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MEASURE OF REGULAR LANGUAGES

Abstract. This paper reviews and extends the recent work on signed real measure of
regular languages within a unified framework. The language measure provides total order-
ing of partially ordered sets of sublanguages of a regular language to allow quantitative
evaluation of the controlled behavior of deterministic finite state automata under different
supervisors. The paper presents a procedure by which performance of different supervisors
can be evaluated based on a common quantitative tool. Two algorithms are provided for
computation of the language measure and their equivalence is established along with a
physical interpretation from the probabilistic perspective.

1. Introduction

Deterministic finite-state automata (DFSA) can be represented by a reg-
ular languages [2] [5] and are usually capable of capturing the symbolic be-
havior of physical plants. The concept of discrete-event supervisory control,
based on a DFSA plant model, was proposed in the seminal paper of Ra-
madge and Wonham [8]. The (controlled) sublanguages of the plant language
could be different under different supervisors that satisfy their own respec-
tive specifications. Such a partially ordered set of sublanguages requires a
quantitative measure for total ordering of their respective performance. To
address this issue, Wang and Ray [12] formulated a signed measure of reg-
ular languages followed by Ray and Phoha [9] who constructed a vector
space of formal languages and defined a metric based on the total variation
measure of the language. This paper reviews these publications on language
measure for discrete-event supervisory control within a unified framework
and presents certain clarifications and extensions. ]

The signed real measure for a DFSA is constructed based on assignment
of an event cost matrix and a characteristic vector. Two techniques for
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language measure computation have been recently reported. While the first
technique [12] leads to a system of linear equations whose (closed form)
solution yields the language measure vector, the second technique [9] is a
recursive procedure with finite iterations. A sufficient condition for finiteness
of the signed measure has been established in both cases.

In order to induce total ordering on the measure of different sublan-
guages of a plant language under different supervisors, it is implicit that
same strings in different sublanguages must be assigned the same measure.
This is accomplished by a quantitative tool that assigns an event cost matrix
and a characteristic vector for language measure computation. The clarifi-
cations and extensions presented in this paper are intended to enhance de-
velopment of systematic analytical techniques for synthesis of discrete-event
supervisory control systems. For example, Fu et al. [3][4] have proposed un-
constrained optimal control of regular languages where state-based optimal
control policies are synthesized by selectively disabling controllable events
to maximize performance indices based on a measure of the controlled plant
language.

The paper is organized in six sections including the present introduc-
tory section. Section 2 briefly describes the language measure, introduces
the notations, and presents the procedure by which the performance of dif-
ferent supervisors can be compared based on a common quantitative tool.
Section 3 discusses two alternative methods for computing language mea-
sure. Section 4 illustrates usage of the language measure for construction -
of metric spaces of formal languages and synthesis of optimal discrete-
event supervisors. Section 5 addresses issues regarding physical interpre-
tation of the event cost used in the language measure. The paper is sum-
marized and concluded in Section 6 along with recommendations for future
research. |

2. Language measure concept

Following the terminology of Ramadge and Wonham [8], let G; =
(Q,%,0,qi, Qm) be a trim (i.e., accessible and co-accessible) finite-state au-
tomaton model that represents the discrete-event dynamics of a physical
plant where Q = {q1,¢2,-,gn} is the (finite) set of states with ¢; being
the initial state; & = {01,092, ++,0m} is the (finite) alphabet of events;
§:Q x Y — Q is the (possibly partial) function of state transitions; and
Qm = {Gmys Gmgs*>Gm;} C @ is the (non-empty) set of marked states
(known as accepted states in the computer science literature [2] [5]) gm,, = ¢;
for some j € Z ={1,---,n}.

We have followed the notation of Ramadge and Wonham (8] in formulat-
ing the structure of DFSA G;, which allows the state transition function
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to be a partial function. This approach differs from the classical definition of
DFSA [2] [5], where § must be a total function. The rationale for making &
a partial function is to account for physical constraints of inhibiting certain
events at selected states and also to accommodate modelling uncertainty as
discussed later in Section 5. However, by adding a dump state to Gi, the
partial function ¢ can be extended to a total function leading to the classical
description of DFSA.

Let ©* be the Kleene closure of T, i.e., the set of all finite-length strings
made of the events belonging to & as well as the empty string € that is viewed
as the identity of the monoid ¥ under the operation of string concatenation,

i.e., es = s = se. The extension §* : Q x X* — Q is defined recursively in
the usual sense [2] [5] [8].

DEFINITION 2.1. The language L(G;) generated by a DFSA G initialized at
the state q; € Q 1is defined as:

(2.1) L(G;) = {s € X" | "(zi,5) € Q}-

Since the state transition function § is (possibly) a partial function, we
allow L(G;) C Z*. If § is a total function,then Definition 2.1 necessitates
that the generated language L(G;) = X*.

DEFINITION 2.2. The language Lm,(G;) marked by a DFSA G; initialized at
the state q; € Q 1s defined as:

(2.2) Lm(Gi) = {S ex* I 6*(qi, S) € Qm}

DEFINITION 2.3. For every g;,qx € Q, let L(gi,qx) denote the set of all
strings that, starting from the state g;, terminate at the state g, t.e.,

(2.3) L(gi,qr) = {s € " | 6" (%, 8) = qk}-

In order to obtain a quantitative measure of the marked language, the
set Q,, of marked states is partitioned into Q;, and Qr,, i.e., Qm = QrUQ,
and @ NQ;, = 0. The positive set Q; contains all good marked states that
one would desire to reach, and the negative set Q;, contains all bad marked
states that one would not want to terminate on, although it may not always
be possible to completely avoid the bad states while attempting to reach the
good states. From this perspective, each marked state is characterized by an
assigned real value that is chosen based on the designer’s perception of the
state’s impact on the system performance.

DEFINITION 2.4. The characteristic function x : @ — [-1, 1] that assigns a
signed real weight to a state-based sublanguage L(gi,q), having each of its
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strings terminating on the same state g, is defined as:

[—1)0)! g€ Q‘;’L
(2.4) Ve @, x(geq {0}, 9¢Qnm
(0,1], g€ Q.

The state weighting vector, denoted by X = [x1 x2 - xn)T, is called the
X-vector. The jt* element x; of X-vector is the weight assigned to the cor-
responding state g;.

In general, the marked language L.,(G;) consists of both good and bad
strings that, starting from the initial state g;, respectively lead to Q; and
Q. Any event string belonging to the language L°(G;) = L(G:) — Lin(G5)
leads to one of the non-marked states belonging to Q@ — @, and LO(Gi) does
not contain any one of the good or bad strings. Partitioning Qr, into the
positive set Q7 and the negative set Q;, leads to partitioning of the marked
language L,(G;) into a positive language L (G;) and a negative language
L= (G;). Based on the equivalence classes defined in the Myhill-Nerode The-

orem [2], the regular languages L(G;) and L, (G;) can be expressed as:
(25) L(G") = UQEQL(Q‘h q) = Uzr—“lL(qi, Qk)’
(2.6) Lm(Gs) = Uge@n (@i, 9) = LiH(Gi) U L (Gi)

where the sublanguage L(gi,qx) C L(G;) is uniquely labelled by the state
g,k € Z={1,---,n} and L(gi;, qx) N L(gi,q;) = 0 Vk # j; and L} (Gi) =
Uq'EQ;F1 L(gi, q) and L (G;) = U - L(g, q) are good and bad sublanguages of
L (G:), respectively. Then, L°(G;) = Uggq,. L(gi, q) and L(G;) = LY(G;) U
L5(G) UL (G).

Now we construct a signed real measure p : 2L(¢) — R = (—o0, 00) on
the o—algebra M = 2L(G:), With this choice of o—algebra, every singleton
set made of an event string s € L(G;) is a measurable set, which allows
its quantitative evaluation based on the above state-based decomposition
of L(G;) into null (i.e., L%), positive (i.e., L"), and negative (i.e., L) sub-
languages. Conceptually similar to the conditional probability, each event is
assigned a cost based on the state at which it is generated.

DEFINITION 2.5. The event cost of the DFSA G; is defined as a (possibly
partial) function 7 : £* x Q — [0, 1] such that Yg; € Q, Yo € X, Vs € L7,
(1) Fr[ak,qj] = ﬁjk - [O, 1),’ Ek'ﬁ]k < 1,’
(2) #lo,q5] = 0 if 6(gj,0) is undefined; 7le,q;] = 1;
(3) Tloks, q;] = Tlok, g;] (s, 0(g;, 0%)]-
A simple application of the induction principle to part(3) in above Defi-
nition shows 7[st, ¢;] = 7[s, ¢;]7[t, 6*(g;, s)]. The condition >, 7;r < 1 pro-

_____
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vides a sufficient condition for the existence of the real signed measure as
discussed in Section 3. Additional comments on the physical interpretation
of the event cost are provided in Section 5.

DEFINITION 2.6. The state transition cost of a DFSA G is defined as a func-
tion T : QX Q - [07 1) such that v%a g5 € Q; W[Qh QJ] = z{aeﬂzé(qi,a)=q]~} ﬁ'[O', Qz]
=mj and mi; = 0 if {0 € ¥ : 6(g5,0) = ¢j}= 0. The n X n state transition
cost matriz is defined as:

T11 T12 - .. T1n

721 722 ... T2n

LTl T2 - -« Tnn

and is referred to as the II-matriz in the sequel.

DEFINITION 2.7. The signed real measure u of every singleton string set
{s} € 2(59), where s € L(g;, q), is defined as: u({s}) = 7(s, g:)x(q) implying
that

=0, ¢¢Qm
(2.7) Vs€L(gng), w({sh{>0, qeQf

< 0, q € Q.

Thus an event string terminating on a good (bad) marked state has a
positive (negative) measure and one terminating on a non-marked state has
zero measure. It follows from Definition 2.7 that the signed measure of the
sublanguage L(g;, q) C L(G;) of all events, starting at ¢; and terminating at
q, is:

(2.8) waa) =( Y #lsa])x(@)-

s€L(g:,9)
DEFINITION 2.8. Given a DFSA G; = (Q, %, 6, i, Qm) the cost v of a sub-
language K C L(G;) is defined as the sum of the event cost & of individual
strings belonging to K :
(2.9) v(K) = 3 #ls,qil.

seK

DEFINITION 2.9. The signed real measure of the language of a DFSA G;
initialized at a state q; € Q, is defined as:

(2.10) pi = p(L(G) = > p(L(g:, 9))-
ge@
The language measure vector, denoted as p = [u1 po --- pn|t, is called the

p-vector.
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It follows immediately from above definition that u(L(gi,q)) =
v(L(gi,q))x(q). It has been proved in [9] [12] that under the condition
S Tk < 1 of Definition 2.5, the signed real language measure y converges.
Further the total variation measure |g| of p has also been shown to be fi-
nite [9].

In the above setting, the role of the language measure in DES control
synthesis is explained below:

A discrete-event non-marking supervisor S restricts the marked behav-
jor of an uncontrolled (i.e., unsupervised) plant G; such that Lm(S/Gi) €
L (G5). The uncontrolled marked language Ly, (G;) consists of good strings
leading to QF and bad strings leading to Q. A controlled language
L. (S/G;) based on a given specification of the supervisor S may disable
some of the bad strings and keep some of the good strings enabled. Different
supervisors S; : j € {1,2,...,ns} for a DFSA G; achieve this goal in dif-
ferent ways and generate a partially ordered set of controlled sublanguages
{L(S;/Gi) + j € {1,2,...,ns}}. The real signed measure p provides a
precise quantitative comparison of the controlled plant behavior under dif-
ferent supervisors because the set {u(Lm(S;/Gi)) @ 7 € {1,2,...,ns}} is
totally ordered.

In order to realize the above goal, the performance of different su-
pervisors has to be evaluated based on a common quantitative tool.
Let G = (Q1,%,01,q11,Qm1) denote the uncontrolled plant and S =
(Q2,%, 62, g21, @ma2) denote the supervisor with corresponding marked lan-
guage Lym(G) and Ly, (S), respectively. Then L,(G) denotes the uncon-
trolled plant language, L,,(S) is language of control specification and
Lm(G) N Lin(S) is the controlled sublanguage under the supervisor 5. Let
C=(Q,%,6,q1,Qm) where, @ = Q1 x Q2, q1 = (q11,21), Qm = {(p, @)lp €
Qmi and ¢ € Qme} and the transition function § is defined by the for-
mula

(211) 5((27, Q)aa) = (51(277 0)752(%0))7

(Vp € Q1, g€ Qy and o € X). Then, based on the established results
from automata theory [5] and supervisory control [8], we conclude that C
accepts the language L,(G) N L (S).

It follows from the above discussion that the extension ¢* satisfies:
Vs € X*
(2.12) §*((p,9),s) = (61(p, 5),63(g ))-
Also L(G) is partitioned by L(q11,q1;) L £j <m where |Q1| = n1. With the
above construction each of L(qi1,q1;) is further partitioned by L(qu1,q15) N
L(go1,gok), 1 < k < mo where |Q2| = no. Thus for any q1; € Qmi1 the
set of strings which is retained in Lin(G) N Lm(S) is given by L(q1, qi;) N
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(Ugare@ma L(g21, gok)). A supervisor which retains maximum possible strings
corresponding to gq1; € Q;Zl while discarding as many strings as possible
corresponding to g;; € Q.; would give a higher measure and hence a better
performance. The construction above shows immediately how the event cost
and characteristic function assigned to the uncontrolled plant can be used
as a quantitative tool with which the performance of different supervisors
can be evaluated and compared. The following procedure indicates how this
can be accomplished explicitly:

DEFINITION 2.10. Let G, S and C be defined as above. Let G represent
the unsupervised plant and 7, be the event cost and x1 be the characteristic
function. Then for the DFSA C which represents the controlled sublanguage,
T 18 defined as:
(2.13) 7(0, (q16, 92)] = 1[0, qui]
Vo€ andVi,j st 1<i<n;,1<j<n,.

The x-vector is defined as:

(2.14) x((q14, 925)) = x1(92:)Z(q25)
where I(-) is the indicator function defined as:
lge Qm2
(2.15) I(q) = { 7 .
0 q g Qm2

Let s € L((q11,921): (q1i,92;))- Since qi; = 6*(qu1,s), by Definition
2.7, p({s}) = mils,qu1lx1(q1;) for the unsupervised (i.e., open loop)
plant. For the supervised (i.e., closed loop) plant, we have u({s}) =
7[s, (q11, 921)]x((q1i, 425)) = 71[s, qu1)x1(q1:)Z(g2;) by Equations 2.13 and
2.14. In other words, if no event in the string s is disabled by the supervisor,
then p({s}) remains unchanged; otherwise, u({s}) = 0. Thus, Definition
2.10 guarantees that same strings in different controlled sublanguages of
a plant language L(G;) are assigned the same measure. Hence, the perfor-
mance of different supervisors can be compared with a common quantitative
tool.

Finally to conclude, it should be noted that while the domain (i.e., 2L(G+)
of the language measure p is partially ordered, its range which is a subset of
R becomes totally ordered. The set L(G;) with the o-algebra, 2£(G4), forms
a measurable space. In principle, any measure u can be defined on this mea-
surable space to form a measure space (i.e., the triple (L(G;), 25 ).
The choice of the signed language measure as given by Definitions 2.7 and
2.9, has been the motivated by the fact that it may serve as a performance
measure and hence should have a physical significance in the DES controller
synthesis. Moreover, defining the measure in this way also leads to sim-
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ple computational procedures as discussed in the next section and further
elaborated later in Section 5.

3. Language measure computation

Various methods of obtaining regular expressions for DFSAs are reported
in Hopcroft [2], and Martin [5] and Drobot [1]. While computing the mea-
sure of a given DFSA, the same event may have different significance when
emanating from different states. This requires assigning (possibly) different
costs to the same event defined on different states. Therefore, it is necessary
to obtain a regular expression which explicitly yields the state-based event
sequences. In order to compute the language measure we transform these
procedures of evaluating regular expression from symbolic equations to al-
gebraic ones. We present the following two methods [12}, [9] for language
measure computation.

3.1. Method I: Closed form solution[12]. This section presents a
closed-form method to compute the language measure via inversion of a
square operator.

DEFINITION 3.1. Let L; = En(Gi),i € {1,---,n}, denote the regular
expression representing the marked language of an n-state DFSA G; =
(@Q,%,0,q,Qm) where g; is the initial state.

DEFINITION 3.2. Let a;-“ denote the set of event(s) o € ¥ that is defined
on the state g; and leads to the state g € Q, where j,k € {1,---,n}, ie,
5(a5,0) = g0 €05 C 3

Then, given a DFSA G; = (@, X, 4, ¢, Qm) with |Q| = n, the procedure
to obtain the system equation by a set of regular expressions L; of the
marked language L.,(Gi),% € {1,---,n}, as follows:

(31) qu € Q; Li = ZRi,j + gi, 1 € {1, c ',,’I'L}
J

where Vi, R; ; is defined as:

1. If 3 0 € I, such that §(g;,0) = ¢; € Q5 € {1,---,n}, then R;; =
o] L;, otherwise, R; ; = 0.
2. If ¢; € Qm, & = €, otherwise, & = 0.

The set of symbolic equations may be written as:
(3.2) L; = ZO‘{LJ' + &;.
J

The above system of symbolic equations can be solved using a result given
below, which is illustrated through an example.
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LEMMA 3.1. Let u, v be two known regular expressions and r be an unknown
reqular expression that satisfies the following algebraic identity:
(3.3) r=ur+uv.
Then, the following relations are true:

(1) r = u*v is a solution to equation 3.3
(2) If € € u, then r = u*v is the unique solution to equation 3.3.

The proof of Lemma 3.1 is given in [1] [9].

EXAMPLE 3.1. Let ¥ = {a,b}, Q = {1,2,3}, the initial state is 1 the sole
marked state is 2 in Figure 3.1. Let the set of linear algebraic equations
representing the transitions at each state of the DFSA be:

L= CL%LL + b%LQ
(3.4) Ly=all;+b3L3+¢
L3 == (L%Ll -} b%Lg
where the ‘forcing’ term e is introduced on the right side of the i-th equa-

tion whenever ¢; € Qm,? € Z. By application of Lemma 3.1, the regular
expression for the marked language L, (G}) is:

Lm(G1) = Lt = (a1)"b} (a3 (a1) bt + b3aj(ar) b7 + bab3)"

Fig. 1. Finite State Machine for Example 3.1

However instead of obtaining regular expressions, we can compute lan-
guage measure directly by transforming this set of equations into a system
of linear equations. This is based on the following result.

THEOREM 3.1. The language measure of the symbolic equations 3.2 is given
by

(3.5) i = Tk + Xi-
J
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Proof. Following Equation 3.1 and Definition 2.4:

i x; if& =c¢€
3.6 VieZ, &)=
(36) ' H(&) { 0 otherwise.

Therefore, each element of the vector X = [x1 x2 --- xn)T is the forcing
function in Equations 3.2 and 3.5. Starting from the state g;, the measure
of the language L; = L, (G;) (see Definition 3.1)

= u(Li) = M(Zaij +&)
- ,Léag'Lj) + (&)
=3 ;(af L;) + u(&)
= Xj_:u(af Ju(Ls) + p(&)
= Z (o7 (L) + p(&:)
- ijp Lj) + w(&)
= E:;mjﬂj + Xi.

The third equality in the above derivation follows from the fact that & N
o]L; = 0. It is also true that

(3.7) Vi#k,  olLiNofLy=0

since each string in Jf L; starts with an event in ag while each string in Uka
starts from an event in of and ag Nok =0, as G; is a DFSA. This justifies
the fourth equality. u(c?L;) = (o7 u(L;) follows from Definition 2.8 and
the fact that u(L(g;, q)) = v(L (g, q))x(q). Therefore, by Definitions 2.6 and

3.2, u(o?L;) = 7lgi, gj] p(Ly) = mij p(L;) . =

In vector notation, Equation 3.5 in Theorem 3.1 is expressed as: p =
ITp + X whose solution is given by:

(3.8) p=I-T)"1X

provided that the matrix I — IT is invertible. This will also guarantees the
existence of pu. We have the following important result.
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THEOREM 3.2. Given DFSAs G; = (Q, %, 6, ¢, Qm), 1 < i < n with the state
transition cost matriz II. Then the matriz (I — II) is an invertible bounded
linear operator and p € R"™.

Proof. It follows from Definitions 2.5 and 2.6 that the induced norm ||II}|
= max; ) ; Tij = 1 — 0 where 6 € (0,1). Then (I —II) is invertible and is a
bounded linear operator with the norm ||I — IT||eo < 87! [6]. It then follows
immediately from Equation 3.8 that p € R" =

COROLLARY 3.1. The language measure vector p is bounded as: ||p|joo < 67
where § = (1 — ||II}}oo)-

Proof. The proof follows by applying the norm inequality property and
Theorem 3.2 to Equation 3.8 and the fact that ||X||.c < 1 by Defini-
tion 2.4. =

Definitions 2.5 and 2.6 provide a sufficient condition for the language
measure i of the DFSA G to be finite. Alternatively, necessary and sufficient
conditions for convergence of u which are based on certain properties of
nonnegative matrices are given in [7]. A closed-form algorithm to compute
a language measure based on the above procedure can be summarized as
follows:

(1) For a given G; = (Q, %, 6, gi, Qm), obtain the characteristic vector X
and the event cost function 7 (Definition 2.5).

(2) Generate the IT matrix (Definition 2.6).

(3) Compute the language measure vector p +— (I — IT)~'X using Gaus-
sian elimination.

(4) p;, the ith element of p-vector is the measure of the marked language
of the DFSA G;.

The j-th element of the i-th row of the (I — IT)~! matrix, denoted as
V!, is the language measure of the DFSA with the same state transition
function ¢ as G; and having the following properties: (i) the initial state is
gi; (ii) g; is the only marked state; and (iii) the x-value of g; is equal to 1.
Thus, p; = p(Lm(G5)) is given by p; = 3_; uij x;- Numerical evaluation of the
language measure of G; requires Gaussian elimination of the single variable
p; involving the real square matrix (I — IT). As such the computational
complexity of the language measure algorithm is polynomial in the number
of states.

3.2. Method II: Recursive solution [9]. This section presents a sec-
ond method to compute the language measure using a recursive procedure
based on concept of Kleene’s theorem [5] which shows that a language ac-
cepted by a DFSA is regular. It also yields an algorithm to recursively
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construct the regular expression of its marked language instead of the the
closed form solution in Method I.

DEFINITION 3.3. Given ¢;, qx € Q, a non-empty string p of events (i.e.
p # €) starting from g; and terminating at g is called a path. A path p from
g to qi is said to pass through q; if 3 s # € and t # € such that p = st;
6*(girs) = g5 and 67(g;,t) = qk-

DEFINITION 3.4. A path language pgk is defined to be the set of all paths
from q; to qi, which do not pass through any state g, for v > j. The path
language p;r is defined to be the set of all paths from g; to q. Thus, the
language L(q;, qx) is obtained in terms of the path language pir as:

piiU{G} if k=1

v(pa) +1 of k=1
v(pik) if k#41

Every path language PZk is a regular language and subset of L(G;). As
shown in [9], following recursive relation holds for 0 < j <n —1:

= v(L(gi, qr)) = {

THEOREM 3.3. Given a G; = (Q, %, 6, gi, Qm), the following recursive rela-
tion holds for1 < j<n-1

(3.9) pik = {0 € T:6(q,0) = a},
41 . . . .

(3.10) e = Pl VP (Pl 1) Pirke

Proof. Since the states are numbered form 1 to n in increasing order,
p, = {0 € B : §(gq,0) = g} follows directly form the state transition
map 6 : Q x ¥ — Q and Definition 3.4. Given pj, C ol 1 let us consider
the set ply ! — pJ, in which each string passes through gj41 in the path
from g to g and no string must pass through g¢m, for m > (5 + 1). Then,
. j+1 j j i+1 i+1

it follows that p{,;" — pl :‘p{,jﬂpgil’k where p';’.il,k can be expanded as:

pjﬂk = (p;+1,j+1p§'+"i ¢) UP .1, that has a unique solution: by Lemma 3.1

because € ¢ p; 1,541 based on Definition 3.4. Therefore,
1 : . .
e =Pl VP T i) Pipe "
Based on three lemmas proved below, the above relations can be trans-
formed into an algebraic equation conceptually similar to Theorem 3.1 of

Method I. Along with the procedure to compute the language measure it is
established that > 7_; mi; < 1, Vi is sufficient for finiteness of p.

LEMMA 3.2. u((pgk)f(u#kpgj)) € [0,1).
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Proof. Following Definition 2.5, v(pQ;) € [0,1). Therefore by convergence
of geometric series,

% o v(®2))
V(PR (Ujpply)) = S8 e o,1),
because _; z/(pgj) <1=3 i v(pgj) <1-v(pd). =

LeMMA 3.3. v(pl,; .41) €[0,1).

Proof. The path pg +1,j41 May contain at most j loops, one around each of
the states q1,92-- -, g;. If the path pg +1,j+1 does not contain any loop, then

V(P;+1,j+1) € [0,1) because Vs € pj-ﬂ,jﬂ, v(s) < 1 and each of s originates
at state 7 + 1. Next suppose there is a loop around ¢; and that does not
contain any other loop; this loop must be followed by one or more events oy,
generated at ¢ and leading to some other states g, where m € {1,---,7+1}
and m # l. By Lemma 3.2, V(p§'+1,j+1) € [0,1). Proof follows by starting
from the innermost loop and ending with all loops at g;. =
LEMMA 3.4.

; 1
(3.11) V((P7'+1 41)7) = ;
T 1= v(plig541)

Proof. Since v(p§+1,j+1) € [0,1) from Lemma 3.3, v((p}yy;41)")

1
I S—- ]
1=1(P}41,541) [1,00) =

Finally we come to the main result of this section which is stated as the
following theorem.

THEOREM 3.4. Given a DFSA G; = (Q, %, 0, ¢;, Qm) the following recursive
result holds for0 < j <n—1:

(3.12) (Pl = v(pl,) +

Proof.

€ [1,00).

V(sz,j+1)"/(13;+1,k) .
1—v(plig541)

v(ef™") = V(P{:k UPZ,j+{(p;+1,;+1)* J:+1,{c)
= V(sz) + V(ﬁ,j+1(P;+1,;+1)* i+1k)
= v(pl) + V(P4 1)V (Pia1,500) IV (g )
oty V(PZ,J-+1)V(P§+1,1¢)
- (pgk) + 1— V(p§+1,j+l)

where second step follows from fact that pJ, ﬂpl’;j+1 (p§+1’j+1)*p;:+1,k = g.
The third step follows from Definition 2.8 and the last step is a result of
Lemma 3.4. =
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Based on the above result, a recursive algorithm to compute a language
measure is summarized as:

(1) For a given G; = (Q, X, 6, i, @m), obtain X (characteristic vector) and
7 (event cost matrix),

(2) Compute the IT matrix (Definition 2.6),

(3) v(p) «— my for 1 < 1k < m,

(4) for j=0 to n-1

for =1 ton
for k=1ton ; ;
o) = v(ply) + s Fies
end j+1,5+
end
end

(5) Calculate v(L(gi, gx)) from v(p;) using Definition 3.4,
(6) pi +— Xgeqm v(L(g, q))x(g) is the measure of marked language of
DFSA, G;.

Since there are only three for loops, the computational complexity of

"this method is polynomial in number of states of DFSA, same as that for
Method 1.

4. Usage of the language measure

The two methods of language measure computation, presented in Section
3, have the same computational complexity, O(n?), where n is the number
of states of the DFSA. However, each of these two methods offer distinct
relative advantages in specific contexts. For example, the recursive solution
in Section 3.2 might prove very useful for construction of executable codes
in real time applications, while the closed form solution in Section 3.1 is
more amenable for analysis and synthesis of decision and control algorithms.
The following two subsections present usage of the language measure for
construction of metric spaces of formal languages and synthesis of optimal
discrete-event supervisors.

4.1. Vector space of formal languages. The language measure can
be used to construct a vector space of sublanguages for a given DFSA G; =
(Q,%, 8, qi, Qm). The total variation measure |p| [10] induces a metric on this

space, which quantifies the distance function between any two sublanguages

PROPOSITION 4.1. Let L(G;) be the language of a DFSA G; = (Q,%,0,
i, Qm). Let the binary operation of exclusive-OR & : 9L(G:) 5 oL(G:) —;, 9L(Gs)
be defined as:
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(4.1) (K1 @ Kq) = (K1 UKy) — (KiNKy)

VK1,Ky C L(G;). Then (2L(Gi),€B) is a vector space over the Galois field
GF(2).

Proof. It follows from the properties of exclusive-OR that the algebra
(21(C3) @) is an Abelian group where  is the zero element of the group
and the unique inverse of every element K C oL(Gi) is K itself because
K, ® Ky = 0 if and only if K; = Kj. The associative and distributive
properties of the vector space follows by defining the scalar multiplication
of vectors as: 0@ K =0 and 1@ K =K. =

The collection of singleton languages made from each element of L(G;)
forms a basis set of vector space (2L(G4) @) over GF(2). It is shown below,
how “Total Variation” of signed measure p can be used to define a metric
on above vector space.

PROPOSITION 4.2. Total variation measure || on oL(G) s given by |u|(L) =
Yser I1({sH] VL € L(G3).

Proof. The proof follows from the fact that ¥x|u(Ly)| attains its supremum
for the finest partition of L which consists of the individual strings in L as
elements of the partition. =

COROLLARY 4.1. Let L(G;) be a regular language for a DFSA G; = (@,%,6,
G, Qm). For any K € 2L(G) |u|(K) < 671 where 0 =1 — ||I1||oo and II is
the state transition cost matriz of the DFSA.

Proof. The proof follows from Proposition 4.2 and Corollary 3.1. =
DEFINITION 4.1. Let L(G;) be a regular language for a DFSA G; = (Q, %, 6,
¢, Qm). The distance function d : 9L(G:) % 9L(Gi) — [0,00) is defined in
terms of the total variation measure as:
(4.2) (K1, K3) = |p|((K1U K2) — (K1 N K2))
VK1, Ky C L(G;).

The above distance function d(-,-) quantifies the difference between two

supervisors relative to the controlled performance of the DFSA plant.

PROPOSITION 4.3. The distance function defined above is a pseudo-metric
on the space oL(G:)

Proof. Since the total variation of a signed real measure is bounded [10],
VK1, K C L(Gi), d(Kl, Kz) = |/1|(K169K2) € [0, OO) Also by Definition 4.1
d(K1, K9) = d(K2, K1). The remaining property of the triangular inequality
follows from the inequality |u|(K1 @ K2) < |u|(K1)+ |u|(K2) which is based
on the fact that (K1 @ Ko) C (K1 UK>) and |u|(K1) < |pul(K2) VK1 C Koy m
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The pseudo-metric |p| : 2X(%) — [0,00) can be converted to a met-
ric of the space (2F(%) @) by clustering all languages that have zero to-
tal variation measure as the null equivalence class N = {K € 2LC .
|u|(K) = 0}. This procedure is conceptually similar to what is done for
defining norms in the L, spaces. In that case N contains all sublanguages of
L(G;), which terminate on non-marked states starting from the initial state,
ie. N = @ U (Uggo,.L(g,q)). In the sequel, |u|(-) is referred to as a metric
of the space 2L(G4), Thus, the metric |u|(-) can be generated from d(-, ) as:
lp|(K) =d(K,J) YK € 9L(G:) \¥J € N. Unlike the norms on vector spaces
defined over infinite fields, the metric |u|(-) for the vector space (2F(%), @)
over GF(2) is not a functional. This interpretation of language as a vector
and associating a metric to quantify distance between languages, can have
significant advantage in many respects.

4.2. Optimal control of regular languages. The (signed) language
measure 4 could serve as the performance index for synthesis of an optimal
control policy (e.g.,[11]) that maximizes the performance of a controlled
sublanguage. The salient concept is succinctly presented below.

Let S = {S°5",---,SN} be a set of supervisory control policies for
the unsupervised plant automaton G where S° is the null controller (i.e.,
no event is disabled) implying that L(S°/G) = L(G). Therefore the con-
troller cost matrix IT(S°) = II° that is the IT-matrix of the unsuper-
vised plant automaton G. For a supervisor S,k € {1,2,---, N}, the con- .
trol policy is required to selectively disable certain controllable events so
that the following (elementwise) inequality holds: TI* = I1(S*) < TI° and
L(S*/G) C L(G),VS* € S. The task is to synthesize an optimal cost matrix
IT* < TI° that maximizes the performance vector p* = [I — ITI*]7!X, ie,,
pr > pk =1 m¥-1X v T1¥ < II° where the inequalities are implied
elementwise. The research work in this direction is in progress and some of
the results are reported in recent publications (3], [4].

5. Event Cost: A probabilistic interpretation

The signed real measure (Definition 2.9) for a DFSA is based on the
assignment of the characteristic vector and the event cost matrix. As stated
earlier, the characteristic function is chosen by the designer based on his/her
perception of the states’ impact on system performance. On the other hand,
the event cost is an intrinsic property of the plant. The event cost 7k is
conceptually similar to the state-based conditional probability as in Markov
Chains, except for the fact that it is not allowed to satisfy the equality condi-
tion >, 75 = 1. (Note that }°p 75 < lisarequirement for convergence of the
language measure.) The rationale for this strict inequality is explained below.
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Since the plant model is an inexact representation of the physical plant,
there exist unmodelled dynamics to account for. This can manifest itself
either as unmodelled events that may occur at each state or as unaccounted
states in the model. Let ¥,; denote the set of all unmodelled events at state j
of the DFSA G; = (Q, %, 6, ¢;, Qm). Let us create a new unmarked absorbing
state gn41 called the dump state [8] and extend the transition function § to

Szt : (QU{gn+1}) X (BUj Byj) = (Q U {gn+1}) in the following manner:
6(gj,0) if ¢gg€Q and oc€XL
6€$t(Qj70) = 3 In+1 if q; € Q and o€ Z'uj
gne1 if j=n+1 and o€ XUy
Therefore the residue 6; = 1 — 3, 7; denotes the probability of the set of

unmodelled events X; conditioned on the state j. The IT matrix can be
similarly augmented to obtain a stochastic matrix Ilg,, as follows:

-7T11 12 ... T1n 9]_T
Tl 799 ... Ton 02
1-Ia,ug =
Tnl Tn2 -« Tnn On
| 0 0 ... 0 1

Since the dump state gn41 is not marked, its characteristic value X(Gn+1)
— 0. The characteristic vector then augments to Xgug = [XT O]T. With these
extensions the language measure vector faug = [H1 K2 *** pn pni1)? = (0T
pins1]T of the augmented DFSA Gy = (Q U {gns1}, ZUj Tujy Oexts Gis Qm)
can be expressed as:

(5.1) ( [ ) _ (HM+#n+1 (61 - “9n]T> + (X>
' Hn+1 P+l 0/

Since x(gns1) = 0 and all transitions from the absorbing state gn+1 lead to
itself, pnsi1 = u(Lm(Gnt1)) = 0. Hence Equation 5.1 reduces to that for
the original plant G;. Thus, the event cost can be interpreted as conditional
probability, where the residue 6; = 1—3_ 7; accounts for the probability of
all unmodelled events emanating from the state g;. With this interpretation
of event cost, 7[s, ¢;] (Definition 2.5) denotes the probability of occurrence of
the event string s in the plant model G; starting at state g; and terminating
at state 6*(s, g;) . Hence, v(L(g, ¢;)) (Definition 2.8), which is a non-negative
real number, is directly related (but not necessarily equal) to the total prob-
ability that state g; would be reached as the plant operates. The language

measure p; = (L(Gy)) = geq #(L(g: ) = Tgeq v(L(%,9))x(q) is then
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directly related (but not necessarily equal) to the expected value of the
characteristic function. As mentioned earlier, the choice of the characteris-
tic function (Definition 2.4) is solely based on the designer’s perception of
the importance assigned to the individual DFSA states. Therefore, in the
setting of language measure, a supervisor’s performance is superior if the
supervised plant is more likely to terminate at a good marked state and/or
less likely to terminate at a bad marked state.

6. Summary, conclusions, and recommendations for future re-
search

This paper reviews the concept, formulation and validation of a signed
real measure for any regular language and its sublanguages based on the
principles of measure theory and automata theory. While the domain of
measure p, i.e., 2L(Gi) is partially ordered, its range, which is a subset of
R = (—00, c0), becomes totaly ordered. As a result, the relative performance
of different supervisors can be quantitatively evaluated in terms of the real
signed measure of the controlled sublanguages. Positive weights are assigned
to good marked states and negative weights to bad marked states so that a
controllable supervisor is rewarded (penalized) for deleting strings terminat-
ing at bad (good) marked states. In order to evaluate and compare the per-
formance of different supervisors a common quantitative tool is required. To
this effect, the proposed procedure computes the measure of the controlled

sublanguage generated by a supervisor using the event cost and character- '

istic function assigned for the unsupervised plant. Cost assignment to each
event based on the state, where it is generated, has been shown similar to
the conditional probability of the event. On the other hand, the character-
istic function is chosen based on the designer’s perception of the individual
state’s impact on the system performance. Two techniques are presented
to compute the language measure for a DFSA. One of these two methods
yields a closed form solution that is obtained as the unique solution of a
set of linearly independent algebraic equations. The other method is based
on a recursive procedure. The computational complexity of both language
measure algorithms is polynomial in the number of the DFSA states.

6.1. Recommendations for future research. Further research is rec-
ommended for development of systematic procedures for assigning/identify-
ing the event cost matrix and the characteristic vector. It is also worth
investigating how to extend the field GF(2), over which the vector space
of languages has been defined, to much richer fields like the set of reals
R.. Other areas of research include applications of the language measure in
anomaly detection, model identification, model order reduction, and analy-
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sis and synthesis of robust and optimal control in the discrete-event setting.
It would be challenging to extend the concept of (regular) language measure
for languages higher up in the Chomsky Hierarchy [5] such as context free
and context sensitive languages. This extension would lead to controller syn-
thesis when the plant dynamics is modelled by non-regular languages such
as the Petri Net.
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