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Abstract

This two-part paper presents formulation and validation of a non-linear dynamical model of fatigue crack growth in
ductile alloys under variable-amplitude loading including single-cycle overloads, irregular sequences, and random
loads. The model is formulated in the state-space setting based on the crack closure concept and captures the effects of
stress overload and reverse plastic flow. The state variables of the model are crack length and crack opening stress. This
paper, which is the first part, presents formulation of the state-space model that can be restructured as an autoregressive
moving average (ARMA) model for real-time applications such as health monitoring and life extending control. The
second part is the companion paper that is dedicated to model validation with fatigue test data under different types of
variable-amplitude and spectrum loading. © 2001 Published by Elsevier Science Inc.
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1. Introduction

Models of fatigue crack growth under variable-amplitude loading (e.g., [6,17]) usually rely on a
memory-dependent physical variable (e.g., crack opening stress, or reference stress) that requires
storage of information on the load history. For example, the crack-opening stress in the FA-
STRAN model [17] is assumed to depend on the load history over an interval of about 300 cycles.
Another example is the strain-life model in which the reference stress obtained by the rainflow
method relies on cycle counting that, in turn, depends on the loading history [3,21]. In the current
state of the art of fatigue crack growth modeling, the finite interval over which the load history is
considered to be relevant may vary with the type of loading as well as with the rules employed for
cycle counting. The model predictions, in general, become more accurate if the load history is
considered over a longer period. In some instances, however, a short recent history of the applied
load might be adequate for crack growth modeling. An extreme example is constant-amplitude
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Nomenclature

A{; parameter in the empirical equation of S;* for j =1,2,3,4
a crack length

E Young’s modulus

F(-,-) crack length dependent geometry factor

h(-) crack growth function in crack growth equation

12 crack growth retardation delay in cycles

k current cycle of applied stress

R stress ratio of minimum stress to maximum stress

Sflow flow stress

Smax maximum stress within a cycle

Smin minimum stress within a cycle

S° crack opening stress

Soss crack opening stress under constant amplitude load given by empirical equation
Sult ultimate tensile strength

Sy yield stress

t specimen thickness

U(-) the Heaviside function

w half-width of center-cracked specimen or width of compact specimen
o constraint factor for plane stress/strain

Omax maximum value of «

Oimin minimum value of «

Aa™  crack increment above which o = o™

Aa™  crack increment below which o = o™

Aay, crack increment = (a; — a;_1)

AK®T  effective stress intensity factor range

positive lower bound for absolute value of maximum stress {S;"*,k > 0}
n decay rate for S°

R the set of real numbers (—oo, o)

T time instant

3 time interval of a cycle

cyclic loading where storage of the load history over the previous cycles may not be necessary. In
essence, it is not precisely known to what extent information storage is necessary for calculating
the memory-dependent variable in a fatigue crack growth model under a priori unknown vari-
able-amplitude (e.g., single-cycle, block, spectrum, or random) loading. Nevertheless, this
memory-dependent variable can be modeled in a finite-dimensional state-space setting by an
ordinary difference (or differential) equation. The state at the current cycle is realized as a com-
bination of the state and the input (i.e., cyclic stress) excitation at finitely many previous cycles.
Equivalently, the state becomes a function of the fading memory of the input excitation, similar to
that of an infinite-impulse response (IIR) discrete-time filter [27]. Holm et al. [7] have proposed an
autoregressive (AR) model that generates the (cycle-dependent) crack opening stress as an output
in response to the cyclic stress excitation. This concept can be generalized to an autoregressive
moving average (ARMA) model [12] that is equivalent to a state-space model.

This two-part paper presents a non-linear model of fatigue crack growth under variable-
amplitude loading in ductile alloys following the state-space approach. The proposed model,
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hereafter referred to as the state-space model, is formulated based on the crack closure concept
where the state variables are the crack length a and the crack-opening stress S°. The crack growth
equation in the state-space model is structurally similar to Paris equation [18] modified for crack
closure, which has been used in the FASTRAN model [17]. However, the state-space model and
FASTRAN use entirely different algorithms for calculating the crack opening stress S°. As such,
the crack length computed by these two models could be different under a given variable am-
plitude loading although the results are essentially identical under the same constant-amplitude
loading. Unlike the existing crack growth models (e.g., [14,20]), the state-space model does not
require a long history of stress excitation to calculate the crack-opening stress. Therefore, savings
in the computation time and memory requirement are significant.

This paper is the first of a two-part sequence and is organized in five sections and one appendix.
Section 2 establishes the rationale for selecting crack opening stress as a state variable. Appendix
A summarizes the crack closure concept that is essential for understanding the physics of crack
opening. Section 3 formulates the model equations in the state-space setting. Section 4 delineates
the features of the state-space model including its characteristics in response to overload and
underload excitation. Section 5 summarizes and concludes the first part of the two-part sequence.
Part II, which is the companion paper [31], reports model validation with fatigue test data under
different types of variable-amplitude and spectrum loading.

2. State variable representation of crack-opening stress

The results of experimental research in fatigue crack growth over the past several decades
provide a knowledge base to explore the possibility of modeling the crack-opening stress S° as a
state variable. Schijve [24] collected fatigue crack data for specimens made of 2024-T3 aluminum
alloy sheets in uniaxial tension for a constant amplitude load with S$™* = 147 MPa and
Smin — 98 MPa. The experiments were repeated with the same constant amplitude load with the
exception of a single overload cycle with S™* = 196 MPa and S™" = 98 MPa when the crack
length reached 15 mm. Two curves in each of the three plates of Fig. 1 shows the respective
profiles of crack length, crack-opening stress, and crack growth rate per cycle, generated from the
Schijve data with and without the overload effect. The extents of the shaded regions in two plates
of Fig. 1 are qualitative due to inexact information on S° recorded during the experiments (for
example, see [24, p. 12]). Recently, Yisheng and Schijve [30] have observed from experimental
data that, upon application of an overload, there is an immediate decrease in S° followed by a
rapid increase and a subsequent slow decrease. Similar results were reported earlier by Newman
[15] based on analysis only. This transient behavior of S° is, to some extent, similar to that of a
(linear) non-minimum phase system [10]. Apparently, the initial sharp decrease and the follow-on
abrupt increase of S° that may occur only for a few cycles have no significant bearing on the
overall crack growth. Generally, in response to an overload excitation, the crack growth rate
exhibits an initial sharp increase and then monotonically increases starting from a lower value, as
seen in the bottom plate of Fig. 1. This experimental observation is in agreement with the Paris
equation modified for crack-closure, as explained below.

The net effect of a single-cycle overload is an abrupt increase in (S™* — §°), resulting in an
increase in the crack growth increment in the present cycle. As S™* returns to its pre-overload
value, the consequence of increased S° is a sharp decrease in (S™* — S°), which causes the crack
growth rate to diminish (or arrested if (S™* — S$°) is non-positive). Shortly after expiration of the
overload, S° starts decreasing slowly from its increased value as seen in the middle plate of Fig. 1.
As S™* returns to its pre-overload value, The result is a decrease in (S™* — §°), which causes the
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Fig. 1. Overload response of a typical crack growth process.

crack growth rate to diminish. Subsequently, under constant amplitude load, as S° slowly relaxes
back to its original value, crack growth rate also reaches its original higher value as seen in the
bottom plate of Fig. 1. The crack growth is therefore retarded due to the fast rise and subsequent
slow decay of S° that can be attributed to the crack-closure effect. Some models assume that
crack-closure effects are responsible for the retardation phenomenon [17], while others consider
the plastic zone in front of the crack tip [29] to be the root cause. A physical explanation of crack
retardation due to enlarged plastic zone is presented below.

Fig. 2 shows the plastic zone radius at the crack tip at different stages. Under constant am-
plitude loading, the plastic zone size is relatively small as indicated by a black oval. The plastic
zone can be perceived as the material’s resistance to crack growth. When a single overload is
applied as shown by gray color in Fig. 2, the resulting plastic zone becomes larger. When a
constant amplitude stress is resumed after the overload, the crack has to propagate through the
larger plastic zone shown in gray color. Crack growth through this larger plastic zone is severely
retarded because of material’s increased resistance to crack growth. Once the crack grows out of
the overload plastic zone, a normal crack growth rate prevails upon reaching the plastic zone of
original size indicated by the black oval in Fig. 2.

Newman [14] assumed the plastic zone radius p to be dependent on the maximum stress in the
cycle but independent of the minimum stress. Although such a model for plastic zone can capture
the effects of a single-cycle overload effect, it may not be able to adequately explain the well-
known sequence effects. For example, Jacoby et al. [9] demonstrated that the crack growth re-
tardation due to crack-closure could possibly be effective beyond the overload plastic zone.
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Fig. 2. Impact of fatigue overload on plastic zone size.

Therefore, selection of S° as a state variable is preferable to that of the plastic zone radius p.
Schijve [24, p. 19] made the following conclusion after studying various data sets of crack growth:

The problem of predicting crack growth rates in service cannot be solved without a thorough
knowledge of load-time history occurring in service - - - and knowledge of load sequences is
essential.

Treating S° as a state variable supports the above observation.

Currently available fatigue crack growth models under variable-amplitude loading calculate
the crack opening stress, based on a finite history of cyclic stress excitation. These empirical
procedures are often cumbersome and computationally intensive. If S° is selected as a state
variable, it can be obtained as the recursive solution of a low-order difference equation. Conse-
quently, depending on the order of the difference equation, the current value of §° is a function of
its finitely many previous values that contain sufficient information on the input stress history
required to obtain the crack-opening stress in the next cycle. This state-space model not only
simplifies the computation of S° to a great extent but also represents the physics of crack growth
much better with a constitutive equation than with various empirical procedures involving the
history of cyclic stress excitation. Dependence on the history of stress excitation can be captured
by assuming the existence of at least one independent state variable in addition to the crack length
in the crack growth equation. A state-space model for fatigue crack growth with crack-opening
stress S° as an additional state variable is therefore warranted.

3. Formulation of the crack growth model in state-space setting

The state-space model of crack growth is formulated based on mechanistic principles of the
crack-closure concept which is briefly described in Appendix A, and is supported by fatigue test
data for variable-amplitude cyclic loading (e.g., [13,19,24]). The following definition of a fatigue
cycle is adopted for model development in the sequel:

Definition 3.1. The kth fatigue cycle is defined on the time interval:
Sk = {T G R . Ik—l < ngk} Wlth Ik—l < fk < Ik?
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where 7, and 7; are the instants of occurrence of the minimum stress S™" and themaximum stress
Spax| respectively. The kth fatigue cycle is denoted as the ordered pair (S, Sp™").

Remark 3.1. A stress cycle is determined by the maximum stress S™* and the following minimum
stress S™". The frequency and the shape of a stress cycle are not relevant for crack growth in
ductile alloys at room temperature [1]. The load dependence of crack growth is assumed to be
completely characterized by peaks and valleys of applied stress at temperatures significantly below
one-third of the melting point (e.g. aluminum and ferrous alloys at room temperature). It follows
from the above definition that S > max(S{™, SPn).

Before proceeding to develop the fatigue crack growth model, pertinent observations that are

critical for model formulation and validation are summarized below:

1.

IO o o o

An overload may introduce significant crack growth retardation. Up to certain limits, the
tenure of crack retardation effects is increased by:

larger magnitudes of the overload excitation;

periodic repetition of the overload during the crack propagation life; and

application of short blocks of overload instead of isolated single-cycle overloads.

Crack retardation may not always immediately follow the application of an overload. There
could be a short delay before the crack growth rate starts decreasing. Under some circum-
stances, a small initial acceleration in crack growth has been observed. The delayed retardation
in crack growth due to overload was clearly verified by observation of striation spacing [22].

. The instantaneous crack growth caused by an overload itself is larger than that expected from a

constant-amplitude load equal to the amplitude of the overload. This observation has been
confirmed by fractography [13]. The rationale is that the crack opening stress S° picks up in
magnitude a few cycles after application of the overload whereas, for constant amplitude load,
S° is already at its steady state value equal to S°*. Therefore, the crack growth rate while S° is
increasing due to a large S™** is higher than the rate when S° has the steady-state value S°%.
An underload has smaller effects on crack growth than an overload of the same magnitude [19].
However, an underload applied immediately after an overload may significantly compensate
for the effects of crack growth retardation due to the overload [9,19,23]. If the underload pre-
cedes the overload, the compensation is much smaller due to a sequence effect of the overload
cycles.

. In step loading, a high-low sequence produces qualitatively similar results as overload cycles

including delayed retardation [22]. Interaction effects after a high-low sequence are barely de-
tectable in the macroscopic sense. However, more accurate measurements and striations do re-
veal existence of locally accelerated crack growth according to [13].

Duration of crack growth retardation depends upon ductility of the material. If ductility of an
alloy is modified by heat treatment, a lower (higher) yield strength corresponds to a longer
(shorter) retardation period. Moreover, the specimen geometry also affects the retardation pe-
riod. Schijve [24] tested specimens of different thickness under equivalent single-cycle overload
conditions. A reduction in retardation period was observed with increase in thickness.

Rest periods at zero stress following a tensile peak overload have no significant influence on
subsequent fatigue crack retardation for ductile alloys at room temperature [25].

. The approximate non-minimum phase behavior of crack opening stress, observed by Yisheng

and Schijve [30] and Newman [15] as discussed earlier in Section 2, is explained as follows.
Upon application of an overload, S° decreases sharply and then rapidly undergoes an over-
shoot followed by a slow decay. Similarly, an underload would cause a sharp increase in S° be-
fore an undershoot is observed. Dabayeh and Topper [2] measured crack-opening stress on
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2024-T351 aluminum alloy specimens using 900 power short focal length optical microscope at

1, 5, 10, 50, 100 cycles immediately after application of an overload. The non-minimum phase

behavior of S° was not observed in any one of those specimens. Therefore, existence of the non-

minimum phase behavior in the transient response of S° is debatable at this moment. Since the
transients having the non-minimum phase behavior, if they exist, are fast, their contributions to
overall crack growth are considered to be insignificant relative to the total fatigue life.

Most fatigue crack growth models reported in technical literature are based on modifications
of the Paris equation [18] in which the inputs are S and S in the kth cycle and the output is
the crack length increment Ag,. It is customary in the fracture mechanics community [1,26] to
express the dynamical behavior of fatigue crack growth as a derivative da/dN with respect to the
number of cycles, which is essentially Ag; in the kth cycle as delineated below:

Allk =day — dy—1 = h(AK;ff) with h(O) =0

. for k> 1 and ay > 0,
AKS =\ /ma F(a-, w) (SP™ — max(SP=, Sp_ U (S — 89 )) } 0

(1)

where a;_; and Sp_, are the crack-length and the crack-opening stress, respectively, during the kth
cycle and change to a; and Sp at the expiry of the kth cycle; F(-,-) is a crack-length-dependent
correction factor compensating for finite geometry of the specimen with the width parameter w;
the non-negative monotonically increasing function 4(-) can be represented either by a closed
form algebraic equation or by table lookup [17]; and

0 ifx<0O
U(x):{l if x>0

is the Heaviside unit step function..

Eq. (1) is a first-order non-linear difference equation excited by S;** and S} | in the kth cycle.
Apparently, the crack length a; can be treated as a state variable in Eq. (1). However, since S° is
dependent on the stress history (i.e., the ensemble of peaks S™* and valleys S™" in the preceding
cycles), Eq. (1) cannot be readily represented in the state-space setting in its current form. The
task is now to make a state-variable representation of the evolution of S° under variable-am-
plitude cyclic stress excitation, and then augment the crack growth model in Eq. (1) with S° as an
additional state variable. It is postulated that a state-space model of crack growth is observable
[28]. In other words, the state variables in any given cycle can be determined from the history of
measured variables over a finite number of cycles. The crack length a; is assumed to be mea-
surable. The other state variable, the crack-opening stress S°, can be determined from a finite
history of the input (i.e., peaks and valleys of stress excitation) and the output (i.e., crack length
measurements), starting from a particular cycle in the past onwards to the current cycle. This
concept is analogous to the methods used in the existing crack growth models where either the
crack-opening stress or the reference stress is obtained based on the history of cyclic stress ex-
citation.

It is observed from experimental data that S° requires a short period of cycles to rise to a peak
value after the application of a single-cycle overload. If a first-order difference equation is pos-
tulated to model the transient behavior of §°, then S§° can be depicted to have an instantaneous
rise, which is a good approximation for most ductile alloys. The application of an overload should
generate a positive pulse to excite an appropriate state-space equation. Moreover, once this
overload pulse reaches its peak, decay of S° should be very slow. Hence, upon application of a
large positive overload, the peak of S° may be significantly larger than its steady-state value.
Upon application of another small overload when S° is still larger than its steady-state value, the



986 A. Ray, R Patankar | Appl. Math. Modelling 25 (2001) 979-994

smaller overload should not have any significant effect. In other words, a small overload following
a large overload should not generate a pulse input to the state-space equation. This implies non-
linearity of the forcing function that can be captured by a Heaviside function. As the non-linearity
is dependent upon the current value of S°, a low-order non-linear difference equation can provide
a viable model for describing the transient behavior of $° under overload conditions.

The plastic zone size is largest during a load cycle when S™* is applied. As the applied stress is
decreased from S™**, there is a reverse plastic flow at the crack tip [11]. The reverse plastic flow is
at its maximum when the minimum stress S™", even if positive in value, is applied. This reverse
plastic flow depletes the large plastic zone caused by S™**. If the crack growth leads into a large
overload-plastic zone and if an underload is applied next, then depletion of the plastic zone is
higher than the one that would be caused by a regular (i.e., higher) S™". This effect reduces the
protection against crack growth, which can be stated in other terms as a decrease in S°. Lardner
[11] modeled an elastoplastic shear crack in which the crack was replaced by a linear array of
freely slipping dislocations and the plastic zones by coplanar arrays moving against a frictional
resistance. Fig. 3 depicts the dislocation density curves by the dotted line f(x) at the peak stress
Sma and the solid line g(x) at S™" following S™** where the crack spans the range {x € R : |x| < ¢}
and the plastic zone spans the range {x € R : ¢ < |x| <a}. The dislocation densities f(x) and g(x)
are identical except for the region {x € R : ¢ < |x| <d} where reverse plastic flow occurs. It was
observed from the analytical solution that the plastic zone is depleted with a smaller S™" and that
it is increased with a larger S™*.

Rainflow cycle counting [21] has been used in variable-amplitude fatigue models to generate
the reference stress, which is analogous to the crack-opening stress to some extent. The rainflow
technique remembers the stress history back to the occurrence of least minimum stress. If the new
minimum stress is lower than the previous minimum stress, then cycles are counted according to a
rule between these two minimum stresses and the stored stress profile is updated starting from the
new minimum stress. This is analogous to encountering a new S™" that is lower than its past
values. This new S™" causes a large reverse plastic displacement leading to severe depletion of the
plastic zone, wherefrom it has to be built up again by continued application of the stress profile.
When the plastic zone is severely depleted, the memory of the previous plastic zone is destroyed
and a new memory is built up as the load is applied further on. To accurately predict the crack
growth, the state-space model must be able to account for the entire reverse plastic flow.

o
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Fig. 3. Dislocation density solution [11].
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We now proceed to determine the structure of the difference equation that is excited by the
cyclic stress input to generate the crack opening stress. To this end, we first consider the steady-
state solution of the difference equation under constant amplitude load. This issue has been ad-
dressed by several investigators including Newman [16] and Ibrahim et al. [8]. The steady-state
crack-opening stress S$° under a constant amplitude cyclic load is a function of the minimum
stress S™" the maximum stress S™*, the constraint factor S™" (which is 1 for plane stress and 3
for plane strain), the specimen geometry, and the flow stress S (which is the average of the yield
strength S¥ and the ultimate strength S"). These relationships are shown to be good for most
ductile alloys by Newman [16]. One such empirical relation has been used in the FASTRAN
model [17].

The objective is to construct the difference equation for (cycle-dependent and non-negative)
crack opening stress S such that, under different levels of constant-amplitude load, the forcing
function Sp* at the kth cycle matches the crack-opening stress derived from the following em-
pirical relation [16] that is valid for non-zero peak stress:

S = SUS(SI, ST 0 F) = (4] + AR+ ALR) + AR )SP, 2)
where
S/];nln max
Rk:WU(Sk ), forall k >0, (3)
5 T Smax 1/ oy
A(Iz = <0825 — 0.3406k + OOS(OCk) ) |:COS (E S‘f‘lmF(akl’W)>:| s (4)
Sm‘dX
A}C = (0.415-0.0710) (5%17(01(_17@), (5)
A= (1 —4; — 4, — ) U(Ry), (6)
A} = (24) + 4, — 1) U(Ry). (7)

The constraint factor o, used in Egs. (4) and (5) is obtained as a function of the crack length
increment Ag; in Eq. (1). A procedure for evaluation of «; is presented in Section 2 of the second
part. Since o; does not significantly change over cycles, it can be approximated as piecewise
constant for limited ranges of crack length.

Remark 3.2. The inequality in the Heaviside function U(S{"**) of Eq. (3) should be realized by
setting SM > ¢™ > ( to avoid the singular region around S = 0. The parameter ™" is selected
for code development in Section 2 of the second part. This modification is not necessary for
applications where the peak stress is sufficiently tensile.

The following constitutive relation in the form of a non-linear first-order difference equation is
proposed for recursive computation of the crack-opening stress Sp upon the completion of the kth
cycle:

0 1 0 n 0SS 1 0SS 0 0SS 0
Sk = <1—_H7>Sk1 + <m>Sk + <1—+11) (Sk _Sk—l)U(Sk _Sk—l)

—1 S0 min min 088 )
4 <1 " n) [S]?ss _ S]?ss_ ld] U(Ski1 — Sk )[1 — U(Sk — Slwl)]? (8)
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t§?

n=5 = for center-cracked specimens of finite width, 9)
W.

where the forcing function S* in Eq. (8) is calculated from Eq. (2) as if a constant amplitude
stress cycles (S, SMn) is applied; similarly, SP-°1¢ is given by Eq. (2) as if a constant am-
plitude stress cycle (Sf@*, S™n) is applied. For constant-amplitude loading, S° is the steady-
state solution of S°. In general, the inputs S and S to Eq. (8) are different from the
instantaneous crack-opening stress Sp under variable-amplitude loading. The Heaviside function
U(Sp*® — Sp_,) in the third term on the right-hand side of Eq. (8) allows fast rise and slow decay
of §°. The last term on the right-hand side of Eq. (8) accounts for the effects of reverse plastic
flow. Depletion of the normal plastic zone occurs when the minimum stress SP" decreases
below its value S in the previous cycle, which is incorporated via the Heaviside function
U(Smin — smin) - Note that the overload excitation and reverse plastic flow are mutually exclu-
sive.

The dimensionless parameter 1 in Eq. (9) depends on the specimen thickness ¢, half-width
w, yield strength $*¥, and Young’s modulus E. Following an overload cycle, the duration of
crack retardation is controlled by the transients of Sp in the state-space model, and hence
determined by the stress-independent parameter 7 in Eqgs. (8) and (9). Physically, this duration
depends on the ductility of the material that is dependent on many factors including the
heat treatment of specimens [24]. Smaller yield strength produces a smaller value of #, re-
sulting in longer duration of the overload effect. Smaller specimen thickness has a similar
effect [24]. Although a precise relationship for # is not known at this time due to the lack of
adequate test data for different materials and different geometry, # could be estimated from
the experimental data of a single overload on an identical specimen made of the same ma-
terial. In the absence of such data, the relationship in Eq. (9) could be used to generate an
estimate of n for center-cracked flat specimens of finite width. For different geometrical
configurations, # needs to be identified from experimental data under variable-amplitude load
excitation.

The model equations (1)—(9) are summarized and re-arranged in Section 2 of the second part to
provide adequate information for generating a fatigue crack growth simulation code. Note that
the function #(AK®") in Eq. (1) can be represented either by a closed form algebraic equation or
by table lookup. These functional relationships and numerical values of the model parameters are
available in the FASTRAN manual for different materials [17].

Next we address the issue of (possibly) additional delays associated with the transient response
of crack opening stress S;, which might be prevalent in some materials. In order to include the
effects of delay ¢ (in cycles) in the response of SP*, the right-hand side of Eq. (1) can be modified
by altering AK{™ as:

Aak =day — Q-1 = ((S]indx - S;:_(;_l>\/7[(lk_1F((lk_])) with Sl?—é—l = S]znin for ¢ = 0. (10)

Since the experimental data may not exactly show the transients of S° during and immediately
after a variation of S™* or S™", the model may not accurately depict S° in this range. Never-
theless, this (possible) modeling inaccuracy has hardly any effect on overall crack growth. Starting
with a higher order difference equation, the order (i.e., the number of state variables) of the
present model is reduced to 2 by singular perturbation [28] based on the experimental data of
7075-T6 [19] and 2024-T3 [13] aluminum alloys. The possibility of a higher order model to rep-
resent non-minimum phase behavior or delayed response of Sy is not precluded for other mate-
rials.
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Remark 3.3. Eq. (10) is identical to Eq. (1) for £ = 0. In that case, the transient response of crack
growth is subjected to a built-in delay of two cycles after the application of an overload pulse as
seen by examination of Egs. (1) and (8). For ¢ > 0, the corresponding delay is (¢ 4 2) cycles.

4. Features of the state-space model

The most important feature of the state-space model, formulated in Section 3, is recursive
computation of the crack opening stress without the need for information storage of stress ex-
citation except for the minimum stress in the previous cycle. This is evident from the governing
Eqgs. (1) and (8) for a; and S}, respectively, that the two-dimensional state-space model of fatigue
crack growth has the structure of an ARMA model [12]. In other words, the crack growth
equations can be represented by a second-order non-linear difference equation that recursively
updates the state variables, a; and Sp, with S, S,’j‘i“ and S}fj‘; as inputs and the immediate past
information on g,_; and Sy _,; storage of no other information is required. This implies that the
crack length and crack-opening stress in the present cycle are obtained as simple algebraic
functions of the maximum and minimum stress in the present cycle as well as the minimum stress,
crack length, and crack-opening stress in the immediately preceding cycle. While details of model
validation with fatigue test data are presented in the second part, we present qualitative expla-
nations of the model response in Figs. 4-6 to elucidate the role of the Heaviside functions in the
constitutive equation of crack opening stress.

Fig. 4 presents qualitative features of the model response to a single-cycle overload excitation
based on the first-order difference equation (8) in which S° attains a peak value in the cycle
following the application of a single-cycle overload. The positive edge of this resulting pulse is
effective whereas, unlike a linear system, the negative edge is rendered ineffective by the Heaviside
function U(SP™* — SP ;) and U(S™ — S?) as seen in the third and fourth terms on the right-hand
side of Eq. (8). When U(Sp*® — S} _,) is zero, S° decreases at a rate determined by the dimensionless
parameter #. Under constant-amplitude loading, the terms of Eq. (8) containing the Heaviside
functions are ineffective. Upon application of a single-cycle overload, the amplitude of the input
pulse S*° on the right-hand side of Eq. (8) depends on the amount of overload which leads to
retarded crack growth under the constant amplitude load that follows the overload.

In contrast to a single-cycle overload, a single-cycle underload makes the Heaviside function
U(Sp® — Sp_,) ineffective while the fourth term on the right-hand side of Eq. (8) becomes effective
due to the Heaviside function U(S™? — ™) that accounts for the reverse plastic flow and

20 . -
B ~<— Overload -
lo N
- . (e} -
= /q—low decrease of 89 o,
< 12T 1 overanumber of cycles | .
8 gt ‘ -
at
0

cycles kilocycles cycles

Fig. 4. Overload response of crack opening stress.
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Fig. 6. Overload—underload response of crack opening stress.

depletion of the resulting plastic zone. When the load returns to its normal range from an un-
derload, the Heaviside function U(Sp*® — S;_,) again becomes effective and the fourth term on the
right-hand side of Eq. (8) becomes ineffective. This brings §° back to its normal value. Thus S° is
low only for one cycle during a single-cycle underload that has very little bearing on the overall
crack growth rate. Fig. 5 presents qualitative features of the model response to an underload
followed by an overload. The major difference between the responses due to a single-cycle
overload and an underload—-overload is that the preceding underload causes S° to be abnormally
low. This reduces the protection of the crack from growing during the follow-on overload cycle
and consequently the crack increment becomes larger. The model response after the overload is
similar to that for a single-cycle overload.

Fig. 6 presents a qualitative view of how S° is affected by an overload immediately followed by
an underload. In the overload—underload cycle, S7*** is identical to that for a single-cycle overload
in Fig. 4 but the corresponding S™" is smaller and consequently S is also smaller. In effect, the
forcing function in the third term on the right-hand side of Eq. (8), which is multiplied by the
Heaviside function U(Sp* — S¢ ), assumes a smaller value for overload—underload than that for a
single-cycle overload while the fourth term is ineffective. A single-cycle overload thus retards
crack growth more effectively than a similar overload immediately followed by an underload. In
essence, the benefits of an overload monotonically diminish with increase in the magnitude of the
following underload.
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Next we compare the state-space model (which is ARMA) with the AR model proposed by
Holm et al. [7]. While both models are piecewise linear and treat the crack-opening stress S° as a
state variable, there are several differences in the structures of their governing equations. Spe-
cifically, the state-space model uses mechanistic principles and takes advantage of fatigue test data
while the AR model is largely empirical. The phenomenon of crack growth retardation requires
only one constant parameter 7 in the state-space model. The AR model uses different constant
parameters over the two halves of a cycle to represent the increase and decrease of S;. A major
drawback of having two different constants is that when frequent overloads (or underloads) are
applied, Sp rises with each successive application and becomes unbounded. Consequently, the AR
model is not capable of capturing the effects of a single overload, irregular load sequences, and
random loads with the same set of constants. This problem does not arise in the state-space model
as the excitation Sp* applied due to an overload is automatically adjusted by subtracting the
current value of S as seen in the third term on the right-hand side of Eq. (8). The effects of an
abrupt reduction in S™" during the crack retardation period are realized in the fourth term.

5. Summary and conclusions

This paper presents the physical concept and formulation of a fatigue crack growth model in
the state-space setting to capture the effects of variable-amplitude cyclic loading in ductile alloys.
The state-space model is formulated based on the crack closure concept and captures the effects of
stress overload and reverse plastic flow. The model state variables are crack length and crack
opening stress that are recursively generated by simple algebraic functions of the maximum and
minimum stress in the present cycle as well as the minimum stress, crack length, and crack-
opening stress in the immediately preceding cycle. The model is validated with different types of
fatigue test data in the second part that is a companion paper.

The crack growth equation in the state-space model is structurally similar to that in the FA-
STRAN model [17]. However, these two models use entirely different algorithms for calculating
the crack opening stress. As such, the crack length computed by the models could be different
under a given variable amplitude loading but the results are essentially identical under the same
constant-amplitude loading. Unlike the existing crack growth models that require a long history
of stress excitation to calculate the crack-opening stress under variable-amplitude loading, the
state-space model only needs the information on peak stresses in the present and past cycles.
Therefore, savings in the computation time and memory requirement are significant.
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Appendix A. The crack-closure concept

Experiments on metallic materials, conducted by Elber [5] demonstrated that fatigue cracks
remain closed during a part of every load cycle under both constant-amplitude and variable-
amplitude loading. Newman [14] thereafter has proposed an analytical crack-closure model based
on the Dugdale model [4]. Plane stress and plane strain conditions are simulated by incorporating
a constraint factor on tensile yielding to account for three-dimensional effects. In order to
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calculate the contact stresses, also known as closure stresses, and crack-opening stress during
crack propagation, the elastic-plastic solution for stresses and displacements in a cracked body
must be known. The crack surface displacements, which are used to calculate the contact stresses
during unloading, are influenced by plastic yielding at the crack tip and residual deformations left
in the wake of an advancing crack. Upon reloading, the applied stress at which the crack surfaces
become fully open (i.e., with no surface contact) is directly related to the contact stresses. This
applied stress is called the crack-opening stress S°. Measurements of S° are difficult and have been
made on only a few materials under a limited number of loading conditions.

Fig. 7 shows a schematic of the crack closure model [14] at the maximum and minimum applied
stress. The model spans three regions:

Region 1: Linear elastic region with a (measurable) physical crack of half-length (a + p);
Region 2: Plastic region of radius p at the crack tip; and
Region 3: Residual crack deformation region along the crack surfaces.

Region 1 is treated as an elastic continuum, and crack surface displacements can be found
using available equations. Regions 2 and 3 are composed of rigid perfectly plastic (constant stress)
bar elements. The shaded regions in both plates of Fig. 7 indicate the material that is in plastic
state.

At any applied stress, the bar elements are either intact (in Region 2) or broken (in Region 3).
The broken elements carry only compressive loads provided that the cracked surfaces are in
contact. Elements that are not in contact do not affect the calculation of crack-opening dis-
placements. The plastic zone size is determined by requiring that the stress intensity factor at the
tip of the plastic zone is zero. The maximum radius p™** of the plastic zone is calculated based on
the largest applied stress. The length of the bar elements in the plastic zone is calculated from a
crack surface displacement equation [14].

Smax

Smm

—_ Sﬂow ™ -Sﬂ oW
(a) (b)

Fig. 7. Crack surface displacements and stress distribution along crack line [14]: (a) maximum stress; (b) minimun stress.
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