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This paper presents optimal supervisory control of dynamical systems that can be represented by deterministic finite
state automaton (DFSA) models. The performance index for the optimal policy is obtained by combining a measure
of the supervised plant language with (possible) penalty on disabling of controllable events. The signed real measure
quantifies the behaviour of controlled sublanguages based on a state transition cost matrix and a characteristic vector as
reported in earlier publications. Synthesis of the optimal control policy requires at most n iterations, where n is the
number of states of the DFSA model generated from the unsupervised plant language. The computational complexity of
the optimal control synthesis is polynomial in n. Syntheses of the control algorithms are illustrated with two application
examples.

1. Introduction

In a seminal paper, Ramadge and Wonham (1987)

pioneered the concept of discrete-event supervisory

control of finite-state automata (equivalently, regular

languages). A plant, supervised under a control policy,

is represented by a sublanguage of the unsupervised

plant language, which could be different under different

supervisors if they are constrained to satisfy dissimilar

specifications. Such a set of supervised plant sub-

languages are, in general, partially ordered; it is neces-

sary to establish a quantitative measure for total ordering

of their respective performance. To address this issue,

Wang and Ray (2004), and their colleagues (Ray and

Phoha 2003, Surana and Ray 2004) have developed a

signed measure of regular languages.

Optimal control of regular languages has been

proposed by several researchers based on different

assumptions. Some of these researchers have attempted

to quantify the controller performance using different

types of cost assigned to the individual events. Passino

and Antsaklis (1989) proposed path costs associated

with state transitions and hence optimal control of a

discrete event system is equivalent to following the

shortest path on the graph representing the uncontrolled

system. Kumar and Garg (1995) made use of the

concept of payoff and control costs that are incurred

only once regardless of the number of times the system

visits the state associated with the cost. Consequently,

the resulting cost is not a function of the dynamic behav-

ior of the plant. Brave and Heymann (1993) introduced

the concept of optimal attractors in discrete-event

control. Sengupta and Lafortune (1998) used control

cost in addition to the path cost in optimization of the

performance index for trade-off between finding the

shortest path and reducing the control cost. Although

costs were assigned to the events, no distinction was

made for events generated at (or leading to) different

states that could be ‘good’ or ‘bad’. These optimal con-

trol strategies have addressed performance enhancement

of discrete-event control systems without a quantitative

measure of languages.

Recently, Fu et al. (2004) have proposed a state-

based method for optimal control of regular languages

by selectively disabling controllable events so that the

resulting optimal policy can be realized as a controllable

supervisor. The performance index of the optimal policy

is a signed real measure of the supervised sublanguage,

which is expressed in terms of a cost matrix and a char-

acteristic vector (Ray and Phoha 2003, Surana and Ray

2004), but it does not assign any additional penalty for

event disabling. In a follow-up publication, Fu et al.

(2003 b) extended their earlier work on optimal control

to include the cost of (controllable) event disabling.

The rationale is that, without the event disabling cost,

an optimal supervisor makes the best trade-off between

reaching good states and avoiding bad states, and

achieves optimal performance in terms of the language

measure of the supervised plant. However, another

supervisor that has a slightly inferior performance

relative to the above optimal controller may only require

disabling of fewer or some other controllable events,

which is much less difficult to achieve. Therefore, with

due consideration to event disabling, the second

controller might be preferable.

The work, reported in this paper, augments and con-

solidates the theory and applications of optimal super-

visory control of regular languages, which have been

reported in an informal structure in previous publica-

tions (Fu et al. 2003 b, 2004). The performance index

for the optimal control policy proposed in this paper

is obtained by combining a real signed measure of the
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supervised plant language with the cost of disabled
event(s). Starting with the (regular) language of an
unsupervised plant automaton, the optimal control
policy makes a trade-off between the measure of the
supervised sublanguage and the associated event dis-
abling cost to achieve the best performance. Like any
other optimization procedure, it is possible to choose
different performance indices to arrive at different opti-
mal policies for discrete event supervisory control.
Nevertheless, usage of the language measure provides
a systematic procedure for precise comparative evalua-
tion of different supervisors so that the optimal control
policy(ies) can be conclusively identified.

The derived theoretical results are presented with
formal proofs and are supported by two application
examples. The first application is on supervisory control
of a twin-engine aircraft for its safe and reliable opera-
tion. The second application is on decision and control
of a multiprocessor decoding system for efficient opera-
tion. The major contribution of this paper is conceptual-
ization, formulation and illustration of a quantitative
method for analysis and synthesis of optimal super-
visory control policies for plant dynamics that can be
captured by regular languages. From the above perspec-
tives, the performance index for the optimal control
policy proposed in this paper is obtained by combining
the measure of the supervised plant language with the
cost of disabled event(s).

This paper is organized in six sections including
the present one. Section 2 briefly reviews the previous
work on language measure. Section 3 presents the opti-
mal control policy without the event disabling cost.
Section 4 modifies the performance index to include
the event disabling cost and formulates the algorithm
of the optimal control policy with event disabling cost
as an extension of } 3. Section 5 presents two application
examples to illustrate the concepts of optimal control
without and with event disabling cost. The paper is sum-
marized and concluded in } 6 along with recommenda-
tions for future work.

2. Brief review of language measure

This section briefly reviews the concept of signed
real measure of regular languages (Ray and Phoha
2003, Surana and Ray 2004). Let the plant behaviour
be modelled as a deterministic finite state automaton
(DFSA)

Gi � ðQ,S, �, qi,QmÞ ð1Þ

where Q is the finite set of states with Q
�� �� ¼ n, and

qi 2 Q is the initial state; S is the (finite) alphabet of
events with Sj j ¼ m; the Kleene closure of S is denoted
as S� that is the set of all finite-length strings of events
including the empty string "; the (possibly partial) func-

tion � : Q� S! Q represents state transitions and
�� : Q� S� ! Q is an extension of �; and Qm � Q is
the set of marked (i.e. accepted) states.

Definition 1: The language L(Gi) generated by a DFSA
G initialized at the state qi 2 Q is defined as

LðGiÞ ¼ fs 2 S� j ��ðqi, sÞ 2 Qg: ð2Þ

Definition 2: The language LmðGiÞ marked by a DFSA
Gi initialized at the state qi 2 Q is defined as

LmðGiÞ ¼ fs 2 S� j ��ðqi, sÞ 2 Qmg: ð3Þ

The language LðGiÞ is partitioned as the non-marked
and the marked languages, Lo

ðGiÞ � LðGiÞ � LmðGiÞ and
LmðGiÞ, consisting of event strings that, starting from
qi 2 Q, terminate at one of the non-marked states in
Q�Qm and one of the marked states in Qm, respec-
tively. The set Qm is further partitioned into Qþm and
Q�m, where Qþm contains all good marked states that are
desired to be terminated on and Q�m contains all bad
marked states that one may not want to terminate on,
although it may not always be possible to avoid the
bad states while attempting to reach the good states.
The marked language LmðGiÞ is further partitioned
into LþmðGiÞ and L�mðGiÞ consisting of good and bad
strings that, starting from qi, terminate on Qþm and
Q�m, respectively.

A signed real measure � : 2S
�

!R � �1,1ð Þ is
constructed for quantitative evaluation of every event
string s 2 S�. The language LðGiÞ is decomposed into
null, i.e. Lo

ðGiÞ, positive, i.e. L
þ
mðGiÞ, and negative, i.e.

L�mðGiÞ sublanguages.

Definition 3: The language of all strings that, starting
at a state qi 2 Q, terminates on a state qj 2 Q, is denoted
as Lðqi, qjÞ. That is

Lðqi, qjÞ � fs 2 LðGiÞ : �
�
ðqi, sÞ ¼ qjg: ð4Þ

Definition 4: The characteristic function that assigns
a signed real weight to state-partitioned sublanguages
Lðqi, qjÞ, i ¼ 1, 2, . . . , n, j ¼ 1, 2, . . . , n is defined as:
� : Q! ½�1, 1� such that

�ðqjÞ 2

½�1, 0Þ if qj 2 Q�m

f0g if qj =2Qm

ð0, 1� if qj 2 Qþm:

8>><
>>: ð5Þ

Definition 5: The event cost is conditioned on a DFSA
state at which the event is generated, and is defined
as ~�� : S� � Q! ½0, 1� such that 8qj 2 Q, 8�k 2 S,
8s 2 S�:

(1) ~��½�k, qj� � ~��jk 2 ½0, 1Þ;
P

k ~��jk < 1;

(2) ~��½�, qj� ¼ 0 if �ðqj, �Þ is undefined; ~��½�, qj � ¼ 1;

(3) ~��½�ks, qj� ¼ ~��½�k, qj� ~��½s, �ðqj, �kÞ�.
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The event cost matrix is defined as

~PP ¼

~��11 ~��12 . . . ~��1m

~��21 ~��22 . . . ~��2m

..

. ..
. . .

. ..
.

~��n1 ~��n2 . . . ~��nm

2
6664

3
7775 ð6Þ

and is referred to as the ~PP-matrix in the sequel.
An application of the induction principle to part (3)

in Definition 2.5 shows ~��½st, qj� ¼ ~��½s, qj � ~��½t, �
�
ðqj, sÞ�.

The condition
P

k ~��jk < 1 provides a sufficient condi-
tion for the existence of the real signed measure as
discussed in Surana and Ray (2004) along with addi-
tional comments on the physical interpretation of the
event cost.

The next task is to formulate a measure of sub-
languages of the plant language L Gið Þ in terms of the
signed characteristic function � and the non-negative
event cost ~��.

Definition 6: The signed real measure � of a singleton
string set fsg � Lðqi, qjÞ � LðGiÞ 2 2S

�

is defined as

�ðfsgÞ � ~��ðs, qiÞ�ðqjÞ 8s 2 Lðqi, qjÞ: ð7Þ

The signed real measure of Lðqi, qjÞ is defined as:

� Lðqi, qjÞ
� �

�
X

s2Lðqi , qj Þ

� fsgð Þ ð8Þ

and the signed real measure of a DFSA Gi, initialized at
the state qi 2 Q, is denoted as

�i � �ðLðGiÞÞ ¼
X
j

� Lðqi, qjÞ
� �

: ð9Þ

Definition 7: The state transition cost, � : Q�Q!
½0, 1Þ, of the DFSA Gi is defined as

8qi,qj 2Q, �ij ¼

P
�2S ~��½�,qi�, if �ðqi,�Þ ¼ qj

0 if f�ðqi,�Þ ¼ qjg ¼1:

�
ð10Þ

Consequently, the n� n state transition cost P-matrix is
defined as

P ¼

�11 �12 . . . �1n

�21 �22 . . . �2n

..

. ..
. . .

. ..
.

�n1 �n2 . . . �nn

2
6664

3
7775: ð11Þ

Wang and Ray (2004), and Surana and Ray (2004)
have shown that the measure �i � �ðLðGiÞÞ of the lan-
guage LðGiÞ, with the initial state qi, can be expressed as:
�i ¼

P
j �ij �j þ �i where �i � �ðqiÞ. Equivalently, in

vector notation: ��� ¼ P ���þ ��� where the measure vector
��� � ½�1 �2 � � � �n�

T and the characteristic vector ��� �
½�1 �2 � � � �n�

T. From the perspective of constructing
an optimal control policy, salient properties of the state
transition cost matrix P are delineated below.

Property 1: Following Definitions 4 and 5, there exists
� 2 ð0, 1Þ such that the induced infinity norm Pk k1 �
max

i

P
j �ij ¼ 1� �: The matrix operator ½I �P� is

invertible implying that the inverse ½I �P��1 is a bounded
linear operator (Naylor and Sell 1982) with its induced
infinity norm k½I �P��1k1 � ��1. Therefore, the lan-
guage measure vector can be expressed as ��� ¼
½I �P��1 ���, where ��� 2 R

n, and computational complexity
(Surana and Ray 2004) of the measure is Oðn3Þ.

Property 2: The matrix operator ½I �P��1 	 0
elementwise. By Taylor series expansion, ½I �P��1 ¼P1

k¼0 ½P�
k and ½P�k 	 0 because P 	 0:

Property 3: The determinant Det ½I �P� is real positive
because the eigenvalues of the real matrix ½I �P� appear
as real or complex conjugates and they have positive real
parts. Hence, the product of all eigenvalues of ½I �P� is
real positive.

Property 4: An affine operator T : Rn
! R

n can be
defined as: T ��� ¼ P ���þ ��� for any arbitrary � 2 R

n. As
P is a contraction, T is also a contraction. Since R

n is a
Banach space, there exists a unique fixed point (Naylor
and Sell 1982) of T, i.e. the measure vector ��� satisfying
the condition T ��� ¼ ���. Therefore, the language measure
vector ��� is uniquely determined as ��� ¼ ½I �P��1 ���, which
can be interpreted as the unique fixed point of the
contraction operator P.

3. Optimal control without event disabling cost

This section presents the theoretical foundations of
the optimal supervisory control of deterministic finite
state automata (DFSA) plants by selectively disabling
controllable events so that the resulting optimal policy
can be realized as a controllable supervisor (Fu et al.
2004). The plant model is first modified to satisfy the
specified operational constraints, if any; this model is
referred to as the unsupervised or open loop plant in
the sequel. Then, starting with the (regular) language
of the unsupervised plant, the optimal policy maximizes
the performance of the controlled sublanguage of the
supervised plant without any further constraints. The
performance index of the optimal policy is a signed
real measure of the supervised sublanguage, described
in } 2, which is expressed in terms of a state transition
cost matrix P and a characteristic vector ���, but it does
not assign any additional penalty for event disabling.

Let S � fS0,S1, . . . ,SN
g be the finite set of all super-

visory control policies that selectively disable control-
lable events of the unsupervised plant DFSA G and
can be realized as regular languages. Denoting Pk

�

PðSk
Þ, k 2 f1, 2, . . . ,Ng, the supervisor S0 is the null

controller (i.e. no event is disabled) implying that
LðS0=GÞ ¼ LðGÞ. The controller cost matrix PðS0

Þ ¼

P0
� Pplant that is the P-matrix of the unsupervised
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plant automaton G. For a supervisor Si, i 2
f1, 2, . . . ,Ng, the control policy selectively disables cer-
tain controllable events at specific state(s); consequently,
the corresponding elements of the ~PP-matrix (see
Definition 4) become zero. Therefore, the inequalities,
�ij 	 0 and

P
j �ij < 1, hold and LðSk=GÞ � LðGÞ

8Sk
2 S. The language measure vector of a supervised

plant LðSk=GÞ is expressed as

���k
� ½I �Pk

�
�1 ��� ð12Þ

where the jth element of the vector ���k is denoted as �k
j .

In the sequel, ���� is chosen to be the performance
measure for the optimal control policy without event
disabling cost.

Proposition 1: Let j be such that �k
j ¼ min‘2f1, 2, ..., ng �

k
‘ .

If �k
j � 0, then �j � 0; and if �k

j < 0, then �j < 0:

Proof: The DFSA satisfies the identity �k
j ¼P

‘2f1,2,...,ng �
k
j‘�

k
‘þ �j that leads to the inequality �k

j 	

ð
P

‘ �
k
j‘Þ�

k
j þ�j)ð1�

P
‘ �

k
j‘Þ�

k
j 	�j. The proof follows

from ð1�
P

‘�
k
j‘Þ>0 (see Definitions 5 and 7). œ

Corollary 1: Let �k
j ¼ max‘2f1, 2, ..., ng �

k
‘ . If �

k
j 	 0, then

�j 	 0 and if �k
j > 0, then �j > 0:

Proof: The proof is similar to that of Proposition 1.
œ

Proposition 2: GivenPðSk
Þ ¼ Pk and �k

� ½I �Pk
�
�1 ���,

let Pkþ1 be generated from Pk for k 	 0 by disabling or
re-enabling the appropriate controllable events as follows:
8i, j 2 f1, 2, . . . , ng, ijth element of Pkþ1 is modified as

�kþ1
ij

	 �k
ij

¼ �k
ij

� �k
ij

8>><
>>:

if �k
j > 0

if �k
j ¼ 0

if �k
j < 0

ð13Þ

and Pk
� P0

8k. Then, ���kþ1
	 ���k elementwise and

equality holds if and only if Pkþ1
¼ Pk:

Proof: It follows from the the properties of the meas-
ure vector ��� that

���kþ1
� ���k

¼ I �Pkþ1
h i�1

� I �Pk
h i�1� �

���

¼ I �Pkþ1
h i�1

½I �Pk
� � ½I �Pkþ1

�

� �
� I �Pk
h i�1

���

¼ I �Pkþ1
h i�1

Pkþ1
�Pk

h i
���k

Defining the matrix �k
� Pkþ1

�Pk, let the jth
column of �k be denoted as �k

j . Then, �
k
j � 0 if �k

j < 0
and �k

j 	 0 if �k
j 	 0, and the remaining columns of

�k are zero vectors. This implies that: �k ���k
¼P

j �
k
j �

k
j 	 0. Since Pk

� P0
8k, ½I �Pkþ1

�
�1
	 0

elementwise. Then, it follows that ½I �Pkþ1
�
�1�k ���k

	

0) ���kþ1
	 ���k. For �k

j 6¼ 0 and �k as defined above,
�k ���k

¼ 0 if and only if �k
¼ 0. Then, Pkþ1

¼ Pk and
���kþ1
¼ ���k. œ

Corollary 2: For a given state qj, let �
k
j < 0 and Pkþ1 be

generated from Pk by disabling controllable events that
lead to the state qj. Then, �

kþ1
j < 0:

Proof: Since only jth column of ½I �Pkþ1
� is different

from that of ½I �Pk
� and the remaining columns are the

same, the jth row of the cofactor matrix of ½I �Pkþ1
�

is the same as that of the cofactor matrix of ½I �Pk
�.

Therefore

Det ½I �Pkþ1
��kþ1

j ¼ Det ½I �Pk
��k

j

Since both determinants are real positive by Property 5
of the P-matrix, �k

j and �kþ1
j have the same sign. œ

In Proposition 2, some elements of the jth column
of Pk are decreased (or increased) by disabling (or
re-enabling) controllable events that lead to the states
qj for which �k

j < 0 (or �k
j 	 0Þ. Next it is shown that

an optimal supervisor can be achieved to yield best
performance in terms of the language measure.

Proposition 3: Iterations of event disabling and
re-enabling lead to a cost matrix P� that is optimal in
the sense of maximizing the performance vector ���� �
½I �P���1 ��� elementwise.

Proof: Let us consider an arbitrary cost matrix
~PP � P0 and ~������ � ½I � ~PP��1 ���. It will be shown that
~������ � ����. Let us rearrange the elements of the ����-vector
such that

���� ¼ ½��1 � � � ��‘|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
	0

j ��‘þ1 � � � ��n|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
<0

�
T

and the cost matrices ~PP and P� are also rearranged in
the order in which the ����-vector is arranged.

According to Proposition 2, no controllable event
leading to states qk, k ¼ 1, 2, . . . , ‘, is disabled and all
controllable events leading to states qk, k ¼ ‘þ 1,
‘þ 2, . . . , n, are disabled. Therefore, the elements in
the first ‘ columns of P� are the same as those of the
P0 and only the elements in the last ðn� ‘Þ columns
are decreased to the maximum permissible extent by
disabling all controllable events. In contrast, the
columns of ~PP are reduced by an arbitrary choice.
Therefore, defining �P� � ½ ~PP�P��, the first ‘ columns
of �P � 0 and the last ðn� ‘Þ columns of �P 	 0.

Since

���� ¼ ½��1 � � � ��‘|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
	0

j ��‘þ1 � � � ��n|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
<0

�
T
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and ½I � ~PP��1 	 0 elementwise, and ~������� ���� ¼
½I � ~PP��1½ ~PP�P����, it follows that

~������� ���� ¼ ½I � ~PP��1|fflfflfflfflfflffl{zfflfflfflfflfflffl}
	0

X‘
j¼1

Colj � �
�

j

 
|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

�0

þ
Xn
j¼‘þ1

Colj � �
�

j

!
|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

�0

� 0

where Colj indicates jth column of the matrix ½ ~PP�P��.
Therefore, ~������ � ���� for any arbitrary choice of

0 � ~PP � P0. œ

Proposition 4: The control policy induced by the optimal
P�-matrix in Proposition 3 is unique in the sense that the
controlled language is most permissive (i.e. least restric-
tive) among all controller(s) having the best performance.

Proof: Disabling controllable event(s) leading to a
state qj with performance measure ��j ¼ 0 does not
alter the performance vector ����. The optimal control
does not disable any controllable event leading to the
states with zero performance. This implies that, among
all controllers with the identical performance ����,
the control policy induced by the P�-matrix is most
permissive. œ

Propositions 3 and 4 suffice to conclude that the P�-
matrix yields the most permissive controller with the
best performance ����. The optimal control policy (with-
out event disabling cost) can be realized as:

. all controllable events leading to the states qj,
for which ��j < 0, are disabled;

. all controllable events leading to the states qj,
for which ��j 	 0, are enabled.

3.1. Optimal policy construction without event
disabling cost

A procedure is proposed for construction of the
optimal control policy that maximizes the performance
of the controlled language of DFSA (without event dis-
abling cost), starting from any initial state q 2 Q. Let G
be a DFSA plant model without any constraint
(i.e., operational specifications) and have the state
transition cost matrix of the unsupervised plant as:
P0
� Pplant

2 <
n�n and the characteristic vector as:

��� 2 <n. Then, the performance vector at k¼ 0 is given
as: ���0

¼ ½�0
1 �0

2 � � � �0
n�

T
¼ ðI �P0

Þ
�1 ���, where the

jth element �0
j of the vector ���0 is the performance of

the language, with state qj as the initial state. Then,
�0
j < 0 implies that, if the state qj is reached, then the

plant will yield bad performance thereafter. Intuitively,
the control system should attempt to prevent the auto-
maton from reaching qj by disabling all controllable
events that lead to this state. Therefore, the optimal
control algorithm starts with disabling all controllable
events that lead to every state qj for which �0

j < 0. This

is equivalent to reducing all elements of the corre-
sponding columns of the P0-matrix by disabling those
controllable events. In the next iteration, i.e. k¼ 1, the
updated cost matrix P1 is obtained as: P1

¼P0
��0

where �0
	 0 (the inequality being implied elementwise)

is composed of event costs corresponding to all con-
trollable events that have been disabled. Using
Proposition 2, ���0

� ���1
� ½I �P1

�
�1 ���. Although all

controllable events leading to every state corresponding
to a negative element of �1 are disabled, some of the
controllable events that were disabled at k¼ 0 may now
lead to states corresponding to positive elements of ���1.
Performance could be further enhanced by re-enabling
these controllable events. For k 	 1, Pkþ1

¼ Pk
þ�k

where �k
	 0 is composed of the state transition costs

of all re-enabled controllable events at k.
If ���0

	 0, i.e. there is no state qj such that �0
j < 0,

then the plant performance cannot be improved by
event disabling and the null controller S0 (i.e. no dis-
abled event) is the optimal controller for the given plant.
Therefore, the cases are considered where �0

j < 0 for
some state qj .

Starting with k¼ 0 and P0
� Pplant, the control

policy is constructed by the following two-step
procedure.

Step 1: For every state qj for which �0
j < 0, disable

controllable events leading to qj . Now, P1
¼P0

��0,
where �0

	 0 is composed of event costs corresponding
to all controllable events, leading to qj for which �0

j < 0,
which have been disabled at k¼ 0.

Step 2: For k 	 1, if �k
j 	 0, re-enable all controllable

events leading to qj, which were disabled in Step 1. The
cost matrix is updated as: Pkþ1

¼Pk
þ�k for k 	 1,

where �k
	 0 is composed of event costs corresponding

to all currently re-enabled controllable events. The itera-
tion is terminated if no controllable event leading to qj
remains disabled for which �k

j > 0. At this stage, the
optimal performance ���� � ½I �P���1 ���.

Proposition 5: The number of iterations needed to arrive
at the optimal control law without event disabling cost
does not exceed the number, n, of states of the DFSA.

Proof: Following Proposition 2, the sequence of
performance vectors fPk

g in successive iterations of
the two-step procedure is monotonically increasing.
The first iteration at k¼ 0 disables controllable events
following Step 1 of the two-step procedure in } 3.1.
During each subsequent iteration in Step 2, the control-
lable events leading to at least one state are re-enabled.
When Step 2 is terminated, there remains at least
one negative element, �k

j < 0 by 2. Therefore, as the
number of iterations in Step 2 is at most n� 1, the
total number of iterations to complete the two-step
procedure does not exceed n. œ
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Since each iteration in the synthesis of the optimal
control requires a single Gaussian elimination of n
unknowns from n linear algebraic equations, com-
putational complexity of the control algorithm is
polynomial in n.

4. Optimal control with event disabling cost

This section presents the optimal control policy with
(state-based) event disabling cost by including the cost
of all (controllable) events, disabled by the supervisor,
in the performance cost; the disabling cost is incurred
each time the event is disabled at the state. As the cost of
disabled event(s) approaches zero, the optimal control
policy with event disabling cost converges to the optimal
control policy without event disabling cost, described
in } 3.

Definition 8: Let the cost of disabling a (controllable)
event �j that causes transition from qi be denoted as cij
where cij 2 ½0, 1�: The ðn�mÞ disabling cost matrix is
denoted as C ¼ ½cij �.

Since the (controllable) supervisor never disables
any uncontrollable event, the entries cij for uncontrolla-
ble events have no importance. For implementation,
they can be set to an arbitrarily large positive M <1.

Definition 9: The action of disabling a (controllable)
event �j at state qi by a supervisor S is defined as

dS
ij ¼

1 if �j is disabled at state qi
0 otherwise

�
ð14Þ

The ðn�mÞ action matrix of disabling controllable
events by a supervisor S is denoted as: DS

¼ ½dS
ij �:

Definition 10: The event disabling cost characteristic
of a supervisor S that selectively disables controllable
events �j at state qi is defined as:

	S
i ¼

X
j:dS

ij
¼1

cij ~��ij ð15Þ

The disabling cost characteristic is proportional to
event cost of the controllable event disabled by the
supervisor S.

The ðn� 1Þ disabling cost characteristic vector of a
supervisor S is denoted as: �		S

� ½	S
1 	S

2 � � � 	S
n �

T:

Definition 11: The modified characteristic of a state
qi 2 Q is defined as

�S
i � �i � 	S

i : ð16Þ

The ðn� 1Þ modified characteristic vector under a
supervisor S is defined as

���S
� ���� �		S

ð17Þ

where ���S
� ½�S

i �S
i � � � �S

n �
T:

Definition 12: The disabling cost measure vector under
a supervisor S is defined as

���S � ½I �PS
�
�1 �		S

ð18Þ

with �Si being the ith element of ���S, which is the
disabling cost incurred by the state.

Definition 13: The performance measure vector of a
supervisor S is defined as

�

S � ½I �PS
�
�1 ���S

ð19Þ

with 
Si being the ith element of �

S:
The performance index vector �

Sof a supervisor S

can be interpreted as the difference between the measure
vector ���S of the supervised language LðS=GÞ of the
DFSA G and the respective disabling cost measure
vector ���S. That is

�

S ¼ ���S
� ���S: ð20Þ

Following the approach taken for optimal con-
trol without event disabling cost in } 3, let S �
fS0,S1, . . . ,SN

g be the finite set of supervisory control
policies that can be realized as regular languages. For a
supervisor Sk

2 S, the control policy selectively disables
certain controllable events. Consequently, the corre-
sponding elements of the ~PP-matrix become zero and
those of the event disabling characteristic vector �		S are
entered in the modified characteristic vector ���S as seen
in Definition 11; therefore, LðSk=GÞ � LðGÞ 8Sk

2 S :
Denoting Pk

� PðSk
Þ, k 2 f1, 2, . . . ,Ng, the perform-

ance measure vector (with event disabling cost) of the
supervised plant LðSk=GÞ is expressed as

�

k � ½I �Pk
�
�1
ð ���� �		k

Þ ð21Þ

where �

k � �

s
k

, �		k � �		sk , and jth element of the vector
�

k is denoted as 
kj . The null supervisor S0 (i.e. no dis-
abled event) has zero disabling cost, i.e. �		0

¼ 0 and
consequently �

0 ¼ ���0: The construction of optimal
policy is extended to include the event disabling cost.

4.1. Optimal policy construction with event
disabling cost

This subsection formulates an optimal control policy
with event disabling cost, which maximizes all elements
of the performance vector �

S of the supervised language
of a DFSA G with event cost matrix ~PP 2 <n�m; state
transition cost matrix P 2 <n�n; characteristic vector
��� 2 <n; and the disabling cost matrix C 2 <n�m. For
the unsupervised plant, the initial conditions of the opti-
mal synthesis procedure are set as: P0

� Pplant; ���0
¼ ���;

�		0
¼ 0; D0

¼ 0 (no event disabled so far). For optimal
control without event disabling cost in } 3.1, all control-
lable events that lead to states q‘, for which �0

‘ < 0 are
first disabled. Subsequently, for k 	 1, all previously
disabled controllable events leading to qj are re-enabled
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if �k
j 	 0. In contrast, for optimal control with event

disabling cost, the first action is to disable all controlla-

ble events �j leading to states q‘ for which 
0‘ < �cij with
�ðqi, �jÞ ¼ q‘. Subsequently, for k 	 1, these disabled

events are re-enabled if 
k‘ 	 �cij. The rationale for

this procedure is that disabling of controllable events

leading to states with small negative performance

may not be advantageous because of incurring addi-

tional event disabling cost.

The control policy with event disabling cost is

constructed by the following two-step procedure.

Step 1: Starting at k¼ 0 and P0
� Pplant, disable all

controllable events �j, leading to each state q‘ if the

inequality: 
0‘ < �cij with �ðqi, �jÞ ¼ q‘ is satisfied. The

algorithm for dealing with this inequality is delineated

below:

. If the inequality is not satisfied for any single case,

stop the iterative procedure. No event disabling

can improve the plant performance beyond that

of the open loop plant, i.e., the null supervisor

S0 achieves optimal control.

. If the inequality is satisfied for at least one case,

disable the qualified event(s) and update the

state transition cost matrix to P1
� P0 (element-

wise); the disabling matrix to D1 for generating

the cost characteristic function �		1; and the

modified characteristic vector ���1
� ���� �		1. Go to

Step 2.

Step 2: This step starts at k¼ 1 and the performance

measure vector for k 	 1 is

�

k � ½I �Pk
�
�1 ���k

¼ ½I �Pk
�
�1
ð ���� �		k

Þ

The algorithm at Step 2 re-enables all previously

(i.e. at k 	 0Þ disabled controllable events �j that lead
to states q‘ if the inequality 
k‘ 	 �cij with �ðqi, �jÞ ¼ q‘
is satisfied. The algorithm for dealing with this inequal-

ity is as follows:

. If the inequality is not satisfied for any single

case, an optimal control is achieved and the

iterative procedure is complete. No further event

re-enabling can improve the controlled plant per-

formance beyond that of the current supervisor

that is the optimal controller.

. If the inequality is satisfied for at least one case,

re-enable all qualified events and update the state

transition cost matrix toPkþ1
	 Pk (elementwise);

the disabling matrix to Dk; the cost characteristic

function to �		kþ1; and the modified characteristic

vector ���kþ1
� ���� �		kþ1. Update k ðkþ 1Þ and

repeat Step 2 until the inequality 
k‘ 	 �cij with

�ðqi, �jÞ ¼ q‘ is not satisfied for all j and ‘. Then,

the current supervisor is optimal in terms of the
performance measure in Definition 13.

The above procedure for optimal control with event
disabling cost is an extension of that without event
disabling cost described in } 3.1. For zero event disabling
cost, the two procedures become identical. Following
the rationale of Proposition 5, the computational
complexity of the control synthesis with disabling cost
is also polynomial in n.

The underlying theory of unconstrained optimal
control with event disabling cost is presented as two
additional propositions, which simultaneously maximize
all elements of the performance vector �

.

Proposition 6: For all supervisors Sk in the iterative
procedure, �

kþ1 	 �

k elementwise.

Proof: Given ���k
� ���� �		k and �

k � ½I �Pk

�
�1 ���k, let

us denote the change in event disabling characteristic
vector as

�!!k
� �		kþ1

� �		k
¼ ���k

� ���kþ1:

Note that, elementwise

�!!k
> 0 for event disabling

� 0 for event re-enabling

(

The performance increment at iteration k is given by:

�

kþ1 � �

k ¼ I �Pkþ1
h i�1

���kþ1
� I �Pk
h i�1

���k

¼ I �Pkþ1
h i�1

���k
� �!!k

h i
� I �Pk
h i�1

���k

¼ I �Pkþ1
h i�1

� I �Pk
h i�1� �

���k

� I �Pkþ1
h i�1

�!!k

¼ I �Pkþ1
h i�1

Pkþ1
�Pk

h i
I �Pk
h i�1

���k

� I �Pkþ1
h i�1

�!!k

¼ � I �Pkþ1
h i�1

Pk
�Pkþ1

h i
�

k

�

þ I �Pkþ1
h i�1

�!!k



:

At k¼ 0, the state transition cost matrix changes from
P0 to P1 as a result of disabling selected controllable
events leading to states with sufficiently negative
performance. Let the ith column of a matrix A be
denoted as ðAÞi; ijth element of a matrix A be denoted
as ðAÞij, and the ith element of a vector v be denoted
as ðvÞi; and let ‘ and j satisfy the following conditions:
�ðq‘, �jÞ ¼ qp and dSk

‘j 6¼ dSkþ1

‘j .
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Then, P1
� P0; !0

‘ ¼
P
j

c‘j ~PP0
� ~PP1

� �
‘j
, and

ð �

1� �

0Þi ¼� I�P1

 ��1

P0
�P1


 �
�

0� I�P1


 ��1
�!!0

� �
i

¼�
P
‘

I�P1

 ��1� �

i‘

P
p

P
j

ð ~��‘j

0
pþc‘j ~��‘jÞ

 ! !

¼�
P
‘

I�P1

 ��1� �

i‘

P
p

P
j

~��‘jð

0
pþc‘jÞ

 ! !
:

Since I �P1

 ��1

	 0 elementwise and event disabling
requires ð
0p þ c‘jÞ < 0 for all admissible ‘, j and p (see
Step 1 of the control policy with event disabling cost
in } 4.1), it follows from the above equation that
�

1 � �

0 	 0 elementwise.

Next, iterations k 	 1 are considered, for which
some of the events disabled at k¼ 0 are (possibly)
re-enabled

!k
‘ ¼ �

X
j

c‘j ~PPkþ1
� ~PPk

� �
‘j

�

kþ1 � �

k
� �

i
¼ I �Pkþ1

h i�1
Pkþ1

�Pk
h i

�

k
�

� I �Pkþ1
h i�1

�!!k

�
i

¼
X
‘

I �Pkþ1
h i�1� �

i‘

�
X
p

X
j

~��‘jð

k
p þ c‘jÞ

 ! !
:

Since ½I �Pk
�
�1
	 0 elementwise and event re-enabling

requires ð
kp þ c‘jÞ 	 0 for all admissible ‘, j and p (see
Step 1 of the control policy with event disabling cost
in } 4.1), it follows from the above equations that
�

kþ1 � �

k 	 0 for k 	 0. œ

Proposition 7: The supervisor generated upon comple-
tion of the algorithm in } 4.1 is optimal in terms of the
performance in Definition 13.

Proof: Based on the algorithm in } 4.1, let the super-
visor S* be synthesized by disabling and re-enabling
certain controllable events at selected states. It is to be
shown that S* is optimal in the following sense. The
performance �

 of any (controllable) supervisor S 2 S
is not superior to the performance �

� of S*, i.e.
�

� 	 �

, 8S 2 S.

Let an arbitrary supervisor S 2 S disable ceratin
controllable events �j at selected states q‘, which are
not disabled by S*. Then, by Step 1 of the control policy
with event disabling cost in } 4.1, it follows that
ð
�p þ c‘jÞ 	 0 with �ðq‘, �jÞ ¼ qp. Let the same supervisor
S enable some other controllable events �k at selected

states q‘, leading to state qr, which are disabled by S*,

i.e. ð
�r þ c‘kÞ < 0 with �ðq‘, �kÞ ¼ qr. In non-trivial

cases, ‘, j and k satisfy the conditions: dS�

‘j 6¼ dS
‘j

and dS�

‘k 6¼ dS‘k .
Denoting the differences between event disabling

characteristic vectors and the state transition cost

matrices of S* and S, respectively, as

�!! � �		S
� �		S�

¼ ���S�
� ���S

� � PS�
�PS

the difference between corresponding performance

vectors is obtained as

�

� � �

 ¼ I �PS�
h i�1

���S�
� I �PS

 ��1

���S

¼ I �PS�
h i�1

���S�
� I �PS

 ��1

���S�
� �!!

h i
¼ I �PS�

h i�1
� I �PS

 ��1� �

���S�
þ I �PS

 ��1

�!!

¼ I �PS

 ��1

PS�
�PS

h i
I �PS�
h i�1

���S�

þ I �PS

 ��1

�!!

¼ I �PS

 ��1

PS�
�PS

h i
�

S
�

þ I �PS

 ��1

�!!

¼ I �PS

 ��1

� �

S
�

þ �!!
� �

:

Since the matrix I �PS

 ��1

	 0, it suffices to show

that ð �

S
�

þ �!!Þ 	 0 to prove ð �

S
�

� �

SÞ 	 0 elementwise.

The proof will make use of the fact that �i‘ ¼
P

u ~��iu,

where �u 2 S : �ð�u, qiÞ ¼ q‘ for all pairs of states qi
and q‘ (see Definitions 5 and 7) under any given

supervisor S. Then, the matrix � can be partitioned as

two sets of columns such that, for ‘ 2 f1, 2, . . . , ng, (non-
zero) elements in each row of these column sets are

obtained as

�‘p ¼
X
j:dS

‘j
¼1

~��‘j and �‘r ¼ �
X

k:dS
�

‘k
¼1

~��‘k

where the subscript p depends on both ‘ and j, and the

subscript r depends on both ‘ and k. The product of the

matrix � 2 <n�n and the performance vector �

� 2 <n is

derived as

� �

�ð Þ‘ �
X
p

�‘p

�
p þ

X
r

�‘r

�
r

¼
X
p

X
j

~��‘j 

�
p

 !
�
X
r

X
k

~��‘k

�
r

 !
:
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Similarly, the change in the event disabling charac-
teristic vector is expressed as

ð �!!Þ‘ ¼
X
i

~��‘ic‘i dS
‘i � dS�

‘i

� �

¼
X
p

X
j

~��‘jc‘j

 !
�
X
r

X
k

~��‘k c‘k

 !

Summing the above two expressions yields the ‘th
element of the vector ð��

S

�

þ �!!Þ as

ð��

� þ �!!Þ‘ ¼
X
p

X
j

~��‘j 

�
p

 !
�
X
r

X
k

~��‘k 

S�

r

 !

þ
X
p

X
j

~��‘jc‘j

 !
�
X
r

X
k

~��‘ ~jjc‘ ~jj

 !

¼
X
p

X
j

~��‘j ð

�
p þ c‘jÞ

 !

�
X
r

X
k

~��‘k ð

�
r þ c‘kÞ

 !
	 0

because ð
�p þ c‘jÞ	0 and ð
�r þ c‘kÞ<0 as stated at the
beginning of the proof. œ

5. Examples of discrete event optimal

supervisory control

This section presents two examples to demonstrate
different applications of discrete-event optimal supervi-
sors. The first example addresses health monitoring of
a twin-engine unmanned aircraft that is used for surveil-
lance and data collection. The second example presents
controlled interactions of a multiprocessor message
decoding system.

5.1. Optimal supervisory control of a twin-engine
unmanned aircraft

The control objective is to enhance engine safety
operation. Engine health and operating conditions,
which are monitored in real time based on avionic
sensor information, are classified into three mutually
exclusive and exhaustive categories: (i) good;
(ii) unhealthy (but operable); and (iii) inoperable. Upon
occurrence of any observed abnormality, the supervisor
decides to continue or abort the mission.

The deterministic finite state automaton model of the
unsupervised plant (i.e. engine operation) has 13 states,
of which three are marked (i.e., accepted) states, and
nine events, of which four are controllable. The dump
state is not included as it is not of interest in the super-
visory control synthesis (Ramadge and Wonham 1987,

Fu et al. 2004). All events are assumed to be observable.

The states and events of the plant model are listed in

tables 1 and 2, respectively. As indicated in table 1, the

marked states are: 11, 12 and 13, of which the states 11

and 13 are bad marked states, and the state 12 is a good

marked state.

The state transition function � (see the beginning of

} 2), the entries ~��ij (see Definition 4) of the event cost

matrix ~PP, and the entries cij (see Definition 8) of the

event disabling cost matrix C are entered simultaneously

in relevant cells of Table 3. The dump state and

any transitions to the dumped state are not shown in

Table 3. The empty cells in Table 3 imply that the state

transition function � is undefined for the respective

state and event. In each non-empty cell in Table 3, the

State Description

1 Safe in base

2 Mission executing—two good engines

3 One engine unhealthy during mission execution

4 Mission executing—one good and one

unhealthy engine

5 Both engines unhealthy during mission

execution

6 One engine good and one engine inoperable

7 Mission execution with two unhealthy engines

8 Mission execution with only one good engine

9 One engine unhealthy and one engine

inoperable

10 Mission execution with only one unhealthy

engine

11 Mission aborted/not completed (bad marked

state)

12 Mission successful (good marked state)

13 Aircraft destroyed (bad marked state)

Table 1. Plant automaton states of the aircraft engine system.

Event Event description

Controllable

events

s Start and take-off
p

b A good engine becoming unhealthy

t An unhealthy engine becoming

inoperable

v A good engine becoming inoperable

k Keep engine(s) running
p

a Mission abortion
p

f Mission completion

d Destroyed aircraft

l Landing
p

Table 2. Plant event alphabet of the aircraft engine system.
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positive integer in the first entry signifies the destination

state of the transition; the non-negative fraction in the

second entry is the state-based event cost ~��ij; and the

non-negative fraction in the third entry is the state-based

event disabling cost cij of the four controllable events

(i.e. events s, k, a and ‘); event disabling cost is not

applicable to the remaining five uncontrollable events

(i.e. events b, t, v, f and d ) and the corresponding entries

are marked as ‘N/A’. (Note that the event cost ~��ij and

event disabling cost cij of a given event could be different

at different states.)

The values of ~��ij were selected by extensive simula-

tion experiments on gas turbine engine models and were

also based on experience of gas turbine engine operation

and maintenance. The state-based event cost ~��ij such

that each row sum of the event cost matrix ~PP is strictly

less than one as given in Definition 5 and explained in

detail in a previous publication (Surana and Ray 2004).

The event disabling cost cij for controllable events indi-

cates the difficulty of disabling from the respective states

and the values were chosen based on operational

experience. The elements of the characteristic vector

(see Definition 4) are chosen as non-negative weights

based on the perception of each marked state’s role on

the gas turbine system performance. In this simulation

example, the characteristic value of the good marked

state 12 is taken to be 0.25 and those of the bad

marked states 11 and 13 are taken to be � 0.05 and

s b t v k a f d l

1 (2) (1)

0.500 0.020

0.000 0.005

2 (3) (6) (12) (3)

0.050 0.010 0.800 0.100

N/A N/A N/A N/A

3 (4) (11)

0.450 0.450

0.050 0.005

4 (5) (6) (9) (12) (13)

0.120 0.160 0.100 0.500 0.120

N/A N/A N/A N/A N/A

5 (7) (11)

0.450 0.450

0.080 0.002

6 (8) (11)

0.450 0.450

0.010 0.004

7 (9) (12) (13)

0.250 0.500 0.200

N/A N/A N/A

8 (9) (13) (12) (13)

0.200 0.010 0.300 0.400

N/A N/A N/A N/A

9 (10) (11)

0.450 0.450

0.35 0.002

10 (13) (12) (13)

0.350 0.200 0.400

N/A N/A N/A

11 (1)

0.95

0.000

12 (1)

0.95

0.000

13

Characteristic vector ��� ¼ ½0 0 0 0 0 0 0 0 0 � 0:05 0:25 � 1:0�T (see Definition 4).

Table 3. State transition � event cost ~PP and disabling cost C matrices of the aircraft engine system.
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� 1.0, respectively, to quantify their respective impor-

tance; each of the remaining non-marked states is

assigned zero characteristic value as seen at the bottom

of table 3. The information provided in table 3 is suffi-

cient to generate the state transition cost matrix P (see

Definition 7).

Based on the data given in tables 1–3, two optimal

control policies—Case 1 without event disabling cost

and the Case 2 with event disabling cost—have been

synthesized following the respective two-step procedures

in }} 3 and 4. The results of optimal supervisor syntheses

without and with event disabling cost are presented

in tables 4 and 5 supported by respective finite state

machine diagrams in figures 1 and 2. For Case 1, the

event disabling cost matrix C (i.e. the relevant elements

in table 3) are set to zero for synthesis of the optimal

control without event disabling cost. In contrast, for

Case 2, all elements the event disabling cost matrix C
in table 3 are used for synthesis of the optimal control
with event disabling cost. At successive iterations, table 4
lists the performance vectors in Case 1: ���0 for the
unsupervised (i.e. open loop) plant, ���1 in iteration 1,
and ���2 in iteration 2 when the synthesis is completed
because of no sign change between elements of ���1 and
���2. Table 4 shows that ���2

	 ���1
	 ���0 elementwise. This

is due to disabling the controllable event k leading
to states 7, 8 and 10 as indicated by the dashed arcs in
the state transition diagram of figure 1. Consequently,
the states 7, 8 and 10 become isolated as there are no
other events leading to these states. Starting with the
initial state 1, indicated by an external arrow in figure
1, the optimal performance is 0.0850 that is the first
element �2

1 of the performance vector ���2 as seen in the
top right-hand corner in table 4.

The results are different for Case 2 because the event
disabling cost is taken into account in optimal super-
visor synthesis as seen in table 5 and figure 2; in this
case, only the state 8 is isolated due to disabling of the
controllable event k at the state 6. At successive itera-
tions, table 5 lists the performance vectors for this Case 2
where �

0 ¼ ���0 for the unsupervised (i.e. open loop)
plant; �

1 in iteration 1, and �

2 in iteration 2 when
the synthesis is completed because of no sign change
between elements of �

1 and �

2. (Note that, in general,
the number of iterations needed for supervisor synthesis
without and with event disabling cost may not be the
same.) Table 5 shows that �

2 	 �

1 	 �

0 elementwise.
This is due to disabling of the controllable event k lead-
ing to the state 8 as indicated by the dashed arcs in the
state transition diagram of figure 2. Consequently, the
state 8 (shown in a dotted circle in figure 2) becomes
isolated as there are no other events leading to this
state. Starting with the initial state 1, indicated by an
arrow in figure 2, the optimal performance is 0.0841 that
is the first element �

21 of the performance vector �

2 as
seen in the top right-hand corner in table 5. Clearly, the
supervisor in Case 2 is suboptimal relative to the opti-
mal supervisor in Case 1. That is, the supervised plant
performance with event disabling cost cannot exceed the
performance for which the event disabling cost is not
taken into account.

5.2. Optimal supervisory control of a three-processor
message decoding system

This section presents the design of a discrete-event
(controllable) supervisor for a multiprocessor message
decoding system as described below.

Figure 3 depicts the arrangement of the message
decoding system, where each of the three processors,
p1, p2 and p3, receives encoded message to be decoded.
The processor p3 normally receives the most important

Iteration 0 Iteration 1 Iteration 2

0.0823 0.0840 0.0850

0.1613 0.1646 0.1665

0.0062 0.0134 0.0366

�0.0145 0.0500 0.0506

�0.0367 0.0134 0.0138

�0.1541 0.0134 0.0138

�0.1097 �0.0317 �0.0312

�0.3706 �0.3084 �0.3080

�0.2953 0.0134 0.0138

�0.6844 �0.6840 �0.6839

0.0282 0.0298 0.0307

0.3282 0.3298 0.3307

�1.0000 �1.0000 �1.0000

Table 4. Supervised engine performance without event
disabling cost.

Iteration 0 Iteration 1 Iteration 2

0.0823 0.0839 0.0841

0.1613 0.1645 0.1649

0.0062 0.0134 0.0188

�0.0145 0.0117 0.0118

�0.0367 �0.0356 �0.0354

�0.1541 0.0034 0.0035

�0.1097 �0.1088 �0.1086

�0.3706 �0.3700 �0.3699

�0.2953 �0.2944 �0.2943

�0.6844 �0.6841 �0.6840

0.0282 0.0297 0.0299

0.3282 0.3297 0.3299

�1.0000 �1.0000 �1.0000

Table 5. Supervised engine performance with event
disabling cost.
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Figure 2. Optimal supervision of engines with disabling cost.
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Figure 1. Optimal supervision of engines without disabling cost.
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messages, and p1 receives the least important messages.
There is a server between each pair of processors—
s1 between p1 and p2; s2 between p2 and p3; and s3
between p3 and p1. Each server is connected to each of
its two adjacent processors by a link—the server sj is
connected to the adjacent processors pi and pk through
the links Lij and Lkj , respectively. Out of these six links,
each of the three links, L11, L12 and L21, is equipped
with a switch to disable the respective connection when-
ever it is necessary; each of the remaining three links,
L22, L32 and L33, always remain connected. Each server
si is equipped with a decoding key ki that, at any given
time, can only be accessed by only one of the two pro-
cessors, adjacent to the server, through the link connect-
ing the processor and the server. In order to decode the
message, the processor holds the information on both
keys of the servers next to it, one at a time. After decod-
ing, the processor simultaneously releases both keys so
that other processors may get hold of them.

The unsupervised plant model of the decoding
system is depicted as a finite state machine in figure 4,
where state 1 is the initial state; the states 26 and 27,
shaded in red, are bad marked states representing
deadlocks; the states, 11, 12, 13, 14, 15 and 16, shaded
in grey, are good marked states; and the remaining
unshaded states are unmarked. The event pij indicates
that processor pi has accessed the key kj; and the event fi
indicates that the processor pi has finished decoding
and (simultaneously) released both keys in its posses-
sion upon completion of decoding. The events fi are
uncontrollable because, after the decoding is initiated,

there is no control on when a processor finishes decod-
ing. Table 6 lists the event cost matrix ~PP and the char-
acteristic vector ��� . In the right-hand column of table 6,
positive values are assigned to the � values of the states 8
to 16 that represent successful decoding of each proces-
sor. The � values of the deadlock states 26 and 27 (where
each processor holds exactly one key and hence no
processor releases its key) are assigned the negative
value of �1. The remaining states are non-marked and
are assigned zero � values. Table 7 lists the event dis-
abling cost matrix C where the entries cij are non-nega-
tive fractions in the first three columns corresponding to
the controllable events, p11, p13 and p21. These disabling
costs are assigned in accordance with the characteristic
values of the respective marked states. The entries,
marked as ‘N/A’ correspond to either uncontrollable
events or the states at which the plant model does not
generate a controllable event.

Based on the optimal control policies described in
} 3 and } 4, two supervisors have been synthesized with-
out and with event disabling cost, as shown in figures 5
and 6, respectively. A comparison of these two diagrams
reveals that different controllable events are disabled at
different states, as indicated by arcs with dashed lines.
Specifically, controllable events, causing state transi-
tions 1! 2, 3! 22, 4! 19, 5! 22, 6! 17,
7! 18, 14! 16, 20! 27, 23! 26 and 25! 27,
are disabled under the control policy without event dis-
abling cost, as seen in figure 5. Similarly, controllable
events, causing state transitions 1! 2, 1! 3, 3! 22,
4! 19, 5! 22, 6! 17, 7! 20, 20! 27, 23! 26

p1

p3 p2

L13 L11

s1s3

s2

L33

L32 L22

L21

k1

k2

k3

Figure 3. Multiprocessor interactions layout.
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p11 p13 p21 p22 p32 p33 f 1 f 2 f 3 X

(1) (2) (3) (4) (5) (6) (7) (8) (9)

1 0.15 0.11 0.15 0.15 0.15 0.3 0

2 0.1 0.25 0.25 0.3 0

3 0.2 0.2 0.2 0.2 0

4 0.25 0.1 0.25 0.3 0

5 0.1 0.25 0.25 0.3 0

6 0.2 0.2 0.2 0.2 0

7 0.25 0.1 0.25 0.3 0

8 0.35 0.35 0.2 0.01

9 0.5 0.01

10 0.5 0.01

11 0.1 0.3 0.3 0.02

12 0.5 0.02

13 0.5 0.02

14 0.3 0.3 0.3 0.04

15 0.4 0.04

16 0.4 0.04

17 0.4 0.4 0

18 0.1 0.3 0

19 0.1 0.3 0

20 0.4 0.4 0

21 0.4 0.4 0

22 0.4 0.4 0

23 0.4 0.4 0

24 0.4 0.4 0

25 0.1 0.3 0

26 �1

27 �1

Table 6. Event cost matrix ~PP and characteristic vector ~�� of the multiprocessor decoding system.
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Figure 4. DFSA model of unsupervised processor interactions.
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p11 p13 p21 p22 p32 p33 f 1 f 2 f 3

(1) (2) (3) (4) (5) (6) (7) (8) (9)

1 0.1 0.06 0.0333 N/A N/A N/A N/A N/A N/A

2 N/A 0.06 N/A N/A N/A N/A N/A N/A N/A

3 0.075 N/A 0.025 N/A N/A N/A N/A N/A N/A

4 0.06 0.06 0.02 N/A N/A N/A N/A N/A N/A

5 N/A 0.06 N/A N/A N/A N/A N/A N/A N/A

6 0.075 N/A 0.02 N/A N/A N/A N/A N/A N/A

7 N/A N/A N/A N/A N/A N/A N/A N/A N/A

8 N/A N/A N/A N/A N/A N/A N/A N/A N/A

9 N/A N/A N/A N/A N/A N/A N/A N/A N/A

10 N/A N/A N/A N/A N/A N/A N/A N/A N/A

11 N/A 0.06 N/A N/A N/A N/A N/A N/A N/A

12 N/A N/A N/A N/A N/A N/A N/A N/A N/A

13 N/A N/A N/A N/A N/A N/A N/A N/A N/A

14 0.05 N/A 0.01667 N/A N/A N/A N/A N/A N/A

15 N/A N/A N/A N/A N/A N/A N/A N/A N/A

16 N/A N/A N/A N/A N/A N/A N/A N/A N/A

17 N/A N/A N/A N/A N/A N/A N/A N/A N/A

18 N/A 0.06 N/A N/A N/A N/A N/A N/A N/A

19 N/A 0.06 N/A N/A N/A N/A N/A N/A N/A

20 0.0375 N/A 0.0125 N/A N/A N/A N/A N/A N/A

21 0.0375 N/A 0.0125 N/A N/A N/A N/A N/A N/A

22 N/A N/A N/A N/A N/A N/A N/A N/A N/A

23 0.0375 N/A 0.0125 N/A N/A N/A N/A N/A N/A

24 N/A N/A N/A N/A N/A N/A N/A N/A N/A

25 N/A 0.06 N/A N/A N/A N/A N/A N/A N/A

26 N/A N/A N/A N/A N/A N/A N/A N/A N/A

27 N/A N/A N/A N/A N/A N/A N/A N/A N/A

Table 7. Event disabling cost matrix C of the multiprocessor decoding system.
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Figure 5. Optimal supervision of processors without disabling cost.
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and 25! 27, are disabled under the the control policy
with event disabling cost, as seen in figure 6. The ratio-
nale for the difference in event disabling in these two
cases is that extremal point(s) on the optimization
surface shift due to introduction of non-zero disabling
costs in the supervisor synthesis algorithms as described
in }} 3.1 and 4.1.

Tables 8 and 9 show the corresponding performance
vectors for optimal control without and with event dis-
abling at each iteration; the optimization is terminated
after iterations 2 and 4, respectively, when optimality is
reached and the performance cannot be improved any
further by event disabling or re-enabling. The perform-
ance is non-decreasing at every state from one iteration
to the next as seen in tables 8 and 9. Since signs of the
performance vector elements have changed for several
states at iteration 1 in table 8, the procedure is continued
to iteration 2 where it is terminated because of no
further sign change. Similarly, in table 9, sign change
in the performance vector element(s) continues until
iteration 3 and the procedure is terminated at
iteration 4 because of no further sign change. It is also
seen that, starting from the same condition at iteration 0
for the unsupervised plant, the performance of the
supervisor with event disabling cost is always inferior
to that without event disabling cost because of the addi-
tional penalty. For example, with starting state 1, the
performance of the supervised plant without event dis-
abling cost is 0.0161 and that with event disabling cost
is �0.0216 while the performance of the unsupervised
plant is �0.1646.

6. Summary and conclusions

This paper presents the theory, formulation,
and validation of optimal supervisory control policies

for dynamical systems, modelled as deterministic finite

state automata (DFSA), which may have already been

subjected to constraints such as control specifications.

The synthesis procedure for optimal control without and

with event disabling cost relies on a signed real measure

States Iteration 0 Iteration 1 Iteration 2

1 �0.1646 0.059 0.0161

2 �0.2141 �0.2030 �0.1991

3 �0.1970 0 0.0104

4 �0.2277 0 0.0145

5 �0.0902 0.0198 0.0223

6 �0.1788 0.0112 0.0207

7 �0.0765 0.0168 0.0224

8 �0.0692 0.0211 0.0267

9 �0.0283 0.0184 0.0212

10 �0.1039 0.0100 0.0172

11 �0.0581 0.0295 0.0365

12 �0.0785 0.0200 0.0252

13 �0.0694 0.0256 0.0303

14 �0.0219 0.0561 0.0595

15 0.0039 0.0479 0.0489

16 �0.0456 �0.0412 �0.0396

17 �0.4183 �0.4165 �0.4159

18 �0.0165 �0.0124 �0.0098

19 �0.3104 �0.3000 �0.2983

20 �0.4113 0 0.0085

21 �0.0729 0 0.0170

22 �0.4134 �0.3920 �0.3899

23 �0.4278 0 0.0121

24 �0.0262 0.0294 0.0317

25 �0.0988 0.0144 0.0147

26 �1.0000 �1.0000 �1.0000

27 �1.0000 �1.0000 �1.0000

Table 8. Supervised processor performance without event
disabling cost.
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Figure 6. Optimal supervision of processors with disabling cost.
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of regular languages (Ray and Phoha 2003, Surana and
Ray 2004) to construct the performance index. The lan-
guage measure is based on a specified state transition
cost matrix and a characteristic vector.

The state-based optimal control policy without event
disabling cost maximizes the language measure vector ���
to avoid termination on bad marked states by selectively
disabling controllable events that may lead to bad
marked states and simultaneously ensuring that the
remaining controllable events are kept enabled. The
goal is to maximize the measure of the controlled
plant language without any further constraints. The
control policy induced by the updated state transition
cost matrix yields maximal performance and is unique in
the sense that the controlled language is most permissive
(i.e. least restrictive) among all controller(s) having the
optimal performance.

The performance measure vector �

, for optimal
control with disabling cost, is obtained as the language
measure vector of the supervised plant minus the dis-
abling cost characteristic vector. The optimal control
policy maximizes the performance vector elementwise
to avoid termination on bad marked states by selectively
disabling controllable events with reasonable disabling
costs, and simultaneously ensuring that the remaining

controllable events are kept enabled. As the cost of
event disabling approaches zero, the optimal control
policy with event disabling cost converges to that
without event disabling cost.

Derivation of the optimal supervisory control policies
requires at most n iterations, where n is the number of
states of the DFSA model and each iteration is required
to solve a set of n simultaneous linear algebraic equations
having complexity of Oðn3Þ (Ray and Phoha 2003,
Surana and Ray 2004). As such computational com-
plexity of the control synthesis procedure is polynomial
in the number of DFSA model states. Two examples
have been presented to demonstrate applications of
discrete-event optimal supervisors. The first example
addresses health monitoring of a twin-engine unmanned
aircraft that is used for surveillance and data collection.
The second example presents controlled interactions of a
multiprocessor message decoding system.

The novel concept of language-based control syn-
thesis, presented in this paper, allows quantification of
plant performance instead of evaluating its qualitative
performance (e.g. permissiveness), which is the current
state of the art for discrete event supervisory control
(Cassandras and Lafortune 1999). The following conclu-
sion is drawn in view of using the language measure

States Iteration 0 Iteration 1 Iteration 2 Iteration 3 Iteration 4

1 �0.1646 �0.0364 �0.0228 �0.0228 �0.0216

2 �0.2141 �0.2110 �0.2032 �0.2015 �0.2012

3 �0.1970 �0.0194 �0.0045 �0.0011 �0.0005

4 �0.2277 �0.0270 �0.0134 �0.0133 �0.0061

5 �0.0902 0.0034 0.0081 0.0081 0.0082

6 �0.1788 �0.0184 �0.0050 �0.0049 �0.0049

7 �0.0765 �0.0057 0.0031 0.0032 0.0033

8 �0.0692 0.0040 0.0106 0.0107 0.0122

9 �0.0283 0.0072 0.0115 0.0116 0.0117

10 �0.1039 �0.0035 0.0033 0.0033 0.0069

11 �0.0581 0.0063 0.0202 0.0204 0.0208

12 �0.0785 0.0103 0.0177 0.0194 0.0198

13 �0.0694 0.0108 0.0175 0.0175 0.0176

14 �0.0219 0.0282 0.0337 0.0340 0.0343

15 0.0039 0.0414 0.0432 0.0433 0.0433

16 �0.0456 �0.0444 �0.0413 �0.0406 �0.0405

17 �0.4183 �0.4178 �0.4165 �0.4162 �0.4162

18 �0.0165 �0.0126 �0.0112 �0.0110 �0.0110

19 �0.3104 �0.3060 �0.3060 �0.2997 �0.2993

20 �0.4113 �0.0021 �0.0004 �0.0004 �0.0003

21 �0.0729 �0.0200 �0.0079 0.0091 0.0107

22 �0.4134 �0.3959 �0.3929 �0.3922 �0.3921

23 �0.4278 �0.0200 �0.0080 �0.0080 �0.0080

24 �0.0262 0.0209 0.0243 0.0243 0.0243

25 �0.0988 0.0064 0.0070 0.0070 0.0070

26 �1.0000 �1.0000 �1.0000 �1.0000 �1.0000

27 �1.0000 �1.0000 �1.0000 �1.0000 �1.0000

Table 9. Supervised processor performance with event disabling cost.
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for construction of the performance index for deriving
an optimal control policy. Like any other optimization
procedure, it is possible to choose different performance
indices to arrive at different optimal policies for discrete
event supervisory control. Nevertheless, usage of the
language measure provides a systematic procedure for
precise comparative evaluation of different supervisors
so that the optimal control policy(ies) can be unambigu-
ously identified.

There are several issues that need to be addressed for
implementation of the theory of discrete-event super-
visory control in an operating plant. For example, the
events must be generated in real time, based on physical
measurements, to provide the supervisor with the
current information on the plant; this is beyond what
is done off-line for construction of the DFSA plant
model and control synthesis. Similarly, the event
disabling/enabling decisions of the supervisor must be
translated in real time as appropriate actions to control
the plant.

Future research for advancement of the theory of
optimal supervisory control for discrete event systems
include the following areas:

. Robustness of the control policy relative to
unstructured and structured uncertainties in the
plant model including variations in the language
measure parameters (Fu et al. 2003 a).

. Control synthesis under partial observation to
accommodate loss of observability at the supervi-
sory level possibly due to faults in sensors and/or
communication links (Chattopadhyay and Ray
2004).

. Construction of grammar-based measures, instead
of memory-less state-based measures (Ray and
Phoha 2003, Surana and Ray 2004), for non-
regular languages when details of transitions in
plant dynamics cannot be captured by finitely
many states (Chattopadhyay et al. 2004).
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