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Abstract

This paper formulates an unconstrained optimal policy for control of regular languages realized as deterministic 2nite state automata
(DFSA). A signed real measure quanti2es the behavior of controlled sublanguages based on a state transition cost matrix and a characteristic
vector as reported in an earlier publication. The state-based optimal control policy is obtained by selectively disabling controllable events
to maximize the measure of the controlled plant language without any further constraints. Synthesis of the optimal control policy requires
at most n iterations, where n is the number of states of the DFSA model. Each iteration solves a set of n simultaneous linear algebraic
equations. As such, computational complexity of the control synthesis is polynomial in n.
? 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

The discrete-event dynamic behavior of physical plants
is often modeled as regular languages that can be realized
by 2nite-state automata (Ramadge & Wonham, 1987). The
sublanguage of a controlled plant could be di=erent under
di=erent supervisors that are constrained to satisfy di=erent
speci2cations. Such a partially ordered set of sublanguages
requires a quantitative measure for total ordering of their
respective performance. To address this issue, Wang and
Ray (2002) have developed a signed measure of regular lan-
guages. This work was followed by Surana and Ray (2003)
who have constructed a vector space of sublanguages with a
metric based on the total variation measure of the language.
Several researchers have proposed optimal control of de-

terministic 2nite state automata (DFSA) based on di=erent
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assumptions. Some of these researchers have attempted to
quantify the controller performance using di=erent types
of cost assigned to the individual events. Pasino and
Antsaklis (1989) proposed path costs associated with state
transitions and hence optimal control of a discrete event
system is equivalent to following the shortest path on the
graph representing the uncontrolled system. Kumar and
Garg (1995) introduced the concept of payo= and control
costs that are incurred only once regardless of the number
of times the system visits the state associated with the cost.
Consequently, the resulting cost is not a function of the dy-
namic behavior of the plant. Brave and Heyman (1990) in-
troduced the concept of optimal attractors in discrete-event
control. Sengupta and Lafortune (1998) used control cost in
addition to the path cost in optimization of the performance
index for trade-o= between 2nding the shortest path and
reducing the control cost. Although costs were assigned to
the events, no distinction was made for events generated
at (or leading to) di=erent states that could be “good” or
“bad”. These optimal control strategies have addressed per-
formance enhancement of discrete-event control systems
without a quantitative measure of languages.
This paper introduces the concept of unconstrained opti-

mal control of DFSA based on a speci2ed language mea-
sure. Starting with the (regular) language of the unsuper-
vised (i.e., open loop) plant, the optimal control policy
maximizes the performance of a sublanguage without any
further constraints. The paper is organized in six sections.
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Section 2 brieNy describes the language measure and intro-
duces the notation used in the sequel. Section 3 presents the
underlying theory of the optimal control policy in the context
of the language measure. Section 4 constructs a procedure
for synthesis of discrete-event optimal controllers and shows
that computational complexity of the control synthesis pro-
cedure is polynomial in the number of the DFSA states.
Section 5 presents an application example for discrete-event
optimal control of a gas turbine engine. The paper is sum-
marized and concluded in Section 6 along with recommen-
dations for future research.

2. Brief review of the language measure

This section brieNy reviews the concept of signed real
measure of regular languages (Wang & Ray, 2002). Let the
plant behavior be modeled as a DFSAGi ≡ (Q;�; �; qi; Qm),
where Q is the 2nite set of states with |Q| = n excluding
the dump state (Ramadge & Wonham, 1987) if any, and
qi ∈Q is the initial state; � is the (2nite) alphabet of events;
�∗ is the set of all 2nite-length strings of events including
the empty string 	; the (possibly partial) function � :Q ×
� → Q represents state transitions and �∗ :Q × �∗ → Q
is an extension of �; and Qm ⊆ Q is the set of marked
states.

De�nition 1. A DFSA Gi, initialized at qi ∈Q, generates
the language L(Gi) ≡ {s∈�∗ : �∗(qi; s)∈Q} and its marked
sublanguage Lm(Gi) ≡ {s∈�∗ : �∗(qi; s)∈Qm}.
The language L(Gi) is partitioned as the non-marked

and the marked languages, Lo(Gi) ≡ L(Gi) − Lm(Gi)
and Lm(Gi), consisting of event strings that, starting from
qi ∈Q, terminate at one of the non-marked states in Q−Qm

and one of the marked states in Qm, respectively. The set
Qm is partitioned into Q+

m and Q−
m , where Q−

m contains all
good marked states that we desire to reach and Q−

m contains
all bad marked states that we want to avoid, although it may
not always be possible to avoid the bad states while attempt-
ing to reach the good states. The marked language Lm(Gi)
is further partitioned into L+m(G) and L−m(Gi) consisting of
good and bad strings that, starting from qi, terminate on Q+

m
and Q−

m , respectively.
A signed real measure � : 2�

∗ → R ≡ (−∞;∞) is con-
structed for quantitative evaluation of every event string
s∈�∗. The language L(Gi) is decomposed into null (i.e.,
Lo(Gi)), positive (i.e., L+m(Gi)), and negative (i.e., L−m(Gi))
sublanguages.

De�nition 2. The language of all strings that, start-
ing at a state qi ∈Q, terminates on a state qj ∈Q, is
denoted as L(qi; qj). That is, L(qi; qj) ≡ {s∈L(Gi) :
�∗(qi; s) = qj}.

De�nition 3. The characteristic function that assigns a
signed real weight to state-partitioned sublanguages L(qi; qj)

is de2ned as: � :Q → [− 1; 1] such that

�(qj)∈




[− 1; 0) if qj ∈Q−
m

{0} if qj �∈ Qm

(0; 1] if qj ∈Q+
m

:

De�nition 4. The event cost is conditioned on a DFSA state
at which the event is generated, and is de2ned as �̃ :�∗ ×
Q → [0; 1] such that ∀qj ∈Q; ∀�k ∈�, ∀s∈�∗,

• �̃(�k | qj) = 0 if �(qj; �k) is unde2ned; �̃[	 | qj] = 1;
• �̃(�k | qj) ≡ �̃jk ∈ [0; 1);

∑
k �̃jk ¡ 1;

• �̃(�k s | qj) = �̃(�k | qj)�̃(s | �(qj; �k)).

Now we de2ne the measure of any sublanguage of the
L(Gi) in terms of the signed characteristic function � and
the non-negative event cost �̃.

De�nition 5. The signed real measure � of a singleton string
set {s} ⊂ L(qi; qj) ⊆ L(Gi)∈ 2�

∗
is de2ned as

�({s}) ≡ �(qj)�̃(s | qi) ∀s∈L(qi; qj):

The signed real measure of L(qi; qj) is de2ned as

�(L(qi; qj)) ≡
∑

s∈L(qi ;qj)

�({s})

and the signed real measure of a DFSA Gi, initialized at the
state qi ∈Q, is denoted as

�i ≡ �(L(Gi)) =
∑
j

�(L(qi; qj)):

De�nition 6. The state transition cost of the DFSA is de-
2ned as a function � :Q×Q → [0; 1) such that ∀qj; qk ∈Q,
�(qk | qj) =

∑
�∈� : �(qj ;�)=qk �̃(� | qj) ≡ �jk and �jk = 0 if

{�∈� : �(qj; �) = qk} = ∅. The n × n state transition cost
matrix, denoted as �-matrix, is de2ned as

� =




�11 �12 : : : �1n

�21 �22 : : : �2n

...
. . .

...

�n1 �n2 : : : �nn



:

Proposition 1. Given a state transition cost matrix
�∈Rn×n, the operator [I − �] is invertible and the
bounded linear operator [I − �]−1¿ 0 where the matrix
inequality is implied elementwise.

Proof. It follows from De2nitions 4 and 6 that ∃ �∈ (0; 1)
such that the induced in2nity norm ‖�‖∞ ≡ maxi �j�ij =
1 − �. Then, [I −�]−1 is invertible and is a bounded lin-
ear operator with ‖[I − �]−1‖∞6 � −1 (Naylor & Sell,
1982, p. 431). Using Taylor series expansion, [I −�]−1 =∑∞

k=0 [�]k . Since each element of � is non-negative,
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so is each element of [�]k . Hence, [I − �]−1¿ 0
elementwise.

Wang and Ray (2002) have shown that the measure
�i ≡ �(L(Gi)) of the language L(Gi) can be expressed
as �i =

∑
j �ij�j + �i where �i ≡ �(qi). Equivalently, in

vector notation: � = �� + X, where the measure vec-
tor � ≡ [�1�2 · · · �n]T and the characteristic vector X ≡
[�1�2 · · · �n]T. By Proposition 1, the measure vector � is
uniquely determined as: � = [I −�]−1X.

3. Derivation of the optimal control policy

This section presents the theoretical foundations of the
unconstrained optimal control of discrete event systems.
Let S ≡ {S0; S1; : : : ; SN} be the 2nite set of all supervi-
sory control policies for the unsupervised plant automaton
G, where S0 is the null controller, i.e., no event is dis-
abled and hence L(S0=G) = L(G). Therefore, the controller
cost matrix �(S0) = �0 ≡ �plant that is the �-matrix
of the unsupervised plant automaton G. For a supervisor
Si; i∈{1; 2; : : : ; N}, the control policy selectively disables
certain controllable events by which the corresponding el-
ements of the �̃-matrix become zero. The (elementwise)
inequality holds: �(Sk) ≡ �k6�0 where L(Sk=G) ⊆
L(G) ∀Sk ∈S. The ijth element of�k is denoted as �ij. The
performance vector is denoted as �(Sk) ≡ �k=[I−�k ]−1X
and its jth element as �k

j .

De�nition 7. For any supervisor S ∈S and any measure
vector �∈Rn, the aAne operator T (S) :Rn → Rn is de2ned
as: T (S)�=�(S)�+X.

Proposition 2. ∀S ∈S, T (S) is a contraction operator, and
there exists a unique measure vector �(S) such that �(S)=
T (S)�(S).

Proof. Since�0 is a contraction operator, 06�(S)6�0,
and X is a constant vector, T (S) is also a contraction oper-
ator. Hence, ∃ a unique 2xed point �(S) = T (S)�(S) in the
Banach space Rn (Naylor & Sell, 1982, p. 126).

Corollary 1 to Proposition 2. The unique 2xed point of the
contraction operator Tk ≡ T (Sk) is: �k = [I −�k ]−1X.

Proof. The unique 2xed point �k of Tk satis2es the identity
�k = �k�k + X. As 06�k6�0 elementwise, we have
‖�k‖∞6 ‖�0‖∞ ¡ 1. Hence, the operator [I − �k ]−1 is
bounded.

Corollary 2 to Proposition 2. The operator [I −�k ] has a
real positive determinant, i.e., Det[I −�k ]¿ 0.

Proof. Eigenvalues of the real matrix�k are located within
the unit circle and they appear as real or complex conjugates.

Therefore, eigenvalues of [I −�k ] have positive real parts.
So, Det[I −�k ] is real positive.

Proposition 3. (i) Let j be such that �k
j =min‘∈{1;2; :::; n}�k

‘;
if �k

j 6 0, then �j6 0, and if �k
j ¡ 0, then �j ¡ 0; (ii) Let

j be such that �k
j =max‘∈{1;2; :::; n}�k

‘; if �
k
j ¿ 0, then �j¿ 0,

and if �k
j ¿ 0, then �j ¿ 0.

Proof. (i) The DFSA satis2es the identity �k
j =

∑
‘∈{1;2; :::; n}

�kj‘�
k
‘ + �j that leads to the inequality �k

j ¿ (
∑

‘ �
k
j‘)�

k
j +

�j ⇒ (1 − ∑
‘ �

k
j‘)�

k
j ¿ �j. The proof follows from (1 −∑

‘ �
k
j‘)¿ 0 (see De2nitions 4 and 6).

(ii) The proof is similar to that of the part (i).

Proposition 4. Given �(S0) =�0 ≡ �plant and �k ≡ [I −
�k ]−1X, let �k+1 be generated from �k for k¿ 0 as fol-
lows: ∀i; j∈{1; 2; : : : ; n}, ijth element of �k+1 is modi:ed
as

�k+1
ij




¿ �kij if �k
j ¿ 0

=�kij if �k
j = 0

6 �kij if �k
j ¡ 0

and �k6�0 ∀k:

Then, �k+1¿ �k elementwise and equality holds if and only
if �k+1 =�k .

Proof.

�k+1 − �k = ([I −�k+1]−1 − [I −�k ]−1)X

=[I −�k+1]−1([I −�k ]− [I −�k+1])[I −�k ]−1X

=[I −�k+1]−1(�k+1 −�k)�k :

De2ning the matrix #k ≡ �k+1 − �k , let the jth col-
umn of #k be denoted as #k

j . Then, #
k
j 6 0 if �k

j ¡ 0 and
#k
j ¿ 0 if �k

j ¿ 0, and the remaining columns of #k are
zero vectors. This implies that: #k�k =

∑
j #

k
j �

k
j ¿ 0. Since

�k6�0 ∀k, [I −�k+1]−1¿ 0 elementwise; we have [I −
�k+1]−1#k�k¿ 0 ⇒ �k+1¿ �k . For �k

j �= 0 and #k as de-
2ned above, #k�k=0 if and only if #k=0. Then,�k+1=�k

and �k+1 = �k .

Corollary 1 to Proposition 4. Let �k
j ¡ 0. Let �k+1 be

generated from�k by disabling controllable events that lead
to the state qj. Then, �k+1

j ¡ 0.

Proof. Since only jth column of [I − �k+1] is di=erent
from that of [I − �k ] and the remaining columns are the
same, the jth row of the cofactor matrix of [I − �k+1] is
the same as that of the cofactor matrix of [I − �k ], we
have Det[I −�k+1]�k+1

j = Det[I −�k ]�k
j . By Corollary 2

to Proposition 2, both determinants are real positive.

Remark 1. In Proposition 4, some elements of the jth
column of �k are decreased (or increased) by disabling
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(or re-enabling) controllable events that lead to the states qj
for which �k

j ¡ 0 (or �k
j ¿ 0).

Proposition 5. The iterations in Proposition 4 lead to a
cost matrix �∗ that is optimal in the sense of maximizing
the performance vector �∗ ≡ [I −�∗]−1X elementwise.

Proof. Let us consider an arbitrary cost matrix �̃6�0

and �̃ ≡ [I − �̃]−1X. We will show that �̃6 �∗. Let us
rearrange the elements of the �∗-vector such that �∗ =
[�∗

1 · · · �∗
‘︸ ︷︷ ︸

¿0

|�∗
‘+1 · · · �∗

n︸ ︷︷ ︸
¡0

]T and the cost matrices �̃ and �∗ are

also rearranged in the order in which the �∗-vector is
arranged.
According to Proposition 4, no controllable event leading

to states qk , k = 1; 2; : : : ; ‘ has been disabled; and all con-
trollable events leading to states qk , k = ‘ + 1; ‘ + 2; : : : ; n
have been disabled. Therefore, the elements in the 2rst ‘
columns of �∗ are the same as those of the �0-matrix and
only the elements in the last (n− ‘) columns are decreased
to the maximum permissible extent by disabling all control-
lable events. In contrast, the columns of �̃ are reduced by
an arbitrary choice. Since �̃− �∗ = [I − �̃]−1[�̃−�∗]�∗,
the (�̃−�∗)-matrix whose 2rst ‘ columns are non-positive
and last (n− ‘) columns are non-negative yields:

�̃ − �∗ = [I − �̃]−1[:rst ‘ cols6 0 | last (n− ‘)

× cols¿ 0]�∗;

where

�∗ = [�∗
1 · · · �∗

‘︸ ︷︷ ︸
¿0

| �∗
‘+1 · · · �∗

n︸ ︷︷ ︸
¡0

]T:

Since [I − �̃]−1¿ 0 elementwise, we conclude that

�̃−�∗=[I−�̃]−1︸ ︷︷ ︸
¿0


 ‘∑

j=1

Colj·�∗
j

︸ ︷︷ ︸
60

+
n∑

j=‘+1

Colj·�∗
j




︸ ︷︷ ︸
60

60:

Therefore, �̃6 �∗ for any arbitrary choice of �̃.

Proposition 6. The control policy induced by the �∗-
matrix is unique in the sense that the controlled language
is most permissive (i.e., least restrictive) among all con-
troller(s) having the best performance.

Proof. Disabling controllable event(s) leading to a state qj
with performance measure �∗

j = 0 does not alter the per-
formance vector �∗. The optimal control does not disable
any controllable event leading to the states with zero per-
formance. This implies that, among all controllers with the
identical performance �∗, the control policy induced by the
�∗-matrix is most permissive.

Remark 2. Propositions 5 and 6 suAce to conclude that the
�∗-matrix yields the most permissive controller with the

best performance �∗. The control policy is realized as:

• All controllable events leading to the states qj, for which
�∗
j ¡ 0, are disabled;

• All controllable events leading to the states qj, for which
�∗
j ¿ 0, are enabled.

4. Construction of the optimal control law

This section summarizes the construction of the optimal
control law that maximizes the performance of the controlled
language of the DFSA for any initial state q∈Q. Let G be a
DFSA plant model without any constraint (i.e., operational
speci2cations) and have the state transition cost matrix of
the unsupervised plant as:�plant ∈Rn×n and the characteris-
tic vector as: X∈Rn. Then, the performance vector at k=0
is given as �0 = [�0

1�
0
2 · · · �0

n]
T = (I − �0)−1X, where the

jth element �0
j of the vector �0 is the performance of the

language, with the initial state qj. Then, �0
j ¡ 0 implies that,

if the state qj is reached, then the plant will yield bad per-
formance. Intuitively, the control system should attempt to
prevent the automaton from reaching qj by disabling all con-
trollable events that lead to this state. Therefore, the optimal
control algorithm starts with disabling all controllable events
that lead to every state qj for which �0

j ¡ 0. This is equiva-
lent to reducing all elements of the corresponding columns
of the �0-matrix by disabling the controllable events. In the
next iteration, i.e., k = 1, the updated cost matrix �1 is ob-
tained as: �1 =�0 − #0 where #0¿ 0 (the inequality be-
ing implied elementwise) is composed of event costs corre-
sponding to all controllable events that have been disabled.
Using Proposition 4, �06 �1 ≡ [I − �1]−1X. Although
all controllable events leading to every state corresponding
to a negative element of �1 are disabled, some of the con-
trollable events that were disabled at k = 0 may now lead
to states corresponding to positive elements of �1. Perfor-
mance could be further enhanced by re-enabling these con-
trollable events. For k¿ 1, �k+1 =�k +#k where #k¿ 0
is composed of all re-enabled controllable events at k.
If �0¿ 0, i.e., there is no state qj such that �0

j ¡ 0, then
the plant performance cannot be improved by event disabling
consequently, the null controller S0 is the optimal controller
for the given plant. Therefore, we consider the cases where
�0
j ¡ 0 for some state qj.
Starting with k =0 and �0 ≡ �plant, the control policy is

constructed by the following two-step procedure:
Step 1: For every state qj for which �0

j ¡ 0, disable con-
trollable events leading to qj. Now, �1 =�0 − #0, where
#0¿ 0 is composed of event costs corresponding to all con-
trollable events, leading to qj for which �0

j ¡ 0, which have
been disabled at k = 0.
Step 2: Starting with k = 1, if �k

j ¿ 0, re-enable all con-
trollable events leading to qj, which were disabled in Step
1. The cost matrix is updated as: �k+1=�k +#k for k¿ 1,
where #k¿ 0 is composed of event costs corresponding to
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all currently re-enabled controllable events. The iteration is
terminated if no controllable event leading to qj remains
disabled for which �k

j ¿ 0. At this stage, the optimal per-
formance �∗ ≡ [I −�∗]−1X.

Proposition 7. The number of iterations needed to arrive
at the optimal control law does not exceed the number, n,
of states of the DFSA.

Proof. Following Proposition 4, the sequence of perfor-
mance vectors {�k} in successive iterations of the two step
procedure is monotonically increasing. The 2rst iteration
at k = 0 disables controllable events following Step 1 of
the two-step procedure. During each subsequent iteration in
Step 2, the controllable events leading to at least one state
are re-enabled. When Step 2 is terminated, there remains at
least one negative element, �k

j ¡ 0 by Corollary 1 to Propo-
sition 4. Therefore, as the number of iterations in Step 2 is
at most n− 1, the total number of iterations to complete the
two-step procedure does not exceed n.

Remark 3. Since each iteration requires a single Gaussian
elimination of n unknowns from n linear algebraic equa-
tions, computational complexity of the control algorithm is
polynomial in n.

5. An application example

As an example of state-based optimal control, this sec-
tion presents the design of a discrete-event supervisor for a
twin-engine unmanned aircraft that is used for surveillance
and data collection. Engine health and operating conditions
are monitored in real time based on observed data. In the
event of any observed abnormality, the supervisor may de-
cide to continue or abort the mission. Engine health and op-
erating conditions, which are monitored in real time base on
observed data, classi2ed into three mutually exclusive and
exhaustive categories: good; unhealthy (but operable); and
inoperable.
The plant automaton model has 13 states (excluding the

dump state), of which three are marked states, and nine
events, of which four are controllable. All events are as-
sumed to be observable. The states and events of the plant
model are listed in Tables 1 and 2, respectively.
Based on the information provided in Tables 2, 3 and 4,

an optimal control policy has been synthesized following
the two-step procedure in Section 4. The values of the per-
formance vectors, �0 for the unsupervised plant, �1 in Step
1, and �2 in Step 2, are summarized in Table 5. Clearly,
�1¿ �0 because controllable event(s), if any, leading to
states 4 to 10 and 13 (for which �0

j ¡ 0) are disabled in Step
1. As indicated by the dashed and dotted arcs in the state
transition diagram of Fig. 1, the controllable event k lead-
ing to states 4, 7, 8, and 10 are disabled in Step 1 while the

Table 1
Plant automaton states

State# State description

1 Safe in base
2 Mission executing—two good engines
3 One engine unhealthy
4 Mission executing—one good and one unhealthy engine
5 Both engines unhealthy
6 One engine good and one engine inoperative
7 Mission execution with two unhealthy engines
8 Mission execution with only one good engine
9 One engine unhealthy and one engine inoperative
10 Mission execution with only one unhealthy engine
11 Mission aborted or not completed (Bad Marked State)
12 Mission successful (Good Marked State)
13 Aircraft destroyed (Bad Marked State)

Table 2
Plant event alphabet

Event# Event description

s start and take-o= (Controllable)
b one good engine becoming unhealthy
t one unhealthy engine becoming inoperative
v one good engine becoming inoperative
k keep engine(s) running (Controllable)
a mission abortion (Controllable)
f mission completion
d destroyed aircraft
l landing (Controllable)

a

l
l

t

s

f

f

f
f f

b

d

12

11

1

13

10

2
3

4

5

7

9

8

6

d

d
d

d

v

v

a

a

a
b

k

t v

v

k

k

k

b

a

Fig. 1. Plant state transitions.

uncontrollable events were kept enabled as the supervisor
has no authority to disable them. The event k leading to the
state 4 is re-enabled in Step 2.
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Table 3
State transition and event cost matrix

s b t v k a f d ‘

1 0.5 (2) 0.02 (1)
2 0.05 (3) 0.01 (6) 0.8 (12) 0.1 (13)
3 0.45 (4) 0.45 (11)
4 0.12 (5) 0.16 (6) 0.1 (9) 0.5 (12) 0.12 (13)
5 0.45 (7) 0.45 (11)
6 0.45 (8) 0.45 (11)
7 0.25 (9) 0.5 (12) 0.2 (13)
8 0.2 (9) 0.01 (13) 0.3 (12) 0.4 (13)
9 0.45 (10) 0.45 (11)
10 0.35 (13) 0.2 (12) 0.40 (13)
11 0.95 (1)
12 0.95 (1)
13

Table 4
State transition cost matrix �plant




0:02 0:50 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00

0:00 0:00 0:05 0:00 0:00 0:01 0:00 0:00 0:00 0:00 0:00 0:80 0:10

0:00 0:00 0:00 0:45 0:00 0:00 0:00 0:00 0:00 0:00 0:45 0:00 0:00

0:00 0:00 0:00 0:00 0:12 0:16 0:00 0:00 0:10 0:00 0:00 0:50 0:12

0:00 0:00 0:00 0:00 0:00 0:00 0:45 0:00 0:00 0:00 0:45 0:00 0:00

0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:45 0:00 0:00 0:45 0:00 0:00

0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:25 0:00 0:00 0:50 0:20

0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:20 0:00 0:00 0:30 0:41

0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:45 0:45 0:00 0:00

0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:20 0:75

0:95 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00

0:95 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00

0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00




Characteristic Vector X = [0 0 0 0 0 0 0 0 0− 0:05 0:25− 1:0]T

The state transition function � and the entries �̃ij (see Def-
inition 3) are entered simultaneously in Table 3. The frac-
tion part in each entry denotes the corresponding state-based
event cost �̃ij such that each row sum of the event cost matrix
�̃ is strictly less than one. The integer part (within parenthe-
ses) in each entry denotes the respective destination result-
ing from the occurrence of the event. The values of �̃ij were
selected by extensive simulation experiments on gas turbine
engine models and were also based on experience of gas tur-
bine engine operation and maintenance. The dump state and
any transitions to the dumped state are not shown in Table 3.
The elements of the characteristic vector (see De2nition 2)
are chosen as weights ranging between −1 and 1 based
on the perception of each marked state’s role on the gas
turbine system performance. The information provided in

Table 5
Performance (�) vector

Initial state �0 (Unsupervised) �1 (Step 1) �∗ = �2 (Step 2)

1 0.0823 0.0840 0.0850
2 0.1613 0.1646 0.1665
3 0.0062 0.0134 0.0366
4 −0.0145 0.0500 0.0506
5 −0.0367 0.0134 0.0138
6 −0.1541 0.0134 0.0138
7 −0.1097 −0.0317 −0.0312
8 −0.3706 −0.3084 −0.3080
9 −0.2953 0.0134 0.0138

10 −0.6844 −0.6840 −0.6839
11 0.0282 0.0298 0.0307
12 0.3282 0.3298 0.3307
13 −1.0000 −1.0000 −1.0000

Table 3 is suAcient to generate the�plant-matrix that is listed
in Table 4 which also includes the characteristic vector X.
Note that �1

4 ¿ 0 whereas �0
4 ¡ 0 in Table 5. As indicated

by the dashed arc in Fig. 1, the controllable event k leading
to state 4 (which was disabled in Step 1) is now re-enabled
in Step 2. Consequently, the performance vector is further
increased, i.e., �2¿ �1. Since there is no sign change be-
tween the elements of �1 and �2, the procedure is termi-
nated after k =2 following Step 2 and the resulting optimal
performance vector is �∗=�2. Table 5 shows that if the ini-
tial state is 1, then the best achievable performance of any
controlled plant is 0.0850 based on the language measure
parameters in Table 4. The controller also yields the most
permissive controllable sublanguage that achieves the best
performance �∗ = �2.

The best performance �∗ of the above optimal controller
is also veri2ed by comparison with three other controllers
that were designed independently using the following spec-
i2cations:

• Speci2cation# 1: at least one of the two engines must be
in good condition for mission continuation.
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• Speci2cation# 2: both engines must be in operable con-
dition for mission continuation.

• Speci2cation# 3: both engines must be in good condition
for mission continuation.

The above three controllers were designed using a
Java-based graphical interactive package that is coded fol-
lowing the supervisory control theory of Ramadge and
Wonham (1987). The performance measure �1 (i.e., with
the initial state 1) of the unsupervised plant is 0.0823, and
that of three controllers with speci2cation# 1, 2, and 3 is
evaluated to be: 0.0826, 0.0843, and 0.0840, respectively.
The performance of each of these controllers is inferior
to the performance, 0.0850, of the optimal controller as
expected.

6. Summary and conclusions

This paper presents the theory, formulation, and valida-
tion of an unconstrained optimal control policy for 2nite
state automata that may have already been subjected to con-
straints such as control speci2cations. The synthesis proce-
dure is quantitative and relies on a signed real measure of
formal languages, which is based on a speci2ed state tran-
sition cost matrix and a characteristic vector (Wang & Ray,
2002). The state-based optimal control policy maximizes
the performance vector by selectively disabling controllable
events that may lead to bad marked states and simultane-
ously ensuring that the remaining controllable events are
kept enabled. The goal is to maximize the measure of the
controlled plant language without any further constraints.
The control policy induced by the updated state transition
cost matrix yields maximal performance and is unique in the
sense that the controlled language is most permissive (i.e.,
least restrictive) among all controller(s) having the optimal
performance.
Derivation of the control policy requires at most n itera-

tions, where n is the number of states of the DFSA model
and each iteration is required to solve a set of n simultane-
ous linear algebraic equations. As such computational com-
plexity of the control synthesis procedure is polynomial in
the number of states. The procedure for synthesis of the op-
timal control algorithm has been validated on a 2nite-state
machine model of gas turbine engine operations.
Future areas of research in optimal control include: (i)

incorporation of the cost of disabling controllable events
(Fu, Ray, & Lagoa, 2003); and (ii) robustness of the control
policy relative to unstructured and structured uncertainties in
the plant model including variations in the language measure
parameters.
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