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INTRODUCTION

The objective of the presented in this paper
research, which is supported by the US
Department of Energy under the NEER program,
is to develop an early anomaly detection
methodology in order to enhance safety,
availability, and operational flexibility of Boiling
Water Reactor (BWR) nuclear power plants.
The technical approach relies on suppression of
potential power oscillations in BWRs by
detecting small anomalies at an early stage and
taking appropriate prognostic actions based on
an anticipated operation schedule.

The model of coupled (two-phase) thermal-
hydraulic and neutron flux dynamics, based on
the US NRC coupled code TRACE/PARCS',
is being utilized as a generator of time series data
for anomaly detection at an early stage. The
model captures critical nonlinear features of
coupled thermal-hydraulic and nuclear reaction
dynamics and (slow time-scale) evolution of the
anomalies as non-stationary parameters. The
time series data derived from this nonlinear non-
stationary model serves as the source of
information for generating the symbolic
dynamics for characterization of model
parameter changes that quantitatively represent
small anomalies. This information is then used to
develop algorithms of palttern recognition for
power instability based on anomaly detection
from time series data and to formulate real-time
decision and control algorithms for suppression
of power oscillations for a variety of anticipated
operating conditions.

DESCRIPTION OF THE ACTUAL WORK

The performed work during the first year of
the project, which is described in this paper,
focused on the construction of proposed anomaly
detection methodology®. The concept is based on
the fact that nonlinear systems show bifurcation,
which is a change in the gualitative behavior as
the system parameters vary. Some of these
parameters may change on their own accord and
account for the anomaly, while certain
parameters can be altered in a controlled fashion.

The non-linear, non-autonomous BWR system
model considered in this research exhibits
phenomena at two time scales. Anomalies occur
at the slow time scale while the observation of
the dynamical behavior, based on which
inferences are made, takes place at the fast time
scale. It is assumed that: (i) the system behavior
is stationary at the fast time scale; and (ii) any
observable non-stationary behavior is associated
with parametric changes evolving at the slow
time scale. The goal is to make inferences about
evolving anomalies based on the asymptotic
behavior derived from the computer simulation.
However, only sufficient changes in the slowly
varying parameter may lead to detectable
difference in the asymptotic behavior. The need
to detect such small changes in parameters and
hence early detection of an anomaly motivate the
utilized stimulus-response approach. In this
approach, the model of a BWR system is
perturbed with an appropriate known input
excitation to observe the asymptotic behavior at
the fast time scale. A set of suitable input
excitation parameters or stimuli are employed
and the separate response of the BWR system to
each of these stimuli is determined. As a result of
the combination of the input stimulus and
perturbed parameter(s), it is possible to observe a .
detectable change in the nature of asymptotic

behavior that would otherwise remain
unperceivable over a long period of time.
The  developed  anomaly  detection

methodology is built upon the concepts of
Symbolic Dynamics, Finite State Automata, and
Pattern Recognition to qualitatively describe the
dynamical behavior in terms of symbol
sequences at the fast-time scale. Appropriate
phase space partitioning of the dynamical system
yields an alphabet to obtain symbol sequences
from time series data. To identify statistical
patterns in these symbolic sequences, the tools of
Computational Mechanics are used through
construction of a (probabilistic) finite-state
machine from each symbol sequence. Transition
probability matrices of the finite state machines,
obtained from the symbol sequences, capture the
pattern of the system behavior by information



compression. A detectable change in the pattern
represents a deviation of the nominal behavior
from an anomalous one and suffices for anomaly
detection. The state probability vectors derived
from the respective connection (state transition)
mairices under the nominal and an anomalous
condition, yield a vector measure of the anomaly.
This vector measure provides more information
than a scalar measure such as the complexity
measure.

In contrast to the e-machine that has an a
priori unknown structure and yields optimal
pattern discovery in the sense of mutual
information, the state machine adopted here has
an a priori known structure that can be freely
chosen. Although this approach is suboptimal, it
provides a common state machine structure
where physical significance of each state is
invariant under changes in the statistical patterns
of symbol sequences. This feature allows
unambiguous detection of possible anomalies
from symbol sequences at different (slow-time)
epochs. This fixed structure fixed-order Markov
chain called the D-Markov machine is apparently
computationally faster than the &-machine
because of significantly fewer number of floating
point arithmetic operations. These are the
motivating factors for introducing the D-Markov
machine. The machines described above
recognize patterns in the behavior of a dynamical
system that undergoes anomalous behavior. In
order to quantify changes in the patterns that are
representations of evolving anomalies, we induce
an gnomaly measure on these machines denoted
by M.

The anomaly detection methodology is
separated into two parts: (i) Forward problem;
and (ii) Inverse problem. The described here first
year activity has been concentrated on the
forward problem to build a firm foundation for
further development of the methodology. The
objective in the forward problem is to learn how
the grammar underlying the system dynamics
changes as the system parameters change. In
othe words the forward problem is that of
learning where the value of a parameter is
associated with an anomaly measure.

RESULTS AND DISCUSSION

The US NRC coupled code TRACE/PARCS
is used to generate the time series data. The
reference BWR model for this study is based on
the Peach Bottom 2 (PB2), for which the
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TRACE/PARCS models have been validated in
the framework of the OECD/NRC BWR TT
Benchmark®, The selection of the set of stimuli
to be applied to the system is a critical step for
the proposed methodology. The selected
perturbation must not interfere with the normal
operation of the plant (or, in this case, with the
numerical simulation of the plant). In particular,
unstable or excessive oscillations must not occur
as a consequence of the input perturbations and
the plant must return to the original state after the
perturbation is terminated. On the other hand, the
stimulus imposed to the system has to be ample
enough in order for the analyst to infer the
stability characteristic of the plant. These
observations are especially true for externally
applied small perturbations. Different types of
perturbation have been identified and
subsequently applied to PB2. Among them the
system pressure perturbation is selected to be
presented in this paper. Utilizing the control
block capability of TRACE for each of the
selected input stimuli, the following three
perturbations shapes have been simulated: 1)
continuous sinusoidal shape, 2) fragmented
sinusoidal shape and 3) square shape. The
pressure perturbation by acting on the turbine
control valve beginning at a time of 2000
seconds is shown in Figure 1.
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Figure 1. System pressure perturbation
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Another critical step of the methodology is the
selection of suitable perturbed (possibly slowly)
parameters. The followed approach consists in
taking into account a combination of the most
sensitive stability variables. Based on the
investigated parameters and on their relevance
on BWR stability, nine no-dimensional groups of
parameters have been identified and used in the
anomaly detection methodology. In particular
four of them are resulted the more viable to
detect difference in the asymptotic behavior by
slow and small changes in their values. Among
them B3, which represents the importance of the
feedback reactivity effects, is selected to be
presented here. Extensive code simulations have
been performed for different core conditions
such as beginning of life (cycle) BOL and end of
cycle (EOC). For each simulation after 2000
seconds of ‘null’ transient, the pressure
perturbations described above are applied for
500 seconds. The identification of small changes
in the behavior of nonlinear dynamics systems
requires the selection of appropriate time series
data. The following ones have been taken into
considerations: core mass flow in, core mass
flow out; reactor power; feed water flow rate,
steamn line flow rate; steam dome pressure and
etc. Figures 2 shows the results obtained by the
application of the early anomaly detection of

BWR instabilities respectively for BOL. In this
case the time series data for mass flow out and Bz
have been considered.

Three different regions can be identified in
Figure 2: 1) a first zone where the anomaly curve
increases quite rapidly outlining the features of
early anomaly methodology; 2) a plateau region
that corresponds to the ‘critical’ combination of
parameters; 3) a third zone where the anomaly
curve restarts to increases, identifying the
possible incoming BWR instabilities. As P
increases, one can see a rapid rise in anomaly
measure. This indicates that the methodology is
successful in detecting early growth in anomaly.
In addition the anomaly curve is bounded with
uncertainty bands with a confidence level of
98%.

CONCLUSIONS

In this research, a new methodology for early
detection of BWR instabilities has been
developed and an initial demonstration of the
capability of the methodology to predict the
BWR instabilities has been demonstrated. A
more sophisticated qualification process for the
proposed methodology is under way and it will
constitute one of the main goals to be achieved
during the second year of the NEER project.
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Figure 2. Demonstration of the capability to detect BWR instabilities
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