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Abstract

This paper presents an algorithm for optimal control of regular languages, realized as deterministic finite
state automata (DFSA), with (possible) penalty on event disabling. A signed real measure quantifies the behavior
of controlled sublanguages based on a state transition cost matrix and a characteristic vector as reported in
an earlier publication. The performance index for the proposed optimal policy is obtained by combining
the measure of the supervised plant language with the cost of disabled controllable event(s). Synthesis of
this optimal control policy requires at mostn iterations, wheren is the number of states of the DFSA
model generated from the unsupervised regular language. The computational complexity of the optimal control
synthesis is polynomial inn. The control algorithms are illustrated with an application example of a twin-engine
surveillance aircraft.

Index Terms
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I. I NTRODUCTION

For discrete-event supervisory control, the dynamical behavior of a physical plant is often modeled
as a regular language that can be realized by a finite-state automaton [7]. The sublanguage of a
controlled plant could be different under different supervisors that are constrained to satisfy different
specifications. Such a partially ordered set of sublanguages requires a quantitative measure for total
ordering of their respective performance. To address this issue, Wang and Ray [11] have developed
a signed measure of regular languages. This work was followed by Ray and Phoha [8] and Surana
and Ray [10] who have constructed a vector space of sublanguages with a metric based on the total
variation measure of the language.

Several researchers have proposed optimal control of deterministic finite state automata (DFSA)
based on different assumptions. Some of these researchers have attempted to quantify the controller
performance using different types of cost assigned to the individual events. Passino and Antsaklis [6]
proposed path costs associated with state transitions and hence optimal control of a discrete event
system is equivalent to following the shortest path on the graph representing the uncontrolled system.
Kumar and Garg [4] introduced the concept of payoff and control costs that are incurred only once
regardless of the number of times the system visits the state associated with the cost. Consequently,
the resulting cost is not a function of the dynamic behavior of the plant. Brave and Heymann [1]
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introduced the concept of optimal attractors in discrete-event control. Sengupta and Lafortune [9]
used control cost in addition to the path cost in optimization of the performance index for trade-off
between finding the shortest path and reducing the control cost. Although costs were assigned to the
events, no distinction was made for events generated at (or leading to) different states that could
be “good” or “bad”. These optimal control strategies have addressed performance enhancement of
discrete-event control systems without a quantitative measure of languages.

Fu et al. [3] have proposed a state-based approach to optimal control of regular languages by
selectively disabling controllable events so that the resulting optimal policy can be realized as a
controllable supervisor. The performance index of the optimal policy is a signed real measure of the
supervised sublanguage, which is expressed in terms of a cost matrix and a characteristic vector [10],
but it does not assign any additional penalty for event disabling.

This paper extends the earlier work of Fu et al. [3] on optimal control to include the cost of event
disabling. The rationale is that the previously proposed optimal supervisor makes the best trade-off
between reaching good states and avoiding bad states, and achieves optimal performance in terms
of the language measure of the supervised plant. However, another supervisor that has a slightly
inferior performance relative to the above optimal controller may only require disabling of some other
controllable events, which is much less difficult to achieve. Therefore, with due consideration to event
disabling, the second controller may be preferable.

From the above perspectives, the performance index for the optimal control policy proposed in this
paper is obtained by combining the measure of the supervised plant language with the cost of disabled
event(s). Starting with the (regular) language of an unsupervised plant automaton, the optimal control
policy makes a trade-off between the measure of the supervised sublanguage and the associated event
disabling cost to achieve the best performance.

The paper is organized in six sections including the present one. Section II reviews the previous
work on language measure [10]. Section III presents the optimal control policy without the event
disabling cost and proofs of the propositions are given in Appendix A. Section IV modifies the
performance index to include the event disabling cost and formulates the algorithm of the optimal
control policy with event disabling cost as an extension of Section III. Proofs of the propositions are
given in Appendix B. Section V presents an application example to illustrate the concepts of optimal
control without and with event disabling cost. The paper is summarized and concluded in Section VI
along with recommendations for future work.

II. B RIEF REVIEW OF THE LANGUAGE MEASURE

This section briefly reviews the concept of signed real measure of regular languages [11] [10]. Let
the plant behavior be modeled as a deterministic finite state automaton (DFSA) as:

Gi ≡ (Q, Σ, δ, qi, Qm) (1)

whereQ is the finite set of states with|Q| = n excluding the dump state [7] if any, andqi ∈ Q
is the initial state;Σ is the (finite) alphabet of events with|Σ| = m; Σ∗ is the set of all finite-length
strings of events including the empty stringε; the (possibly partial) functionδ : Q×Σ → Q represents
state transitions andδ∗ : Q × Σ∗ → Q is an extension ofδ; andQm ⊆ Q is the set of marked (i.e.,
accepted) states.

Definition 2.1: The languageL(Gi) generated by a DFSAG initialized at the stateqi ∈ Q is defined
as:

L(Gi) = {s ∈ Σ∗ | δ∗(qi, s) ∈ Q} (2)

Definition 2.2: The languageLm(Gi) marked by a DFSAGi initialized at the stateqi ∈ Q is
defined as:
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Lm(Gi) = {s ∈ Σ∗ | δ∗(qi, s) ∈ Qm} (3)
The languageL(Gi) is partitioned as the non-marked and the marked languages,Lo(Gi) ≡ L(Gi)−

Lm(Gi) andLm(Gi), consisting of event strings that, starting fromq ∈ Q, terminate at one of the non-
marked states inQ−Qm and one of the marked states inQm, respectively. The setQm is partitioned
into Q+

m andQ−
m, whereQ+

m contains allgoodmarked states that we desire to reach andQ−
m contains

all bad marked states that we want to avoid, although it may not always be possible to avoid the bad
states while attempting to reach the good states. The marked languageLm(G) is further partitioned
into L+

m(G) and L−m(Gi) consisting of good and bad strings that, starting fromqi, terminate onQ+
m

andQ−
m, respectively.

A signed real measureµ : 2Σ∗ → R ≡ (−∞, ∞) is constructed for quantitative evaluation of every
event strings ∈ Σ∗. The languageL(Gi) is decomposed into null, i.e.,Lo(Gi), positive, i.e.,L+

m(Gi),
and negative, i.e.,L−m(Gi) sublanguages.

Definition 2.3: The language of all strings that, starting at a stateqi ∈ Q, terminates on a state
qj ∈ Q, is denoted asL(qi, qj). That is,

L(qi, qj) ≡ {s ∈ L(Gi) : δ∗(qi, s) = qj}. (4)

Definition 2.4: The characteristic function that assigns a signed real weight to state-partitioned
sublanguagesL(qi, qj), i = 1, 2, . . . , n is defined as:χ : Q → [−1, 1] such that

χ(qj) ∈




[−1, 0) if qj ∈ Q−
m

{0} if qj /∈ Qm

(0, 1] if qj ∈ Q+
m

Definition 2.5: The event cost is conditioned on a DFSA state at which the event is generated, and
is defined as̃π : Σ∗ × Q → [0, 1] such that∀qj ∈ Q, ∀σk ∈ Σ,∀s ∈ Σ∗,
(1) π̃[σk, qj] ≡ π̃jk ∈ [0, 1);

∑
k π̃jk < 1;

(2) π̃[σ, qj] = 0 if δ(qj, σ) is undefined; π̃[ε, qj] = 1;
(3) π̃[σks, qj] = π̃[σk, qj] π̃[s, δ(qj, σk)].

The event cost matrix, denoted asΠ̃-matrix, is defined as:

Π̃=




π̃11 π̃12 . . . π̃1m

π̃21 π̃22 . . . π̃2m
...

...
. ..

...
π̃n1 π̃n2 . . . π̃nm




An application of the induction principle to part(3) in Definition 2.5 shows that

π̃[st, qj] = π̃[s, qj]π̃[t, δ∗(qj, s)]

The condition
∑

k π̃jk < 1 provides a sufficient condition for the existence of the real signed measure
as discussed in [10] along with additional comments on the physical interpretation of the event cost.

Now we define the measure of a sublanguage of the plant languageL (Gi) in terms of the signed
characteristic functionχ and the non-negative event costπ̃.

Definition 2.6: The signed real measureµ of a singleton string set{s} ⊂ L(qi, qj) ⊆ L(Gi) ∈ 2Σ∗

is defined as:
µ({s}) ≡ χ(qj) π̃(s, qi) ∀s ∈ L(qi, qj).
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The signed real measure ofL(qi, qj) is defined as:

µ (L(qi, qj)) ≡
∑

s∈L(qi,qj)

µ ({s})

and the signed real measure of a DFSAGi, initialized at the stateqi ∈ Q, is denoted as:

µi ≡ µ(L(Gi)) =
∑

j
µ (L(qi, qj))

Definition 2.7: The state transition cost of the DFSA is defined as a functionπ : Q× Q → [0, 1)
such that∀qj, qk ∈ Q, π(qj, qk) =

∑
σ∈Σ: δ(qj , σ)=qk

π̃(σ, qj) ≡ πjk and πjk = 0 if {σ ∈ Σ :

δ(qj, σ) = qk} = ∅. The state transition cost matrix, denoted asΠ-matrix, is defined as:

Π=




π11 π12 . . . π1n

π21 π22 . . . π2n
...

...
.. .

...
πn1 πn2 . . . πnn




Wang and Ray [11] and Surana and Ray [10] have shown that the measureµi ≡ µ(L(Gi)) of the
languageL(Gi), with the initial stateqi, can be expressed as:µi =

∑
j πij µj + χi whereχi ≡ χ(qi).

Equivalently, in vector notation:̄µ = Πµ̄ + χ̄ where the measure vectorµ̄ ≡ [µ1 µ2 · · · µn]T and the
characteristic vector̄χ ≡ [χ1 χ2 · · · χn]T . We delineate salient properties of the state transition cost
matrix Π,which are useful for constructing the optimal control policy.

Property 1: Following Definitions 4 and 6, there existsθ ∈ (0, 1)such that the induced infinity
norm ‖Π‖∞ ≡ max

i

∑
j πij = 1 − θ. The matrix operator[I − Π] is invertible implying that the

inverse[I − Π]−1 is a bounded linear operator with its induced infinity norm||[I − Π]−1||∞ ≤ θ−1

[5]. Therefore, the language measure vector can be expressed as:µ̄ = [I − Π]−1χ̄, where µ̄ ∈ Rn,
and computational complexity of the measure isO(n3) [10].

Property 2: The matrix operator[I−Π]−1 ≥ 0 elementwise. By Taylor series expansion,[I−Π]−1 =
∞∑

k=0

[Π]kand [Π]k ≥ 0 becauseΠ ≥ 0.

Property 3: The determinantDet [I−Π] is real positive because the eigenvalues of the real matrix
[I − Π] appear as real or complex conjugates and they have positive real parts. Hence, the product
of all eigenvalues of[I − Π] is real positive.

Property 4: An affine operatorT : Rn → Rncan be defined as:T ν̄ = Π ν̄ + χ̄ for any arbitrary
ν ∈ Rn. As Π is a contraction,T is also a contraction. SinceRn is a Banach space, there exists a
unique fixed point ofT [5] that is the measure vector̄µ satisfying the conditionT µ̄ = µ̄. Therefore,
The language measure vectorµ̄ is uniquely determined as:̄µ = [I−Π]−1 χ̄, which can be interpreted
as the unique fixed point of a contraction operator.

III. O PTIMAL CONTROL WITHOUT EVENT DISABLING COST

This section presents the theoretical foundations of the optimal supervisory control of DFSA plants
by selectively disabling controllable events so that the resulting optimal policy can be realized as
a controllable supervisor [3]. The plant model is first modified to satisfy the specified operational
constraints, if any. Then, starting with the (regular) language of the unsupervised plant, the optimal
policy maximizes the performance of the controlled sublanguage of the supervised plant without any
further constraints. The performance index of the optimal policy is a signed real measure of the
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supervised sublanguage, described in Section 2, which is expressed in terms of a state transition cost
matrixΠ and a characteristic vector̄χ, , but it does not assign any additional penalty for event disabling.

Let S ≡ {S0, S1, · · · , SN} be the finite set of all supervisory control policies that selectively dis-
ables controllable events of the unsupervised plant DFSAG and can be realized as regular languages.
DenotingΠk ≡ Π(Sk), k ∈ {1, 2, · · · , N}, the supervisorS0 is the null controller (i.e., no event is
disabled) implying thatL(S0/G) = L(G). Therefore the controller cost matrixΠ(S0) = Π0 ≡ Πplant

that is theΠ-matrix of the unsupervised plant automatonG.For a supervisorSi, i ∈ {1, 2, · · · , N},
the control policy selectively disables certain controllable events by which the corresponding elements
of the Π̃-matrix (see Definition 4) become zero. Therefore the (elementwise) inequality holds: and
L(Sk/G) ⊆ L(G) ∀Sk ∈ S. The language measure vector of a supervised plantL(Sk/G)is expressed
as:

µ̄k ≡ [I − Πk]−1χ̄

where thejth element of the vector̄µk is denoted asµk
j . In the sequel,µk is chosen to be the

performance measure for the optimal control policy without event disabling cost.

Proposition 3.1:Let j be such thatµk
j = min

`∈{1,2, ··· ,n}
µk

` . If µk
j ≤ 0, thenχj ≤ 0; and if µk

j < 0, then

χj < 0.

Corollary 3.1: Let µk
j = max

`∈{1,2, ··· ,n}
µk

` . If µk
j ≥ 0, thenχj ≥ 0 and if µk

j > 0, thenχj > 0.

Proposition 3.2:GivenΠ(Sk) = Πk andµk ≡ [I−Πk]−1χ̄, let Πk+1 be generated fromΠk for k ≥ 0
by disabling or re-enabling the appropriate controllable events as follows:∀i, j ∈ {1, 2, · · · , n}, ijth

element ofΠk+1 is modified as:

πk+1
ij




≥ πk

ij

= πk
ij

≤ πk
ij

if µk
j > 0

if µk
j = 0

if µk
j < 0

(5)

andΠk ≤ Π0 ∀k. Then,µ̄k+1 ≥ µ̄k elementwise and equality holds if and only ifΠk+1 = Πk.

Corollary 3.2: For a given stateqj, let µk
j < 0 and Πk+1 be generated fromΠk by disabling

controllable events that lead to the stateqj. Then,µk+1
j < 0.

In Proposition 3.2, some elements of thejth column ofΠk are decreased (or increased) by disabling
(or re-enabling) controllable events that lead to the statesqj for which µk

j < 0 (or µk
j ≥ 0). Next we

show that an optimal supervisor can be achieved to yield best performance in terms of the language
measure.

Proposition 3.3: Iterations of event disabling and re-enabling lead to a cost matrixΠ∗ that is optimal
in the sense of maximizing the performance vectorµ̄∗ ≡ [I − Π∗]−1χ̄ elementwise.

Proposition 3.4:The control policy induced by the optimalΠ∗-matrix in Proposition 3.3 is unique in
the sense that the controlled language is most permissive (i.e., least restrictive) among all controller(s)
having the best performance.

Propositions 3.3 and 3.4 suffice to conclude that theΠ∗-matrix yields the most permissive controller
with the best performancēµ∗. The optimal control policy (without event disabling cost) can be realized
as:

• All controllable events leading to the statesqj, for which µ∗j < 0, are disabled;

• All controllable events leading to the statesqj, for which µ∗j ≥ 0, are enabled.
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A. Construction of the Optimal Control Policy without Event Disabling Cost

We propose a procedure for construction of the optimal control policy that maximizes the per-
formance of the controlled language of the DFSA (without event disabling cost), starting from
any initial stateq ∈ Q. Let G be a DFSA plant model without any constraint (i.e., operational
specifications) and have the state transition cost matrix of the open loop plant as:Πplant ∈ <n×n

and the characteristic vector as:χ̄ ∈ <n. Then, the performance vector atk = 0 is given as:
µ̄0 = [µ0

1 µ0
2 · · · µ0

n] T = (I−Π0)−1 χ̄, where thejth elementµ0
j of the vectorµ0 is the performance

of the language, with stateqj as the initial state. Then,µ0
j < 0 implies that, if the stateqj is reached,

then the plant will yield bad performance thereafter. Intuitively, the control system should attempt to
prevent the automaton from reachingqj by disabling all controllable events that lead to this state.
Therefore, the optimal control algorithm starts with disabling all controllable events that lead to every
stateqj for which µ0

j < 0. This is equivalent to reducing all elements of the corresponding columns of
theΠ0-matrix by disabling those controllable events. In the next iteration, i.e.,k = 1, the updated cost
matrix Π1 is obtained as:Π1 = Π0 −∆0 where∆0 ≥ 0 (the inequality being implied elementwise)
is composed of event costs corresponding to all controllable events that have been disabled. Using
Proposition 2,µ̄0 ≤ µ̄1 ≡ [I − Π1]−1 χ̄. Although all controllable events leading to every state
corresponding to a negative element ofµ1 are disabled, some of the controllable events that were
disabled atk = 0 may now lead to states corresponding to positive elements ofµ1. Performance could
be further enhanced by re-enabling these controllable events. Fork ≥ 1, Πk+1 = Πk + ∆k where
∆k ≥ 0 is composed of the state transition costs of all re-enabled controllable events atk.

If µ̄0 ≥ 0, i.e., there is no stateqj such thatµ0
j < 0, then the plant performance cannot be improved

by event disabling and the null controllerS0 (i.e., no disabled event) is the optimal controller for the
given plant. Therefore, we consider the cases whereµ0

j < 0 for some stateqj.

Starting withk = 0 andΠ0 ≡ Πplant, the control policy is constructed by the following two-step
procedure:

Step 1: For every stateqj for which µ0
j < 0, disable controllable events leading toqj. Now,

Π1 = Π0 −∆0, where∆0 ≥ 0 is composed of event costs corresponding to all controllable events,
leading toqj for which µ0

j < 0, which have been disabled atk = 0.

Step 2: For k ≥ 1, if µk
j ≥ 0, re-enable all controllable events leading toqj, which were disabled

in Step 1. The cost matrix is updated as:Πk+1 = Πk + ∆k for k ≥ 1, where∆k ≥ 0 is composed of
event costs corresponding to all currently re-enabled controllable events. The iteration is terminated
if no controllable event leading toqj remains disabled for whichµk

j > 0. At this stage, the optimal
performancēµ∗ ≡ [I − Π∗]−1 χ̄.

Proposition 3.5:The number of iterations needed to arrive at the optimal control law without event
disabling cost does not exceed the number,n, of states of the DFSA.

Since each iteration in the synthesis of the optimal control requires a single Gaussian elimination
of n unknowns fromn linear algebraic equations, computational complexity of the control algorithm
is polynomial inn.

IV. OPTIMAL CONTROL WITH EVENT DISABLING COST

This section presents the optimal control policy with event disabling cost by including the cost of
all (controllable) events, disabled by the supervisor, in the performance cost. As the cost of disabled
event(s) approaches zero, the optimal control policy with event disabling cost converges to the optimal
control policy without event disabling cost, described in Section .

Definition 4.1: Let the cost of disabling a (controllable) eventσj that causes transition fromqi be
denoted ascij wherecij ∈ [0, 1]. The (n×m) disabling cost matrix is denoted asC = [cij].
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Since the (controllable) supervisor never disables any uncontrollable event, the entriescijfor un-
controllable events have no importance. For implementation, they can be set to an arbitrarily large
positiveM < ∞.

Definition 4.2: The action of disabling a (controllable) eventσj at stateqi by a supervisorS is
defined as:

dS
ij =

{
1 if σj is disabled at stateqi

0 otherwise

The(n×m) action matrix of disabling controllable events by a supervisorS is denoted as:DS = [dS
ij].

Definition 4.3: The event disabling cost characteristic of a supervisorS that selectively disables
controllable eventsσj at stateqi is defined as:

γS
i =

∑

j: dS
ij=1

cij π̃ij

The disabling cost characteristic is proportional to event cost of the controllable event disabled by the
supervisorS.

The(n×1) disabling cost characteristic vector of a supervisorS is denoted as:̄γs ≡ [γS
1 γS

2 · · · γS
n ]T .

Definition 4.4: The modified characteristic of a stateqi ∈ Q is defined as:

χs
i ≡ χi − γs

i .

The (n× 1) modified characteristic vector under a supervisorS is defined as:

χ̄s ≡ χ̄− γ̄s

whereχ̄s ≡ [χs
i χs

i · · · χs
n]T .

Definition 4.5: The disabling cost measure vector under a supervisorS is defined as:

θ̄s ≡ [I − ΠS ]−1γ̄s.

with θs
i being theith element ofθ̄s, which is the disabling cost incurred by the state.

Definition 4.6: The performance measure vector of a supervisorSis defined as:

η̄s ≡ [I − Πs ]−1χ̄s

with ηs
i being theith element ofη̄s.

The performance index vector̄ηsof a supervisorS can be interpreted as the difference between the
measure vector̄µsof the supervised languageL(S/G) of the DFSAG and the respective disabling
cost measure vector̄θs. That is,

η̄s = µ̄s − θ̄s.

Following the approach taken for optimal control without event disabling cost in Section 3, letS ≡
{S0, S1, · · · , SN} be the finite set of supervisory control policies that can be realized as regular
languages. For a supervisorSk ∈ S, the control policy selectively disables certain controllable events.
Consequently, the corresponding elements of theΠ̃-matrix become zero and those of the event disabling
characteristic vector̄γs are entered in the modified characteristic vectorχ̄s as seen in Definition 10;
therefore,L(Sk/G) ⊆ L(G)∀Sk ∈ S . DenotingΠk ≡ Π(Sk), k ∈ {1, 2, · · · , N}, the performance
measure vector (with event disabling cost) of the supervised plantL(Sk/G)is expressed as:

η̄k ≡ [I − Πk]−1(χ̄− γ̄k)
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where η̄k ≡ η̄sk
and γ̄k ≡ γ̄sk

; and thejth element of the vector̄ηk is denoted asηk
j . The null

supervisorS0 (i.e., no disabled event) has zero disabling cost, i.e.,γ̄0 = 0 and consequentlȳη0 = µ̄0.
We extend the optimal policy construction to include the event disabling cost.

A. Construction of the Optimal Control Policy with Event Disabling Cost

This subsection formulates an optimal control policy with event disabling cost, which maximizes all
elements of the performance vectorη̄s of the supervised language of a DFSAG with event cost matrix
Π̃ ∈ <n×m; state transition cost matrixΠ ∈ <n×n; characteristic vector̄χ ∈ <n; and the disabling
cost matrixC ∈ <n×m. For the unsupervised plant, we setΠ0 ≡ Πplant; χ̄0 = χ̄; γ̄0 = 0; D0 = 0 (no
event disabled so far). For optimal control without event disabling cost in Section 3.1, we disable all
controllable events leading to statesq` for which µ0

` < 0 and subsequently, fork ≥ 1, re-enable all
previously disabled controllable events leading toqj if µk

j ≥ 0. In contrast, for optimal control with
event disabling cost, we disable all controllable eventsσj leading to statesq` for which η0

` < −cij

with δ(qi, σj) = q`, and subsequently, fork ≥ 1, re-enable these disabled events ifηk
` ≥ −cij. The

rationale is that disabling of states with small negative performance may not be advantageous because
of incurring additional event disabling cost.

The control policy with event disabling cost is formulated according to the following two-step
procedure:

Step 1: Starting atk = 0, disable all controllable eventsσj, leading to each stateq` if the inequality:
η0

` < −cij with δ(qi, σj) = q` is satisfied. The algorithm for dealing with this inequality is delineated
below:
• If the inequality is not satisfied for any single case, stop the iterative procedure. No event disabling

can improve the plant performance beyond that of the open loop plant, i.e., the null supervisorS0

achieves optimal control.
• If the inequality is satisfied for at least one case, disable the qualified event(s) and update the

state transition cost matrix toΠ1 ≤ Π0 (elementwise); the disabling matrix toD1 for generating the
cost characteristic function̄γ1; and the modified characteristic vectorχ̄1 ≡ χ̄− γ̄1. Go to Step 2.

Step 2: The performance measure vector fork ≥ 1 is

η̄k ≡ [I − Πk ]−1χ̄k = [I − Πk ]−1 (χ̄− γ̄k)

, re-enable all previously (atk = 0) disabled controllable eventsσj, leading to statesq` if the inequality
ηk

` ≥ −cijwith δ(qi, σj) = q` is satisfied. The algorithm for dealing with this inequality is as follows:
• If the inequality is not satisfied for any single case, an optimal control is achieved and the iterative

procedure is complete. No further event re-enabling can improve the controlled plant performance
beyond that of the current supervisor that is the optimal controller.

• If the inequality is satisfied for at least one case, re-enable all qualified events and update the
state transition cost matrix toΠk+1 ≥ Πk (elementwise); the disabling matrix toDk; the cost
characteristic function tōγk+1; and the modified characteristic vectorχ̄k+1 ≡ χ̄− γ̄k+1. Update
k ← (k + 1) and repeat Step 2 until the inequalityηk

` ≥ −cij with δ(qi, σj) = q` is not satisfied
for all j and `. Then, the current supervisor is optimal in terms of the performance measure in
Definition 12.

The above procedure for optimal control with event disabling cost is an extension of that without
event disabling cost described in Section 3.1. For zero event disabling cost, the two procedures
become identical. Following the rationale of Proposition 5, the computational complexity of the control
synthesis with disabling cost is also polynomial inn.

We present the underlying theory of unconstrained optimal control with event disabling cost as two
new propositions, which simultaneously maximize all elements of the performance vectorη̄.

Proposition 4.1:For all supervisorsSk in the iterative procedure,̄ηk+1 ≥ η̄k elementwise.
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Proposition 4.2:The supervisorS generated upon completion of the algorithm in Section IV is
optimal in terms of the performance in Definition 4.6.

V. EXAMPLE OF DISCRETEEVENT OPTIMAL SUPERVISORYCONTROL

This section presents an example of the above discrete-event optimal control policies for the design
of discrete-event optimal supervisors for a twin-engine unmanned aircraft that is used for surveillance
and data collection. Engine health and operating conditions, which are monitored in real time based
on avionic sensor information, are classified into three mutually exclusive and exhaustive categories:
good; unhealthy(but operable); andinoperable. Upon occurrence of any observed abnormality, the
supervisor decides to continue or abort the mission.

The control objective is to enhance engine safety operation. Engine health and operating conditions,
which are monitored in real time based on avionic sensor information, are classified into three mutually
exclusive and exhaustive categories: (i)good; (ii) unhealthy (but operable); and (iii) inoperable. Upon
occurrence of any observed abnormality, the supervisor decides to continue or abort the mission.

TABLE I

PLANT AUTOMATON STATES

State Description

1 Safe in base
2 Mission executing - two good engines
3 One engine unhealthy during mission execution
4 Mission executing - one good and one unhealthy engine
5 Both engines unhealthy during mission execution
6 One engine good and one engine inoperable
7 Mission execution with two unhealthy engines
8 Mission execution with only one good engine
9 One engine unhealthy and one engine inoperable
10 Mission execution with only one unhealthy engine
11 Mission aborted /not completed (Bad Marked State)
12 Mission successful (Good Marked State)
13 Aircraft destroyed (Bad Marked State)

TABLE II

PLANT EVENT ALPHABET

Event Event Description Controllable Events

s start and take-off
√

b a good engine becoming unhealthy
t an unhealthy engine becoming inoperable
v a good engine becoming inoperable
k keep engine(s) running

√
a mission abortion

√
f mission completion
d destroyed aircraft
l landing

√

The deterministic finite state automaton model of the (unsupervised) plant (i.e., engine operation)
has 13 states, of which three are marked (i.e., accepted) states, and nine events, of which four are
controllable. The dump state is not included as it is not of interest in the supervisory control synthesis
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[7] [3]. All events are assumed to be observable. The states and events of the plant model are listed
in Table I and Table II, respectively. As indicated in Table I, the marked states are: 11, 12 and 13, of
which the states 11 and 13 are bad marked states, and the state 12 is a good marked state.

TABLE III

STATE TRANSITION δ EVENT COST Π̃ AND DISABLING COST C MATRICES

s b t v k a f d l

1 (2) (1)
0.500 0.020
0.000 0.005

2 (3) (6) (12) (3)
0.050 0.010 0.800 0.100
N/A N/A N/A N/A

3 (4) (11)
0.450 0.450
0.050 0.005

4 (5) (6) (9) (12) (13)
0.120 0.160 0.100 0.500 0.120
N/A N/A N/A N/A N/A

5 (7) (11)
0.450 0.450
0.080 0.002

6 (8) (11)
0.450 0.450
0.010 0.004

7 (9) (12) (13)
0.250 0.500 0.200
N/A N/A N/A

8 (9) (13) (12) (13)
0.200 0.010 0.300 0.400
N/A N/A N/A N/A

9 (10) (11)
0.450 0.450
0.35 0.002

10 (13) (12) (13)
0.350 0.200 0.400
N/A N/A N/A

11 (1)
0.95
0.000

12 (1)
0.95
0.000

13

Characteristic Vector̄χ = [0 0 0 0 0 0 0 0 0 − 0.05 0.25 − 1.0]T

(See Definition 2.4)

The state transition functionδ (see the beginning of Section II), the entriesπ̃ij (see Definition 2.4)
of the event cost matrix̃Π, and the entriescij (see Definition 4.1) of the event disabling cost matrix
C are entered simultaneously in relevant cells of Table III. The dump state and any transitions to the
dumped state are not shown in Table III. The empty cells in Table III imply that the state transition
function δ is undefined for the respective state and event. In each non-empty cell in Table III, the
positive integer in the first entry signifies the destination state of the transition; the non-negative
fraction in the second entry is the state-based event costπ̃ij; and the non-negative fraction in the third
entry is the state-based event disabling costcij of the four controllable events (i.e., events s, k, a and
`); event disabling cost is not applicable to the remaining five uncontrollable events (i.e., events b,
t, v, f and d) and the corresponding entries are marked as ”N/A”. (Note that the event costπ̃ij and
event disabling costcij of a given event could be different at different states.)

The values of̃πij were selected by extensive simulation experiments on gas turbine engine models
and were also based on experience of gas turbine engine operation and maintenance. The state-based
event cost̃πij such that each row sum of the event cost matrixΠ̃ is strictly less than one as given in
Definition 2.5 and explained in detail by in a previous publication [10]. The event disabling costcij

for controllable events indicates the difficulty of disabling from the respective states and the values
were chosen based on operational experience. The elements of the characteristic vector (see Definition
2.4) are chosen as non-negative weights based on the perception of each marked state’s role on the gas
turbine system performance. In this simulation example, the characteristic value of the good marked
state 12 is taken to be 0.25 and those of the bad marked states 11 and 13 are taken to be –0.05 and
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–1.0, respectively, to quantify their respective importance; each of the remaining non-marked states
is assigned zero characteristic value as seen at the bottom of Table III. The information provided in
Table III is sufficient to generate the state transition cost matrixΠ (see Definition 2.7).

TABLE IV

SYNTHESIS WITHOUT EVENT DISABLING COST

Iteration 0 Iteration 1 Iteration 2
0.0823 0.0840 0.0850
0.1613 0.1646 0.1665
0.0062 0.0134 0.0366
-0.0145 0.0500 0.0506
-0.0367 0.0134 0.0138
-0.1541 0.0134 0.0138
-0.1097 -0.0317 -0.0312
-0.3706 -0.3084 -0.3080
-0.2953 0.0134 0.0138
-0.6844 -0.6840 -0.6839
0.0282 0.0298 0.0307
0.3282 0.3298 0.3307
-1.0000 -1.0000 -1.0000

TABLE V

SYNTHESIS WITH EVENT DISABLING COST

Iteration 0 Iteration 1 Iteration 2
0.0823 0.0839 0.0841
0.1613 0.1645 0.1649
0.0062 0.0134 0.0188
-0.0145 0.0117 0.0118
-0.0367 -0.0356 -0.0354
-0.1541 0.0034 0.0035
-0.1097 -0.1088 -0.1086
-0.3706 -0.3700 -0.3699
-0.2953 -0.2944 -0.2943
-0.6844 -0.6841 -0.6840
0.0282 0.0297 0.0299
0.3282 0.3297 0.3299
-1.0000 -1.0000 -1.0000

Based on the data given in Tables I, II and III, two optimal control policies - Case (a) without
event disabling cost and the other Case (b) with event disabling cost have been synthesized following
the respective two-step procedures in Sections III and IV. The results of optimal supervisor syntheses
without and with event disabling cost are presented in Tables IV and V supported by respective finite
state machine diagrams in Figures 1(a) and 1(b). For Case(a), the event disabling cost matrixC (i.e.,
the relevant elements in Table III) are set to zero for synthesis of the optimal control without event
disabling cost. In contrast, for Case (b), all elements the event disabling cost matrixC in Table III
are used for synthesis of the optimal control with event disabling cost. At successive iterations, Table
IV lists the performance vectors in Case (a):µ̄0 for the unsupervised (i.e., open loop) plant,µ̄1 in
iteration 1, and̄µ2 in iteration 2 when the synthesis is completed because of no sign change between
elements of̄µ1 and µ̄2. Table IV shows that̄µ2 ≥ µ̄1 ≥ µ̄0 elementwise. This is due to disabling the
controllable eventk leading to states 7, 8 and 10 as indicated by the dashed arcs in the state transition



12

1

3
2

11

12

4

5 6

8

13

7

9
10

l

l

a
b

f

a

k

ba

k
v

d

t

d

k
k

t

b

d

d

v

d
v

a

f

f f

v

a

(a) Supervision without Event Disabling Cost

1

3
2

11

12

4

5 6

8

13

7

9
10

l

l

a
b

f

a

k

ba

k
v

d

t

d

k
k

t

b

d

d

v

d
v

a

f
f f

v

a

(b) Supervision with Event Disabling Cost

Fig. 1. Finite State Machine Diagrams of Optimally Supervised Systems

diagram of Figure 1(a). Consequently, the states 7, 8, and 10 become isolated as there are no other
events leading to these states. Starting with the initial state 1, indicated by an external arrow in Figure
1(a), the optimal performance is 0.0850 that is the first elementµ2

1 of the performance vector̄µ2 as
seen in the top right hand corner in Table IV.

The results are different for Case (b) because the event disabling cost is taken into account in
optimal supervisor synthesis as seen in Table V and Figure 1(b); in this case, only the state 8 is
isolated due to disabling of the controllable eventk at the state 6. At successive iterations, Table V
lists the performance vectors for this Case (b) whereη̄0 = µ̄0 for the unsupervised (i.e., open loop)
plant; η̄1 in iteration 1, andη̄2 in iteration 2 when the synthesis is completed because of no sign
change between elements ofη̄1 and η̄2. (Note that, in general, the number of iterations needed for
supervisor synthesis without and with event disabling cost may not be the same.) Table V shows that
η̄2 ≥ η̄1 ≥ η̄0 elementwise. This is due to disabling of the controllable event k leading to the state 8 as
indicated by the dashed arcs in the state transition diagram of Figure 1(b). Consequently, the state 8
(shown in a dotted circle in Figure 1 (b)) becomes isolated as there are no other events leading to this
state. Starting with the initial state 1, indicated by an arrow in Figure 1(b), the optimal performance
is 0.0841 that is the first elementη̄2

1 of the performance vector̄η2 as seen in the top right hand corner
in Table V. Clearly, the performance of the supervisor in Case (b) is suboptimal with respect to Case
(a). That is, the performance in Case (b) cannot excel that in Case (a)) where the event disabling cost
is not taken into account.

VI. SUMMARY AND CONCLUSIONS

This paper presents the theory, formulation, and validation of optimal supervisory control policies
for dynamical systems, modeled as deterministic finite state automata (DFSA), which may have already
been subjected to constraints such as control specifications. The synthesis procedure for optimal control
without and with event disabling cost is quantitative and relies on a signed real measure of regular
languages, which is based on a specified state transition cost matrix and a characteristic vector [10].

The state-based optimal control policy without event disabling cost maximizes the language measure
vector µ̄ by attempting to selectively disable controllable events that may lead to bad marked states
and simultaneously ensuring that the remaining controllable events are kept enabled. The goal is to
maximize the measure of the controlled plant language without any further constraints. The control
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policy induced by the updated state transition cost matrix yields maximal performance and is unique in
the sense that the controlled language is most permissive (i.e., least restrictive) among all controller(s)
having the optimal performance.

The performance measure vectorη̄, for optimal control with disabling cost, is obtained as the
language measure vector of the supervised plant minus the disabling cost characteristic vector. The
optimal control policy maximizes the performance vector elementwise by attempting to avoid termina-
tion on bad marked states by selectively disabling controllable events with reasonable disabling costs,
and simultaneously ensuring that the remaining controllable events are kept enabled. As the cost of
event disabling approaches zero, the optimal control policy with event disabling cost converges to that
without event disabling cost.

Derivation of the optimal supervisory control policies requires at mostn iterations, wheren is the
number of states of the DFSA model and each iteration is required to solve a set ofn simultaneous
linear algebraic equations having complexity ofO(n3)[10]. As such computational complexity of the
control synthesis procedure is polynomial in the number of DFSA model states. The procedure for
synthesis of the optimal control algorithm has been validated on the DFSA model of a twin-engine
surveillance aircraft.

Future areas of research in optimal control include robustness of the control policy relative to
unstructured and structured uncertainties in the plant model including variations in the language
measure parameters [2].

APPENDIX A.
PROOFS OFPROPOSITIONS: OPTIMAL CONTROL WITHOUT EVENT DISABLING COST

This appendix presents the proofs of five propositions and two crollaries, presented in Section III.

Proof of Proposition 3.1: The DFSA satisfies the identityµk
j =

∑
`∈{1,2, ··· ,n}

πk
j` µk

` + χj that leads to

the inequalityµk
j ≥ (

∑
`

πk
j`) µk

j +χj ⇒ (1−∑
`

πk
j`) µk

j ≥ χj. The proof follows from(1−∑
`

πk
j`) > 0

(see Definitions 2.5 and 2.7).

Proof of Corollary to Proposition 3.1: The proof is similar to that of Proposition 3.1.

Proof of Proposition 3.2: It follows from the the properties of the measure vectorµ̄ that:

µ̄k+1 − µ̄k =
([

I − Πk+1
]−1 − [

I − Πk
]−1

)
χ̄

=
[
I − Πk+1

]−1 (
[I − Πk]− [I − Πk+1]

) [
I − Πk

]−1
χ̄

=
[
I − Πk+1

]−1 (
Πk+1 − Πk]

)
µ̄k

Defining the matrix∆k ≡ Πk+1 − Πk, let thejth column of∆k be denoted as∆k
j . Then,∆k

j ≤ 0
if µk

j < 0 and ∆k
j ≥ 0 if µk

j ≥ 0, and the remaining columns of∆k are zero vectors. This implies
that: ∆kµ̄k =

∑
j

∆k
j µk

j ≥ 0. SinceΠk ≤ Π0 ∀k, [I −Πk+1]−1 ≥ 0 elementwise. Then, it follows that

[I − Πk+1]−1∆kµ̄k ≥ 0 ⇒ µ̄k+1 ≥ µ̄k. For µk
j 6= 0 and∆k as defined above,∆kµ̄k = 0 if and only if

∆k = 0. Then,Πk+1 = Πk and µ̄k+1 = µ̄k.

Proof of Corollary to Proposition 3.2: Since onlyjth column of [I −Πk+1] is different from that
of [I −Πk] and the remaining columns are the same, thejth row of the cofactor matrix of[I −Πk+1]
is the same as that of the cofactor matrix of[I − Πk]. Therefore,

Det [I − Πk+1]µk+1
j = Det [I − Πk]µk

j



14

Since both determinants are real positive by Property 5 of theΠ-matrix, µk
j andµk+1

j have the same
sign.

Proof of Proposition 3.3: Let us consider an arbitrary cost matrix̃Π ≤ Π0 and ˜̄µ ≡ [I − Π̃]−1χ̄.
It will be shown that ˜̄µ ≤ µ̄∗. Let us rearrange the elements of theµ̄∗-vector such that̄µ∗ =
[µ∗1 · · · µ∗`︸ ︷︷ ︸

≥0

| µ∗`+1 · · · µ∗n︸ ︷︷ ︸
<0

]T and the cost matrices̃Π andΠ∗are also rearranged in the order in which

the µ̄∗-vector is arranged.

According to Proposition 3.2, no controllable event leading to statesqk, k = 1, 2, · · · , `, is disabled
and all controllable events leading to statesqk, k = `+1, `+2, · · · , n, are disabled. Therefore, the
elements in the first̀ columns ofΠ∗ are the same as those of theΠ0 and only the elements in the last
(n−`) columns are decreased to the maximum permissible extent by disabling all controllable events.
In contrast, the columns of̃Π are reduced by an arbitrary choice. Therefore, defining∆Π∗ ≡ [Π̃−Π∗],
the first ` columns of∆Π ≤ 0 and the last(n− `) columns of∆Π ≥ 0.

Since µ̄∗ = [µ∗1 · · · µ∗`︸ ︷︷ ︸
≥0

| µ∗`+1 · · · µ∗n︸ ︷︷ ︸
<0

]T and [I − Π̃]−1 ≥ 0 elementwise, and̃̄µ − µ̄∗ = [I −

Π̃]−1 [Π̃− Π∗] µ∗, it follows that

˜̄µ− µ̄∗ = [I − Π̃]−1

︸ ︷︷ ︸
≥0

(∑̀
j=1

Colj · µ∗j
︸ ︷︷ ︸

≤0

+
n∑

j=`+1

Colj · µ∗j
)

︸ ︷︷ ︸
≤0

≤ 0

Therefore,˜̄µ ≤ µ̄∗ for any arbitrary choice of0 ≤ Π̃ ≤ Π0.

Proof of Proposition 3.4: Disabling controllable event(s) leading to a stateqj with performance
measureµ∗j = 0 does not alter the performance vectorµ̄∗. The optimal control does not disable any
controllable event leading to the states with zero performance. This implies that, among all controllers
with the identical performancēµ∗, the control policy induced by theΠ∗-matrix is most permissive.

Proof of Proposition 3.5: Following Proposition 3.2, the sequence of performance vectors{Πk}
in successive iterations of the two-step procedure is monotonically increasing. The first iteration at
k = 0 disables controllable events following Step 1 of the two-step procedure in Section III-A. During
each subsequent iteration in Step 2, the controllable events leading to at least one state are re-enabled.
When Step 2 is terminated, there remains at least one negative element,µk

j < 0 by 3.2. Therefore,
as the number of iterations in Step 2 is at mostn− 1, the total number of iterations to complete the
two-step procedure does not exceedn.

APPENDIX B.
PROOFS OFPROPOSITIONS: OPTIMAL CONTROL WITH EVENT DISABLING COST

This appendix presents the proofs of two propositions, presented in Section IV.

Proof of Proposition 4.1: Given χ̄k ≡ χ̄− γ̄kand η̄k ≡ [I −Πk ]−1χ̄k, let us denote the change in
event disabling characteristic vector as:

ω̄k ≡ γ̄k+1 − γ̄k = χ̄k − χ̄k+1.

Notice that, elementwise

ω̄k

{
> 0 for event disabling
≤ 0 for event re− enabling
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The performance increment at iterationk is given by:

η̄k+1 − η̄k =
[
I − Πk+1

]−1
χ̄k+1 − [

I − Πk
]−1

χ̄k

=
[
I − Πk+1

]−1 [
χ̄k − ω̄k

]− [
I − Πk

]−1
χ̄k

=
([

I − Πk+1
]−1 − [

I − Πk
]−1

)
χ̄k − [

I − Πk+1
]−1

ω̄k

=
[
I − Πk+1

]−1 [
Πk+1 − Πk

] [
I − Πk

]−1
χ̄k − [

I − Πk+1
]−1

ω̄k

= −
{[

I − Πk+1
]−1 [

Πk − Πk+1
]

η̄k +
[
I − Πk+1

]−1
ω̄k

}

At k = 0, the state transition cost matrix changes fromΠ0 to Π1 as a result of disabling selected
controllable events leading to states with sufficiently negative performance. Let us denote theithcolumn
of a matrixA as (A)i, ijthelement of a matrixA as (A)ij, and theith element of a vectorv as (v)i;
and ` andj satisfy the following conditions:

δ(q`, σj) = qp anddSk

`j 6= dSk+1

`j

ThenΠ1 ≤ Π0; ω0
` =

∑
j

c`j

{
Π̃0 − Π̃1

}
`j

; and

(η̄1 − η̄0)i = −
(
[I − Π1]

−1
[Π0 − Π1] η̄0 − [I − Π1]

−1
ω̄0

)
i

= −Σ
`

(
[I − Π1]

−1
)

i`

(
∑
p

(
∑
j

(π̃`jη
0
p + c`jπ̃`j)

))

= −∑
`

(
[I − Π1]

−1
)

i`

(
∑
p

(
∑
j

π̃`j(η
0
p + c`j)

))

Since[I − Π1]
−1 ≥ 0 elementwise and event disabling requires(η0

p + c`j) < 0 for all admissiblè , j
andp, it follows from the above equation thatη̄1 − η̄0 ≥ 0 elementwise.

Next, iterationsk ≥ 1 are considered, for which some of the events disabled atk = 0 are (possibly)
re-enabled.

ωk
` = −

∑
j

c`j

(
Π̃k+1 − Π̃k

)
`j

(
η̄k+1 − η̄k

)
i
=

([
I − Πk+1

]−1 [
Πk+1 − Πk

]
η̄k − [

I − Πk+1
]−1

ω̄k
)

i

=
∑
`

([
I − Πk+1

]−1
)

i`

(
∑
p

(
∑
j

π̃`j(η
k
p + c`j)

))

Since
[
I − Πk

]−1 ≥ 0 elementwise and event re-enabling requires(ηk
p + c`j) ≥ 0 for all admissible

`, j andp, it follows from the above equations thatη̄k+1 − η̄k ≥ 0 for k ≥ 0.

Proof of Proposition 4.2: The optimal supervisorS is synthesized by disabling and re-enabling
certain controllable events at selected states. It is to be shown that the performance of any (controllable)
supervisorS̃ is not superior to that ofS, i.e., η̄s ≥ η̄s̃ ∀S̃ ∈ S.

Let an arbitrary supervisor̃S ∈ S disable controllable eventsσj at selected statesq`, which are not
disabled byS, i.e., (ηs

p + c`j) ≥ 0 with δ(q`, σj) = qp, and enable some other controllable eventsσj̃ at
selected statesq`, leading to stateqp̃, which are disabled byS, i.e., (ηs

p̃ + c`j̃) < 0 with δ(q`, σj̃) = qp̃

where`, j and j̃ satisfy the conditiondS
`j 6= dS̃

`j anddS
`j̃
6= dS̃

`j̃
.

Denoting the difference in event disabling characteristic vectors and the state transition cost matrices
of S andS̃ as:ω̄ ≡ γ̄ s̃− γ̄s = χ̄s− χ̄s̃, the corresponding difference in performance vectors is obtained
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as:
η̄S − η̄S̃ =

[
I − ΠS

]−1
χ̄S −

[
I − ΠS̃

]−1

χ̄S̃

=
[
I − ΠS

]−1
χ̄S −

[
I − ΠS̃

]−1 [
χ̄S − ω̄

]

=

([
I − ΠS

]−1 −
[
I − ΠS̃

]−1
)

χ̄S +
[
I − ΠS̃

]−1

ω̄

=
[
I − ΠS̃

]−1 [
ΠS − ΠS̃

] [
I − ΠS

]−1
χ̄S +

[
I − ΠS̃

]−1

ω̄

=
[
I − ΠS̃

]−1 [
ΠS − ΠS̃

]
η̄S +

[
I − ΠS̃

]−1

ω̄

Letting ∆ ≡ ΠS − ΠS̃, the following equality conditions are defined:
∆`p =

∑
j

π̃`jand∆`p̃ = −∑
j̃

π̃`j̃

Noting that the subscriptp depends on both̀ andj, and the subscript̃p depends on both̀̃ and j̃,
the product of the matrix∆ ∈ <n×n and the performance vector̄ηs ∈ <n is obtained as:

(∆ · η̄s)` ≡
∑
p

∆`pη
s
p +

∑
p̃

∆`p̃η
s
p̃

=
∑
p

(
∑
j

π̃`j ηs
p

)
−∑

p̃

(
∑
j̃

π̃`j̃ ηs
p̃

)

The changes in the event disabling characteristic vector and the performance vector are then respec-
tively expressed as follows:

(ω̄)` =
∑
i

π̃`ic`i

=
∑
p

(
∑
j

π̃`jc`j

)
−∑

p̃

(
∑
j̃

π̃` j̃ c`j̃

)

(
η̄s − η̄s̃

)
i
=

([
I − ΠS̃

]−1

(∆ · η̄s + ω̄)

)

i

=
∑
`

([
I − ΠS̃

]−1
)

i`

(∆ · η̄s + ω̄)`

The `th element of the vector(∆ · η̄s + ω̄) is obtained as:

(∆η̄s + ω̄)`

=
∑
p

(
∑
j

π̃`j ηs
p

)
−∑

p̃

(
∑
j̃

π̃`j̃ ηs
p̃

)

+
∑
p

(
∑
j

π̃`jc`j

)
−∑

p̃

(
∑
j̃

π̃`j̃c`j̃

)

=
∑
p

(
∑
j

π̃`j (ηs
p + c`j)

)
−∑

p̃

(
∑
j̃

π̃`j̃ (ηs
p̃ + c`j̃)

)
≥ 0

because(ηs
p + c`j) ≥ 0 and (ηs

p̃ + c`j̃) < 0. Therefore, since
[
I − ΠS̃

]−1

≥ 0 and (∆ η̄s + ω̄) ≥ 0

elementwise, it follows that
(
η̄s − η̄s̃

) ≥ 0 elementwise.
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