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Abstract—This paper demonstrates that the Hoo controller of Doyle et al {1] can be remnterpreted
as an observer-embedded Lz-gain controller The embedded observer 1s similar to the conventional
Luenberger observer except having an additional state-dependent calibration term that compensates
for exogenous nputs and model uncertainties Based on this fact, we derive mixed Linear Ma-
trix Inequalities, Hamiltoman Matrix, and Linear Parameterization to provide solutions to feasible
observer-embedded Ls-gan controllers (© 2001 Elsevier Science Ltd All rights reserved

Keywords——Robust control, Observer-based control, Output feedback control, Linear matrix in-
equalities

INTRODUCTION

This paper presents synthesis of feasible observer-embedded L-gamn controllers for the following
generalized plant

z = Ax + Biyw + Bsu,
z = CliL' + D11w + D12U, (1)
y = Coz + Dyyw + Doy,

where the controller processes the measurable output signal y to generate the control signal u
1 presence of exogenous disturbances and modeling uncertainty w For comparative study, the
assumptions used here are the same as those of the DGKF H,, controller {1] as follows

e D1 =0,C D13 =0, D,D1p =1, DyB] =0, Dy1Dj; =1, Dpy =0

¢ Both triples (A, By,C;) and (A, Bs, Cs) are stabilizable and detectable

The objective of robust performance 1s specified as
T T
/ lz|2dt < 72/ |lwl|®>dt, VYT >0, Vwe Ly[0,T) (2)
0 0

under zero mmitial conditions The scalar parameter v > 0 signifies the specified performance
related to energy gain of the closed-loop system
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SYNTHESIS OF OBSERVER-EMBEDDED L;-GAIN CONTROL

The controller 1s postulated to have an embedded observer similar to the conventional Luen-
berger observer except having an additional state-dependent calibration tetm The structure of
the observer-imbedded control law 1s delineated below

:i=(A+Wca1)a”c+B2u+L(y—C’2§:),

u= Kz,

(3)

where K 1s the controlling matrix, L 1s the observing matrix, and We,; 1s the calibration matrix
Unlike H; optimal control, the resulted closed-loop system under the control structure (3) 1s cal-
1ibrated to reduce sensitivity to exogenous inputs and modeling uncertamnties w This 1s achieved
by mtroducing the calibration term W, that 1s determined simultaneously with the controller
matrix K and the observer matrix L The task 1s to synthesize a control law based on the gener-
alized plant model (1) and the control objective (2) 1n two coupled stages of State-Feedback and
State-Estimation

In the state feedback stage, we choose a quadratic Lyapunov functional V(z) = z" Xz, X =
XT > 0 along the trajectory specified in the generalized plant m (1) The resulting dissipation
1ate 1s obtained as

V=—|z|? +Pllwl®+z" (ATX + XA+ C{C, - F] B, + ¥*F Fi) z
=7 llw = Fall* + Ju - Fyol” (4)
= )|z + VPllwll® + 2T Qxz — 7 @l + ||,
where F} =y 2B X, Fo = —BJ X, % = w — Fiz, i = u — Fox and the first Riccat1 matrix

Qx=A"X+XA+C]C1 - XByB; X +v 2XBB] X (5)

The controller gain matrix 1s chosen as K = Fy
The dynamics of estimation error £ = z — £ 1s governed by

=z -%=(A-Z2C;]Cy) &+ (B1 ~ ZC; Dy1) W + BiFyz — Wend

IS

This leads to derivation of the cahbration matrix
Weal = B1Fy (6)
Consequently, the dynamics of estimation error becomes
i=(A+B\Fi - ZC; C3) &+ (B1 ~ ZC3 Do) , (7)

where the observer gain matrix has been set as L = ZCJ The estimation accuracy decieases
(increases) as the desired v becomes smaller (larger) The estimation accuracy 1s also increased
if (A — LC3) has eigenvalues with large negative real parts

In the state estimation stage, we choose the Lyapunov function W = 2727, Z2=27 >0
along the dynamical trajectory of the estimation error in (7) The resulting dissipation rate 1s
obtained as

1. . . T ey -|?
W=~ + o) - |~ (B1 - 267 D) " 271 9
+&7 [z—l (A+ BiFy) + (A+ BiFy)! 271 —C] Co + 4 2F] Fy + Z‘lBlBlTZ‘l] %

Similar to the first Riccati matrix in (5), we define the second Riccati matrix as

Qz=(A+BiF\)Z+Z(A+B\F\) +BiB] — ZC;] CoZ + v 2ZF) F,Z (9)
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If the two coupled Riccati mequalities
Qx <0 and Qz<0 (10)
have positive symmetric solutions X and Z, then a new candidate Lyapunov functional
U=V ++W

satisfies the inequality
U< —|z)* +7*|lwl®

The above mequality 15 equivalent to fOT lzl?dt < ~* fOT lwl|?dt, VT > 0, Yw € Ly(0,T),
arriving at the preset control objective as specified m (2) Therefore, any observer-embedded
Lo-gain controller mn (3) 1s represented as a triple

K,L,Wea) = (-BJ X,2C5 ,9 2B1Bf X 11
2 2 1

THE CENTRAL OBSERVER-EMBEDDED
Lo-GAIN CONTROLLER

Referring to (5) and (9), the central Lo-gamn controller i (10) 1s governed by two Riccati
equations, @x =0 and @z =0, as

ATX+XA+C]C1 - XBB X + v 2XB,B{ X =0, (12)
(A+BiF\)Z+ Z(A+ BiF) +B1B] —ZC]CoZ + vy 2ZFy F,Z =0 (13)

Defining the Hamiltoman matrix as

(14)

[ A —B;B] +~72B,Bf ]
HX= ’

—-cT¢ —AT

we can solve the Riccati equation (12) Siumularity of the matrices Hx and —H,T{ mnphes that
Hyx must have n stable eigenvalues and another n unstable eigenvalues provided that the Hx
does not have purely imaginary eigenvalues A (2n x n) matrix 1s formed by stacking the stable
column eigenvectors, and then partitioned as [i:] , where X;, X2 € R**™ If X; 1s nonsingular,
then (12) 1s solved by setting X = XoX| 1 From the above defimtion of X, one can easily
conclude that the image of [ )I(] 1s the invariant space of Hx Ths stable solution 1s denoted as

X = Ric(Hx) Sumilarly, a Hamltoman matrix defined as

_[Aa+BR)" 2R R -C] 02]
Hz = 15
z [ —B1B;r —(A+BlF1) ( )
can solve (13) Z € Ric(Hz), Z >0
We define an Hy-dual Hamiltoman matrix as
_ AT y2C7C, - CJ C,y
Hy = [—-BlB;r A (16)

and let Y € Ric(Hy), Y > 0, which corresponds to the dual Riccat1 equation (12)
AY +YAT + BiB] - YC,C]Y +472YCT C,Y =0
Equivalently,

Qv =Y 'A4+ATY L4 Y 'BBIY ! - CoC7 +773C[C1 =0 (17)
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A relationship between Hz and Hy can be found as

1 72X I —y2x17!

I

where X € Ric(Hx), X > 0 Since the images of the operators [Y

] and [ ;] are the stable
eigenspaces of Hy and Hz, respectively, 1t follows from (18) that

o i 1 g S M

Therefore, given X € Ric(Hx), X > 0, we obtamn the following condition
(Z € Ric(Hz), Z>0) & (Y € Ric(Hy), Y > 0and p(XY) < %), (20)

where 1t 1s implied that
Z=Y (I -y2Xxy)™" (21)

Based on (3) and (11), the central observer-based La-gain controller becomes

&= (A+7*B1B] X — BBy X) &+ Y (I -v72XY) ™' CJ (y - Cht), (22)
U

= -B) Xz,

where X € Ric(Hx), X >0,Y € Ric(Hy), Y > 0, and p(XY) < 4?
This controller 1s 1dentical to the DGKF H,, controller {1} This shows the following

The DGKF Hy, controller is an observer-embedded La-gain controller, and 1t can be realized
from the Hy optimal controller by incorporating a calibration term into its embedded Luenberger
observer to obtain robust estimation

FEASIBLE OBSERVER-EMBEDDED Ly-GAIN CONTROLLERS

We pose the following question With the same order of the central controller (22), can all
feasible observer-based Ly-gawn controllers be solved by formulating the Riccaty wnequakties as
Qx <0, Qy <0, and p(XY) <~

The answer to the above question is negative If the answer was positive, then the LMI version
of Hu, controller synthesis (2] could be obtamned by directly extending the central controller gov-
erned by Riccat1 inequahties (20) We denive the feasible observer-embedded Ly-gamn controllers
to clanfy these 1ssues and arrive at the correct answer

Substitution of (21) mto @z < 01n (9) yields

(Y™'72X) (A++7%B1B{ X) + (A+v72B1B] X) (Y }472X)
—CJC+72XByB X + (Y1 —472X) ByB] (Y™! -~7%2X) <0

(=4

YA+~ %Y IBB] X -y 2XA -~y *XB1B] X + ATY 1 — 47247 X
+772XBB{Y ' -4 *XBiB{ X —C] Co+ v 2XByB; X + Y 'B,B] Y~!
7 2Y BBl X - 2XBB/ Y ! 4+ 4 *XB;B] X <0 (23)
=

(Y'A+ATY '+ Y IBBY ™! - C] Co +y72CT )

v 2 (XA+ATX - XBB, X +72XBiB{ X +C{ C1) <0

R

Qv — 7 %Qx <0,

which 1s the correct answer to the above-posed problem
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,,,,,,, PRI T U, 199Y o solve her cn tt —~2 e an A
The Cennral controller unput:u il {40 IS 80IVEU DY Sevting VX = U, qy -7 “x = U, ana

p(XY) < 42, which 1s equivalent to Qx = 0, Qy = 0, and p(XY) < 72, and that 15 1dentical
to the DGKF H,, control law [1] Instead, by erroneously setting (Qx < 0, Qy < 0, and
p(XY) < 4?) and using to (4) and (8), one may arrive at

VAW + |22 - Plwl? <27 Qxz + 3T (V¥Qy —Qx) <37 (-Qx)& (24)

L

It follows from (24) that the control objective of energy gain m (2) 1s not guaranteed because
@x <0, implying that there 1s no robust estimation On the other hand, for the output feed-
back control (where the measurement does not contain full information of the plant state) of
LTI systems, we would like to postulate the following two criteria

There 15 no optimal control of there 1s no optimal observer embedded
There 1s no robust control iof there 1s no robust observer embedded

Therefore, the answer to the above-posed question is stated as the following theorem

THEOREM 1 Solutions of feasible observer-embedded Lo-gain controllers, having the same order
as that of the generahzed plant model, are obtained from the Riccat: mequalities

Qx <0, Qv—-72Qx<0, and p(XY)<H? 1

Next, we normalize feasible observer-embedded La-gain controllers by replacing X with vX 1n

/ A waat PPN S A G M P e Vo

(L14), d.IlLl I WlLIl ’Y.I in \J. I} .Luc 1t:bu1uug lulIIIUld«blUIl i terins Ul nl(ltldllll 111(-:qudunlea Decomes

ATX+ XA+~71C]Cy ~vXByB) X +4"'XB B X <0,
YA+ ATY 447V BB Y ' - 4CJ Co < AT X + XA - vXB] By X
+y"1XB1B] X
X-Y1l<o

and the triple representing the controller (3) becomes
{K,L,Wea} = {—B; X,vY(I - XY)~'C] ,v"'B,B] X} (25)

With no loss of generality (3], the generalized plant model (1) can be normahized by setting v = 1
and replacing w by y"'w We arnive at the final normalized formulation of feasible observer-
embedded Ly-gain controllers from solutions of Riccatl mnequalities as
ATX+XA+C/C, - XBB] X +XB1B/ X <0,
YA+ ATY L4 Y IBBJY 1 - C)Co < ATX + XA~ XB) BoX + XBB] X, (26)
X-Y <o,
and the triple representing the controller in (3) 1s

(K,L,Weal) = (-B] X,Y(I - XY)~'C] , B1 B X) (27)

To compare to the hnear fractional transformation (LFT) parameterization of H, controllers,
(26) can be formulated by (@, S) parameterization as follows

COROLLARY 1 TO THEOREM 1 Any free pair of parameters (@, S), with @ > 0 and S > 0, such

that
ATX + XA+CJC,~XBB] X + XB1By X +Q =0,

YA+ ATY P+ Y IB B[ Y - 0] C, + 8 =0,
X-vYl<o,
@~-5<0,

deterrmnes a feasible observer-embedded Lo-gain (normahized) controller ]

(28)
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The trade-off between control and estimation in the synthesis 1s achieved by the matrices Q
and S 1n the sense that control 1s enhanced by increasing @ and estumation 1s enhanced by
mncreasing S

To utilize the efficient numerical procedures in Hamiltoman Matrix and Linear Matnx Inequal-
1ties, (26) can be relaxed as

X 'AT + AxX Y4 xef XY - ByB) + ByB] =0,
YA+ ATY L4V IR Bl Y -] 0+ €T €y <0, (29)
X-Y 1<y,
and the results are summarized below

COROLLARY 2 TO THEOREM 1 Given a normalized performance level of energy gamn (1e ,v = 1),
if

A ~BsBJ + B Bf
XeRlc[_C,lTC1 ‘AT ,

YA+ ATY1-C]C, YIBy O
Byl -I 0| <0 (30)

Cy 0 -1

y-t I
[ I X~1] 20

then (K,L,Wey) = (~B] X, Y(I -~ XY)"'Cy, B1B{ X) represents a feasible observer-embed-
ded Lq-gamn controller [ ]

The feasible controller i (30) contains a central control and a feasible estimation
At the expense of more 1nvolved numerical computations, Theorem 1 can be reformulated 1n
terms of two hnearly coupled matrix mequalities

COROLLARY 3 TO THEOREM 1 All feasible observer-embedded La-gain controllers, with a nor-
malized performance level of energy gam (1e, v = 1), can be formulated as the following two
linearly coupled matrix inequalities

[X~'AT + AX~' -~ ByB] X~ 'C] B]

Ci X! -1 0| <o, (31)
L Bir 0 —IJ
and
[Z7'Az +ALZ-'~CJCy Z7'B, Fj1
B z~1 -I 0| <0, (32)
L ) 0 —1I ]

where Az = A+ B1Fy, F} = BIrX , and Fy = —-B;r X, and the resulting observer-embedded

Ly-gain controller becomes
&= (A+ BiFy + ByFy, — ZC; C3) & + ZCy y, (33)
u=—Bj Xi

SUMMARY AND CONCLUSIONS

This paper presents formulation of mixed Linear Matrix Inequahties, Hammltonman Matrix, and
Linear Parameterization to provide solutions to feasible observer-embedded Ly-gain controllers
that aie capable of explicitly estimating plant states Such observer-embedded Lj-gan controller
can be realized from the H; optimal controller by mtroducing a calibration term in the Luenberger
observer to obtain robust state estimation It 1s also shown that the DGKF H,, controller 1s
the observer-embedded central Lo-gain contioller Since the Lo-gam control law 1s not restricted
to LTT systems, the proposed approach is applicable to synthesis of robust hnear parameter
varying (LPV) systems [4]
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