threshold of
the initial crack length ¢({, ¢,) which is assumed to be measured
with good precision, ie., o, =~ 0. The first M hypotheses are
defined on the range {¢,, ¢,] where ¢, is the critical crack length
beyond which the crack growth rate rapidly becomes very large
leading to complete rupture:

HO(!: [a): C(gu [) E [Ew EI)
.[{l([: tn): C(gv ’)E[EUZ‘Z)
Hy-i(t, 1) e 1) € [Cumr, Eai
- - (Z‘W-— Er)
where c“=co+z——7v~1——-—, i=1,2,...,M~1) (21)

The last (i.e., the Mth) hypothesis is defined as Hy: ¢, € [Cy, =)
which is popularly known as the unstable crack region in the
fracture mechanics literature (Suresh, 1991). Each of these (M +
1) hypotheses represents a distinct range in the entire space of
crack lengths from an initial value till rupture occurs, and together,
they form an exhaustive set of mutually exclusive regions in the
state space of crack length. The first M hypotheses are generated
as:

c(l, 1) EHfe, 1) = (¢ Cir)PY(L, to)[l\bj’ Wis)
for j=0,1,2,...,M~1 andagiven AS (22)

where ¢, = ((/w)'™™ — (EJ/w)'"™ (1 — ml2)) — m(nul
4 ((E,/w) "™ =(E /W) ™13 — m/2)) follows the structure of Eq.
(7). As discussed earlier, the process (£, t; t,) is approximated by
ignoring the effects of the noise term (p({, 1) — 1), i.e., by setting
the integral within parentheses on the right side of Eq. (8) to zero
as:

WG, 1 1,) = wnQUL, AS)(AS) (e ~ 1) (23)

Now the probability that the jth hypothesis, H(t, ¢,), can be
obtained from the instantaneous (conditional) probability distribu-
tion function Fyeq (" ;3 tlz,) of W(Z, t; ¢,). This is directly
generated from the two-parameter lognormal distribution of Q(¢,
AS) without any computationally expensive integration because
conversion of the range of integration in the log scale allows
evaluation of the error function via table-lookup. These details are
straight-forward and are not presented in this paper. Probabilities
of the individual hypotheses become:

PLH|(t, 1,)] = Foer, i ¥jnis t12) = Funer (¥ tlz,)

for j=0,1,2,...,M—-1
M1

PlHy(t, 1)1 =1 - >, P[H1, 1,)] (24)
j=0

To elucidate the concept of hypothesis testing for risk analysis
and life prediction, we present examples based on Virkler and
Ghonem data sets. The probability that the random crack length
{c(t, 1): t = 1,} at a given time, ¢, is located in one and only one
of these segments is computed in real time by Eq. (24). For each
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Table 2 Crack damage hypotheses for Virkler et al. data

Description Range of Fatigue Crack Length

Hypothesis Hp 9.00 mm £ c(t) < 12.6 mm

Hypothesis H| 12.6 mm < c(t) < 16.2 mm

. .

Hypothesis Hg 41.4 mm < c(t) <45.0 mm

45.0 mm < c(t)<76.2
(Unstable Crack Growth)

Hypothesis Hig

data set, it is observed that ¢,=9.0 mm with probability 1. The
critical crack length is chosen based on the geometry of the test
specimens: For the Virkler experiment (in which the specimen

Table 3 Crack damage hypotheses for three sets of Ghonem and Dore
data

Description Range of Fatigue Crack Length

Hypothesis Hg 9.00 mm <¢(t) < 10.8 mm

Hypothesis Hy 10.8 mm <¢(t) < 12.6 mm

Hypothesis Hg 25.2 mm < c(t) < 27.0 mm

Hypothesis Hig 27.0 mm < c(t) <50.4

(Unstable Crack Growth)

Virkler et al. Set
AR
P I P | I WA Cdsltisidvid
ax Stress = .. ]
fosp—] =] ) e
3 AW
"i 05 N \XP\IIJ.
£ o4 - : ‘7l
3 WAV
g AWLTAB .
o1 M J ALY Y
TN AU
o 200 400 600 800 1000 1200 1400
Time In units of 200 cycles (1 cycle = 50 ms)
1.0
\ N\ Ghonem and Dore Set # 2
" 03 Ha\ I \ 7075 T-6 Aluminum Alloy *
2 08 Max Stress = 69.00 MPa
)
:E’ 0.8 \ H2
S 05
A WY
= 04 '
g 0s \ /\ H‘\ o o Ho
& o2 I \ [ / \.' N
o [RVAR WVAN
0.0 T4 ‘

0 200 400 800 800 1000 1200 1400
Time in units of 50 cycles (1 cycle = 100 ms)

half-width is 76.2 mm), ¢, = 45.0 mm; for the Ghonem exper-
iments (in which the specimen half-width is 50.4 mm), ¢,, = 27.0
mm. The space [¢,. w) is partitioned into (M + 1) regions. In
these examples, we have chosen || hypotheses (i.e., M = 10) for
both Virkler and Ghonem data sets. The range of each hypothesis
is defined as depicted in Table II and Table III, respectively. The
time evolution of probability of the hypotheses for the four data
sets is shown in the four plates of Fig. 4. In each case, the plot of
H, begins with a probability equal to | at time + = ¢, and later
diminishes as the crack grows with time (i.e., number of load
cycles applied). The probability of each of the hypotheses H, to H,
is initially zero and then increases to a maximum and subsequently
decreases as the crack growth process progresses with time. The
probability of the last hypothesis H |, (on the extreme right in each
plate of Fig. 4) of unstable crack growth beyond the critical crack
length, ¢y, initially remains at zero and increases rapidly only
when the specimen is close to rupture. At this stage, the probability
of each of the remaining hypotheses is zero or rapidly diminishes
to zero.

The hypotheses testing procedure can be executed in real time
on inexpensive platforms such as a Pentium processor in the plant
instrumentation and control system for issuing alerts and warnings
while the machine is in operation. For example, the space of crack
length, defined by [¢,. w), can be partitioned into four hypotheses
denoting three regions of green, yellow and red alert conditions for
the first three hypotheses and catastrophic conditions for the fourth
hypothesis. While alerts and warnings are useful for operational
support and safety enhancement, operations planning and mainte-
nance scheduling require remaining life prediction. Equipment
readiness assessment and failure prognosis based on current con-
dition and projected usage of the machinery are important tools for
operations and maintenance planning, especially in an
information-based maintenance environment where access to all
pertinent information is enabled.

3.2 Remaining Life Prediction. Having known the instan-
taneous (conditional) probability distribution function F (- ; tlz,)
of W(¢, ¢, t,), the remaining lite T(r, Y, (1), €) can be computed
on-line at any specified time instant, ¢, based on a desired plant
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Fig. 4 Probabilities of hypotheses for fatigue crack propagation
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operational profile ¥, (1) = [¥(#): 6 = 1} and a confidence level
(1 — €). This implies that if the plant operation is scheduled to
yield the desired output Y,(1). then T(¢, Y, (1), €) is the maximum
time of operation such that the probability of the crack length (£,
¢t + T) toexceed ¢, is less than €. The algorithm for prediction of
remaining life is obtained as:

T(t; Yu(e); €)
=Sup {6 € [O, 2): Plcieg = cul > (1 — €)} (25

The prediction algorithm in Eq. (25) is executed in real time based
on the current information. The generated results can then be con-
veyed to a decision making module (for example, a discrete-event
supervisor, (Garcia and Ray, 1996; Zhang et al., 1999) at a higher
level for failure prognosis, life extending control, and miaintenance
scheduling, or simply for generation of warnings and alerts. These
results may also be displayed as a decision support tool for human
operators. The objective is to determine the statistical confidence with
which plant operations can be planned for a specified period of time
or to evaluate alternate operational scenarios. This is also of consid-
erable importance in the scheduling of maintenance to avoid untimely
shutdowns since failure prognostic information is inherent in remain-
ing life prediction. Some of these issues have been addressed by Ray
and Tangirala (1996) and Ray et al. (1998).

4 Summary and Conclusions

This paper presents a stochastic model of fatigue crack damage
for risk analysis and life prediction of metallic structures and
machinery components in mechanical systems (e.g., aircraft,
spacecraft, and power plants). The fatigue crack damage at an
instant (i.e., at the end of a stress cycle) is expressed as a contin-
uous function of the current crack length and initial crack length.
The uncertainties in the measure of crack damage accrue primarily
from a single lognormal-distributed random parameter associated
with individual specimens and, to a much lesser extent, from the
random noise due to material inhomogeneity. This conclusion is
consistent with the findings of other investigators.

The constitutive equation of the damage model is based on the
physics of fracture mechanics and is validated by Karhunen-Logve
analysis of fatigue test data for 2024-T3 and 7075-T6 aluminum
alloys at different levels of (constant-amplitude) cyclic load. A
systematic procedure for parameter identification is also estab-
lished. The predicted probability distribution function (PDF) of
service cycles to exceed a specified crack length is shown to be in
close agreement with that generated from the test data. The (non-
stationary) probability distribution function of crack damage is
obtained in a closed form without numerically solving stochastic
differential equations in the Wiener integral or Itd integral setting.
The model allows formulation of risk assessment and life predic-
tion algorithms for real-time execution on inexpensive platforms
such as a Pentium processor. Examples are presented to illustrate
how this stochastic model can be used to generate and update
hypotheses of crack damage under constant-amplitude loading.
Extension of the stochastic model to varying-amplitude determin-
istic and random loading is a subject of current research (Ray and
Patankar, 1999). A unified model that accounts for different
sources of uncertainties in crack growth needs to be established
before practical applications become viable.

Potential applications of the stochastic model of fatigue crack
damage include the following technologies: (i) life extending control
(also referred to as damage-mitigating control) of mechanical systems
(Kallappa et al., 1997; Holmes and Ray, 1998); (ii) analytical mea-
surements and intelligent sensing (including real-time nondestructive
evaluation) of fatigue crack damage; (iii) remaining life prediction of
machinery components as well as generation of alerts and warnings
for operational support and safety enhancement; and (iv) real-time
maintenance decisions based on the information of machinery oper-
ation and anticipated usage.
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