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Abstract

This paper presents an algorithm for optimal control of regular languages, realized as deterministic finite
state automata (DFSA), with (possible) penalty on event disabling. A signed real measure quantifies the behavior
of controlled sublanguages based on a state transition cost matrix and a characteristic vector as reported in
an earlier publication. The performance index for the proposed optimal policy is obtained by combining
the measure of the supervised plant language with the cost of disabled controllable event(s). Synthesis of
this optimal control policy requires at most iterations, wheren is the number of states of the DFSA
model generated from the unsupervised regular language. The computational complexity of the optimal control
synthesis is polynomial in. The control algorithms are illustrated with an application example of a twin-engine
surveillance aircraft.
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. INTRODUCTION

For discrete-event supervisory control, the dynamical behavior of a physical plant is often modeled
as a regular language that can be realized by a finite-state automaton [7]. The sublanguage of a
controlled plant could be different under different supervisors that are constrained to satisfy different
specifications. Such a partially ordered set of sublanguages requires a quantitative measure for total
ordering of their respective performance. To address this issue, Wang and Ray [11] have developed
a signed measure of regular languages. This work was followed by Ray and Phoha [8] and Surana
and Ray [10] who have constructed a vector space of sublanguages with a metric based on the total
variation measure of the language.

Several researchers have proposed optimal control of deterministic finite state automata (DFSA)
based on different assumptions. Some of these researchers have attempted to quantify the controller
performance using different types of cost assigned to the individual events. Passino and Antsaklis [6]
proposed path costs associated with state transitions and hence optimal control of a discrete event
system is equivalent to following the shortest path on the graph representing the uncontrolled system.
Kumar and Garg [4] introduced the concept of payoff and control costs that are incurred only once
regardless of the number of times the system visits the state associated with the cost. Consequently,
the resulting cost is not a function of the dynamic behavior of the plant. Brave and Heymann [1]
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introduced the concept of optimal attractors in discrete-event control. Sengupta and Lafortune [9]
used control cost in addition to the path cost in optimization of the performance index for trade-off
between finding the shortest path and reducing the control cost. Although costs were assigned to the
events, no distinction was made for events generated at (or leading to) different states that could
be “good” or “bad”. These optimal control strategies have addressed performance enhancement of
discrete-event control systems without a quantitative measure of languages.

Fu et al. [3] have proposed a state-based approach to optimal control of regular languages by
selectively disabling controllable events so that the resulting optimal policy can be realized as a
controllable supervisor. The performance index of the optimal policy is a signed real measure of the
supervised sublanguage, which is expressed in terms of a cost matrix and a characteristic vector [10],
but it does not assign any additional penalty for event disabling.

This paper extends the earlier work of Fu et al. [3] on optimal control to include the cost of event
disabling. The rationale is that the previously proposed optimal supervisor makes the best trade-off
between reaching good states and avoiding bad states, and achieves optimal performance in terms
of the language measure of the supervised plant. However, another supervisor that has a slightly
inferior performance relative to the above optimal controller may only require disabling of some other
controllable events, which is much less difficult to achieve. Therefore, with due consideration to event
disabling, the second controller may be preferable.

From the above perspectives, the performance index for the optimal control policy proposed in this
paper is obtained by combining the measure of the supervised plant language with the cost of disabled
event(s). Starting with the (regular) language of an unsupervised plant automaton, the optimal control
policy makes a trade-off between the measure of the supervised sublanguage and the associated event
disabling cost to achieve the best performance.

The paper is organized in six sections including the present one. Section Il reviews the previous
work on language measure [10]. Section Il presents the optimal control policy without the event
disabling cost and proofs of the propositions are given in Appendix A. Section IV modifies the
performance index to include the event disabling cost and formulates the algorithm of the optimal
control policy with event disabling cost as an extension of Section Ill. Proofs of the propositions are
given in Appendix B. Section V presents an application example to illustrate the concepts of optimal
control without and with event disabling cost. The paper is summarized and concluded in Section VI
along with recommendations for future work.

[I. BRIEF REVIEW OF THE LANGUAGE MEASURE

This section briefly reviews the concept of signed real measure of regular languages [11] [10]. Let
the plant behavior be modeled as a deterministic finite state automaton (DFSA) as:

Gi = (Q,E,é, qw@m) (1)

where @ is the finite set of states with)| = n excluding the dump state [7] if any, and € Q
is the initial state;: is the (finite) alphabet of events withi| = m; ¥« is the set of all finite-length
strings of events including the empty stringthe (possibly partial) function : Q x ¥ — @ represents
state transitions and' : (Q x X* — @ is an extension ob; and@,, C @ is the set of marked (i.e.,
accepted) states.

Definition 2.1: The languagéd.(G;) generated by a DFSA initialized at the state; € @ is defined
as:
L(Gi) ={s € X" | 0"(qi, s) € Q} )

Definition 2.2: The languagel,,(G;) marked by a DFSAG; initialized at the state; € @ is
defined as:



L (Gi) = {s € X" [ 6%(¢i, 8) € Qm} 3)

The languagd.(G;) is partitioned as the non-marked and the marked langudgés,) = L(G;) —
L..(G;) andL,,(G;), consisting of event strings that, starting fragne (), terminate at one of the non-
marked states Q) — @),,, and one of the marked states@h,, respectively. The s&d,, is partitioned
into @, and@;,, where@);’, contains allgood marked states that we desire to reach @rgdcontains
all bad marked states that we want to avoid, although it may not always be possible to avoid the bad
states while attempting to reach the good states. The marked lan@ydg® is further partitioned
into L (G) and L., (G;) consisting of good and bad strings that, starting frgmterminate onQ;,
and @, respectively.

A signed real measure : 2°° — R = (—o0, o) is constructed for quantitative evaluation of every
event strings € X*. The languagd.(G;) is decomposed into null, i.eL°(G;), positive, i.e.,.L} (G;),
and negative, i.e.L, (G;) sublanguages.

Definition 2.3: The language of all strings that, starting at a stgte (), terminates on a state
¢; € Q, is denoted ad.(¢;, ¢;). That is,

L(gi,q5) = {s € L(Gy) : 6"(ai, s) = q;}- (4)
Definition 2.4: The characteristic function that assigns a signed real weight to state-partitioned
sublanguage$.(¢;, ¢;),i = 1,2,...,n is defined asy : Q — [—1, 1] such that

[—1, 0) ifQj - Q;l
x(a) € {0} ifq; € Qu
| \ (0.1] ifg; € Qpy, . .
Definition 2.5: The event cost is conditioned on a DFSA state at which the event is generated, and
is defined asr : ¥* x @ — [0, 1] such thatvg; € Q, Vo, € £,Vs € ¥,
(1) ﬁ[ak,qj] = ﬁ'jk c [0, 1), Zkﬁ-ﬂﬂ <1,
(2) 7o, q;] =0if 6(g;,0) is undefined; e, ¢;] = 1;
(3) 7lows, qj] = ®low, ;] 7[s,(g;, on)]-

The event cost matrix, denoted ﬁsmatrix, is defined as:

T 712 ... T1m
~ 7~T21 ﬁ'gz Ce ﬁgm
TI=

Tnl Tp2 -+ Tnm

An application of the induction principle to part(3) in Definition 2.5 shows that

T[st, q;] = 7[s, q;]7[t, 6" (g5, 5)]

The condition) _, 7;, < 1 provides a sufficient condition for the existence of the real signed measure
as discussed in [10] along with additional comments on the physical interpretation of the event cost.

Now we define the measure of a sublanguage of the plant langu&ge) in terms of the signed
characteristic functiory and the non-negative event cost

Definition 2.6: The signed real measuyeof a singleton string sefs} C L(q;, ;) C L(G;) € 2%
is defined as:

p({s}) = x(q;) 7(s, ¢:) Vs € L(g, q;).



The signed real measure 6{q;, ¢;) is defined as:

1 (L(gi, q5)) = 1 ({s})

s€L(qi,q5)

and the signed real measure of a DF&A initialized at the state; € @, is denoted as:

pi = p(L(G) = Y n(Lia )
Definition 2.7: The state transition cost of the DFSA is defined as a functiod) x @ — [0, 1)
such thatVy;, ¢x € Q, 7(g, @) = > 7(o,q;) = mjandmy = 0if {0 € ¥ :
o€X:8(q5,0)=qx
d(q;, o) = qr.} = 0. The state transition cost matrix, denotedlasnatrix, is defined as:

T 712 ... Tip

o1 T2 ... Top
I1= . . .

Tpl Tp2 .. Tnpn

Wang and Ray [11] and Surana and Ray [10] have shown that the measure(L(G;)) of the
languagel(G;), with the initial statey;, can be expressed gs; = Zj mij ;g + x; wherex; = x(q;).
Equivalently, in vector notationz = I + y where the measure vectpr= [y us - u,)*and the
characteristic vectog = [x; x2 ‘- x|’ - We delineate salient properties of the state transition cost
matrix IT,which are useful for constructing the optimal control policy.

Property 1: Following Definitions 4 and 6, there exist € (0, 1)such that the induced infinity
norm |[IIj , = max > ;m; = 1 — 0. The matrix operator/ — I1] is invertible implying that the
inverse[I — II]~! is a bounded linear operator with its induced infinity notfy — I1] ||, < 67!
[5]. Therefore, the language measure vector can be expressed asf/ — I1]~'y, whereji € R",
and computational complexity of the measure&ig:®) [10].

Property 2: The matrix operatof/ —I1]~! > 0 elementwise. By Taylor series expansidn; 1]~ =
S [I]*and [TI]* > 0 becausdl > 0.

k=0

Property 3: The determinanDet [I —TII] is real positive because the eigenvalues of the real matrix
[I —TI] appear as real or complex conjugates and they have positive real parts. Hence, the product
of all eigenvalues of[/ — II] is real positive.

Property 4: An affine operator]’ : R* — R"can be defined asl'v = Il v + x for any arbitrary
v € R". Asll is a contraction,T" is also a contraction. Sinc&” is a Banach space, there exists a
unique fixed point of/'[5] that is the measure vectar satisfying the conditiorf” : = 1. Therefore,
The language measure vectplis uniquely determined agt = [/ —II]~! i, which can be interpreted
as the unique fixed point of a contraction operator.

[1l. OPTIMAL CONTROL WITHOUT EVENT DISABLING COST

This section presents the theoretical foundations of the optimal supervisory control of DFSA plants
by selectively disabling controllable events so that the resulting optimal policy can be realized as
a controllable supervisor [3]. The plant model is first modified to satisfy the specified operational
constraints, if any. Then, starting with the (regular) language of the unsupervised plant, the optimal
policy maximizes the performance of the controlled sublanguage of the supervised plant without any
further constraints. The performance index of the optimal policy is a signed real measure of the



supervised sublanguage, described in Section 2, which is expressed in terms of a state transition cost
matrixIT and a characteristic vect®t , but it does not assign any additional penalty for event disabling.

Let S = {S° S ..., SM} be the finite set of all supervisory control policies that selectively dis-
ables controllable events of the unsupervised plant DES#&nd can be realized as regular languages.
Denotingll® = 11(S*), ke {1,2,---, N}, the supervisos® is the null controller (i.e., no event is
disabled) implying that.(S°/G) = L(G). Therefore the controller cost matrix(SY) = 11° = [1#len
that is thell-matrix of the unsupervised plant automaiGtFor a supervisos®, i € {1, 2, ---, N},
the control policy selectively disables certain controllable events by which the corresponding elements
of the II-matrix (see Definition 4) become zero. Therefore the (elementwise) inequality holds: and
L(S*/G) C L(G) VS* € S. The language measure vector of a supervised glésit /G)is expressed
as:

pt= -1y

where the;" element of the vectofi* is denoted ag.?. In the sequelu” is chosen to be the
performance measure for the optimal control policy without event disabling cost.

Proposition 3.1:Let j be such thap? = . {H%in }u’g. If b <0, theny; < 0; and if u¥ < 0, then
€{1,2,-n
X5 < 0.

Corollary 3.1: Let ¥ = e }uf. If 1 >0, theny; > 0 and if .} > 0, theny; > 0.
e{1,2,,n
Proposition 3.2: GivenII(S*) = I1* andp* = [I-11¥] 1y, letIT**! be generated frori* for £ > 0
by disabling or re-enabling the appropriate controllable events as follwse {1, 2, --- , n}, ij*
element of[I*! is modified as:
> if /ﬂi >0
k+1 _ -k ; _
Tij = T @f /J%; =0 (5)
<m; if py<0

andII* < II° Vk. Then, i**! > ji* elementwise and equality holds if and onlylif+! = II*.

Corollary 3.2: For a given statey;, let uf < 0 and II**" be generated froniI* by disabling

controllable events that lead to the stafe Then, ;5" < 0.

In Proposition 3.2, some elements of tjie column ofI1* are decreased (or increased) by disabling
(or re-enabling) controllable events that lead to the statdsr which uﬁ; < 0 (or u;? > (). Next we
show that an optimal supervisor can be achieved to yield best performance in terms of the language
measure.

Proposition 3.3: Iterations of event disabling and re-enabling lead to a cost mdAtritkat is optimal
in the sense of maximizing the performance vegtoe= [I — I1*] !y elementwise.

Proposition 3.4: The control policy induced by the optimHI-matrix in Proposition 3.3 is unique in
the sense that the controlled language is most permissive (i.e., least restrictive) among all controller(s)
having the best performance.

Propositions 3.3 and 3.4 suffice to conclude thatlihematrix yields the most permissive controller
with the best performancg*. The optimal control policy (without event disabling cost) can be realized
as:

e All controllable events leading to the statgs for which x; < 0, are disabled;

e All controllable events leading to the statgs for which i > 0, are enabled.



A. Construction of the Optimal Control Policy without Event Disabling Cost

We propose a procedure for construction of the optimal control policy that maximizes the per-
formance of the controlled language of the DFSA (without event disabling cost), starting from
any initial stateq € ). Let G be a DFSA plant model without any constraint (i.e., operational
specifications) and have the state transition cost matrix of the open loop plafP'&y: ¢ f*»
and the characteristic vector ag: € R". Then, the performance vector &t = 0 is given as:

i = [y o w2 T = (I-11%"1y, where thej™ elementy of the vectoru” is the performance

of the Ianguage with statg as the initial state. Therp, <0 |mplies that, if the statg; is reached,

then the plant will yield bad performance thereafter. Intumvely, the control system should attempt to
prevent the automaton from reachipg by disabling all controllable events that lead to this state.
Therefore, the optimal control algorithm starts with disabling all controllable events that lead to every
stateq; for which ;i < 0. This is equivalent to reducing all elements of the corresponding columns of
the I1°-matrix by disabling those controllable events. In the next iteration,k.e. 1, the updated cost

matrix II* is obtained asII! = — A% where AY > 0 (the inequality being implied elementwise)
is composed of event costs corresponding to all controllable events that have been disabled. Using
Proposition 2,:° < i' = [I — IT'] ! . Although all controllable events leading to every state

corresponding to a negative elementof are disabled, some of the controllable events that were
disabled a& = 0 may now lead to states corresponding to positive elements$.d?erformance could

be further enhanced by re-enabling these controllable eventst Boil, IT*+' = TII* + A* where

A* > 0 is composed of the state transition costs of all re-enabled controllable events at

If 2° >0, i.e., there is no statg such thatuO < 0, then the plant performance cannot be improved
by event disabling and the null controlléf (i.e., no disabled event) is the optimal controller for the
given plant. Therefore, we consider the cases whére 0 for some statey;.

Starting withk = 0 andII° = IIP"*_ the control policy is constructed by the following two-step
procedure:

Step 1 For every stateg; for which /L < 0, disable controllable events leading 49. Now,
I = 1I1° — A9, whereA0 >0is composed of event costs corresponding to all controllable events,
leading tog; for which 19 < 0, which have been disabled at= 0

Step 2 Fork > 1, if Mk > 0, re-enable all controllable events leadinggto which were disabled
in Step 1. The cost matrix is updated &+ = TI* 4+ AF for k > 1, whereA* > 0 is composed of
event costs corresponding to all currently re-enabled controllable events. The iteration is terminated
if no controllable event Ieading tg;, remains disabled for WhIChk > 0. At this stage, the optimal
performances* = [[ — I1*] 7!

Proposition 3.5: The number of iterations needed to arrive at the optimal control law without event
disabling cost does not exceed the numbemf states of the DFSA.

Since each iteration in the synthesis of the optimal control requires a single Gaussian elimination
of n unknowns fromn linear algebraic equations, computational complexity of the control algorithm
is polynomial inn.

V. OPTIMAL CONTROL WITH EVENT DISABLING COST

This section presents the optimal control policy with event disabling cost by including the cost of
all (controllable) events, disabled by the supervisor, in the performance cost. As the cost of disabled
event(s) approaches zero, the optimal control policy with event disabling cost converges to the optimal
control policy without event disabling cost, described in Section .

Definition 4.1: Let the cost of disabling a (controllable) eventthat causes transition from be
denoted asg;; wherec;; € [0, 1]. The (n x m) disabling cost matrix is denoted &5= |c;;].



Since the (controllable) supervisor never disables any uncontrollable event, the eptaesin-
controllable events have no importance. For implementation, they can be set to an arbitrarily large
positive M < cc.

Definition 4.2: The action of disabling a (controllable) evemt at stateq; by a supervisorS is
defined as:

£S5 — 1ifojis di_sabled at state,
“ 0  otherwise
The(n xm) action matrix of disabling controllable events by a supervisis denoted asD® = [dfj].

Definition 4.3: The event disabling cost characteristic of a supervisdhat selectively disables
controllable events; at stateg; is defined as:

S ~
Vi = E Cij Tij
j: df=1

The disabling cost characteristic is proportional to event cost of the controllable event disabled by the
supervisors.
The(nx1) disabling cost characteristic vector of a supervisis denoted asy® = [} 75 --- 75]T.

Definition 4.4: The modified characteristic of a stajec ) is defined as:
Xi =Xi =%

The (n x 1) modified characteristic vector under a superviSas defined as:

=S

X=7

v
wherex® = [x; x§ -+ x;)"
Definition 4.5: The disabling cost measure vector under a supen#sir defined as:
0° =1 -11°]""5".
with 6 being theit" element ofg*, which is the disabling cost incurred by the state.
Definition 4.6: The performance measure vector of a supervigerdefined as:
7= [[ . Hs]flxs
with 7; being thei'" element ofi*.

The performance index vectgfof a supervisolS can be interpreted as the difference between the
measure vectofi*of the supervised language(S/G) of the DFSAG and the respective disabling
cost measure vecter. That is,

775 — ﬂc . 9_3'
Following the approach taken for optimal control without event disabling cost in Section 3,=et
{50, 8t ... SN} be the finite set of supervisory control policies that can be realized as regular

languages. For a supervis8f € S, the control policy selectively disables certain controllable events.
Consequently, the corresponding elements oftheatrix become zero and those of the event disabling
characteristic vectofi® are entered in the modified characteristic vegtdras seen in Definition 10;
therefore,L(S*/G) C L(G)VS* € S. DenotingIl* = I1(S*), ke {1,2,---, N}, the performance
measure vector (with event disabling cost) of the supervised flésit/G)is expressed as:

7= -1 (v —7")



where* = 7** and ¥¥ = 5; and the ™ element of the vectof* is denoted ag)¥. The null
supervisorSY (i.e., no disabled event) has zero disabling cost, &+ 0 and consequenthy’ = ji°.
We extend the optimal policy construction to include the event disabling cost.

A. Construction of the Optimal Control Policy with Event Disabling Cost

This subsection formulates an optimal control policy with event disabling cost, which maximizes all
elements of the performance vectprof the supervised language of a DF&Awith event cost matrix
IT € R™*™; state transition cost matrikl € R"*"; characteristic vectog € R"; and the disabling
cost matrixC' € "™ For the unsupervised plant, we &t = I17/; 0 = y; 4° = 0; D° =0 (no
event disabled so far). For optimal control without event disabling cost in Section 3.1, we disable all
controllable events leading to statgsfor which ) < 0 and subsequently, fot > 1, re-enable all
previously disabled controllable events leadingyfaf Mf > 0. In contrast, for optimal control with
event disabling cost, we disable all controllable eventdeading to stateg, for which n) < —c¢;;
with §(¢;, ;) = qe, and subsequently, fat > 1, re-enable these disabled events;jfz —ci;. The
rationale is that disabling of states with small negative performance may not be advantageous because
of incurring additional event disabling cost.

The control policy with event disabling cost is formulated according to the following two-step
procedure:

Step 1 Starting atk = 0, disable all controllable events, leading to each staig if the inequality:
nY < —c;; with §(¢;, 05) = g, is satisfied. The algorithm for dealing with this inequality is delineated
below:

e If the inequality is not satisfied for any single case, stop the iterative procedure. No event disabling
can improve the plant performance beyond that of the open loop plant, i.e., the null supétvisor
achieves optimal control.

e If the inequality is satisfied for at least one case, disable the qualified event(s) and update the
state transition cost matrix tA' < I1° (elementwise); the disabling matrix #©! for generating the
cost characteristic function'; and the modified characteristic vectpt = y — 4. Go to Step 2.

Step 2 The performance measure vector fob> 1 is

pr= -1 =TT (v = )

, re-enable all previously (&t = 0) disabled controllable events, leading to stateg, if the inequality
ny > —c;with §(q;, 0;) = ¢ is satisfied. The algorithm for dealing with this inequality is as follows:

. If the inequality is not satisfied for any single case, an optimal control is achieved and the iterative
procedure is complete. No further event re-enabling can improve the controlled plant performance
beyond that of the current supervisor that is the optimal controller.

« If the inequality is satisfied for at least one case, re-enable all qualified events and update the
state transition cost matrix ti*+! > II* (elementwise); the disabling matrix tB*; the cost
characteristic function tg**!; and the modified characteristic vectpit! = y — ¥+, Update
k «— (k+ 1) and repeat Step 2 until the inequality > —c;; with 6(¢;, o;) = ¢, is not satisfied
for all j and/. Then, the current supervisor is optimal in terms of the performance measure in
Definition 12.

The above procedure for optimal control with event disabling cost is an extension of that without
event disabling cost described in Section 3.1. For zero event disabling cost, the two procedures
become identical. Following the rationale of Proposition 5, the computational complexity of the control
synthesis with disabling cost is also polynomialrin

We present the underlying theory of unconstrained optimal control with event disabling cost as two
new propositions, which simultaneously maximize all elements of the performance yector

Proposition 4.1: For all supervisorsS* in the iterative procedurej®*! > 7* elementwise.



Proposition 4.2: The supervisorS generated upon completion of the algorithm in Section IV is
optimal in terms of the performance in Definition 4.6.

V. EXAMPLE OF DISCRETEEVENT OPTIMAL SUPERVISORYCONTROL

This section presents an example of the above discrete-event optimal control policies for the design
of discrete-event optimal supervisors for a twin-engine unmanned aircraft that is used for surveillance
and data collection. Engine health and operating conditions, which are monitored in real time based
on avionic sensor information, are classified into three mutually exclusive and exhaustive categories:
good unhealthy(but operable); andghoperable Upon occurrence of any observed abnormality, the
supervisor decides to continue or abort the mission.

The control objective is to enhance engine safety operation. Engine health and operating conditions,
which are monitored in real time based on avionic sensor information, are classified into three mutually
exclusive and exhaustive categories:g@od (ii) unhealthy (but operablepand (iii) inoperable Upon
occurrence of any observed abnormality, the supervisor decides to continue or abort the mission.

TABLE |
PLANT AUTOMATON STATES

| State| Description |

1 Safe in base
2 Mission executing - two good engines
3 One engine unhealthy during mission execution
4 Mission executing - one good and one unhealthy engine
5 Both engines unhealthy during mission execution
6 One engine good and one engine inoperable
7 Mission execution with two unhealthy engines
8 Mission execution with only one good engine
9 One engine unhealthy and one engine inoperable
10 | Mission execution with only one unhealthy engine
11 Mission aborted /not completed (Bad Marked State)
12 | Mission successful (Good Marked State)
13 | Aircraft destroyed (Bad Marked State)
TABLE 1l
PLANT EVENT ALPHABET
[ Event[ Event Description | Controllable Events|

start and take-off v
a good engine becoming unhealthy
an unhealthy engine becoming inoperab
a good engine becoming inoperable
keep engine(s) running Vv
mission abortion vV
mission completion
destroyed aircraft

landing Vv

e

~ QA TS S+ T®

The deterministic finite state automaton model of the (unsupervised) plant (i.e., engine operation)
has 13 states, of which three are marked (i.e., accepted) states, and nine events, of which four are
controllable. The dump state is not included as it is not of interest in the supervisory control synthesis
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[7] [3]. All events are assumed to be observable. The states and events of the plant model are listed
in Table | and Table I, respectively. As indicated in Table I, the marked states are: 11, 12 and 13, of
which the states 11 and 13 are bad marked states, and the state 12 is a good marked state.

TABLE 1lI
STATE TRANSITION § EVENT COSTII AND DISABLING COSTC MATRICES

1 (2) 1)
0.500 0.020
0.000 0.005
2 (3) (6) (12) (3)
0.050 0.010 0.800 | 0.100
N/A N/A NA | NA
3 @ [650)
0.450 | 0.450
0.050 | 0.005
1 ® | ©® | O @ | @
0.120 | 0.160 | 0.100 0.500 | 0.120
NA | NA | NIA NA | NA
5 (7) (11)
0.450 | 0.450
0.080 | 0.002
6 (8) (11)
0.450 | 0.450
0.010 | 0.004
7 ©) @ | @)
0.250 0.500 | 0.200
N/A NA | NA
B © @) @ | @)
0.200 0.010 0.300 | 0.400
N/A N/A NA | NA
9 @y | @an
0.450 | 0.450
0.35 | 0.002
10 a3 @@ | @)
0.350 0.200 | 0.400
N/A NA | NA
1 (@)
0.95
0.000
2 (@)
0.95
0.000
13

Characteristic Vectog =[000000000 —0.05 0.25 — 1.0]7
(See Definition 2.4)

The state transition functioh (see the beginning of Section Il), the entrigs (see Definition 2.4)
of the event cost matrixl, and the entries;; (see Definition 4.1) of the event disabling cost matrix
C are entered simultaneously in relevant cells of Table Ill. The dump state and any transitions to the
dumped state are not shown in Table Ill. The empty cells in Table Ill imply that the state transition
function ¢ is undefined for the respective state and event. In each non-empty cell in Table Ill, the
positive integer in the first entry signifies the destination state of the transition; the non-negative
fraction in the second entry is the state-based eventiggsand the non-negative fraction in the third
entry is the state-based event disabling egsbf the four controllable events (i.e., events s, k, a and
¢); event disabling cost is not applicable to the remaining five uncontrollable events (i.e., events b,
t, v, f and d) and the corresponding entries are marked as "N/A”. (Note that the everit; casid
event disabling cost;; of a given event could be different at different states.)

The values ofr;; were selected by extensive simulation experiments on gas turbine engine models
and were also based on experience of gas turbine engine operation and maintenance. The state-based
event costr;; such that each row sum of the event cost malttiis strictly less than one as given in
Definition 2.5 and explained in detail by in a previous publication [10]. The event disabling:gost
for controllable events indicates the difficulty of disabling from the respective states and the values
were chosen based on operational experience. The elements of the characteristic vector (see Definition
2.4) are chosen as non-negative weights based on the perception of each marked state’s role on the gas
turbine system performance. In this simulation example, the characteristic value of the good marked
state 12 is taken to be 0.25 and those of the bad marked states 11 and 13 are taken to be —0.05 and
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-1.0, respectively, to quantify their respective importance; each of the remaining non-marked states
is assigned zero characteristic value as seen at the bottom of Table Ill. The information provided in
Table 1l is sufficient to generate the state transition cost mairsee Definition 2.7).

TABLE IV
SYNTHESIS WITHOUT EVENT DISABLING COST

Iteration O | Iteration 1 | Iteration 2
0.0823 0.0840 0.0850
0.1613 0.1646 0.1665
0.0062 0.0134 0.0366
-0.0145 0.0500 0.0506
-0.0367 0.0134 0.0138
-0.1541 0.0134 0.0138
-0.1097 -0.0317 -0.0312
-0.3706 -0.3084 -0.3080
-0.2953 0.0134 0.0138
-0.6844 -0.6840 -0.6839
0.0282 0.0298 0.0307
0.3282 0.3298 0.3307
-1.0000 -1.0000 -1.0000

TABLE V

SYNTHESIS WITH EVENT DISABLING COST

Iteration O | Iteration 1 | Iteration 2
0.0823 0.0839 0.0841
0.1613 0.1645 0.1649
0.0062 0.0134 0.0188
-0.0145 0.0117 0.0118
-0.0367 -0.0356 -0.0354
-0.1541 0.0034 0.0035
-0.1097 -0.1088 -0.1086
-0.3706 -0.3700 -0.3699
-0.2953 -0.2944 -0.2943
-0.6844 -0.6841 -0.6840
0.0282 0.0297 0.0299
0.3282 0.3297 0.3299
-1.0000 -1.0000 -1.0000

Based on the data given in Tables I, Il and lll, two optimal control policies - Case (a) without

event disabling cost and the other Case (b) with event disabling cost have been synthesized following
the respective two-step procedures in Sections Il and IV. The results of optimal supervisor syntheses
without and with event disabling cost are presented in Tables IV and V supported by respective finite
state machine diagrams in Figures 1(a) and 1(b). For Case(a), the event disabling cosCn(iagrix

the relevant elements in Table Ill) are set to zero for synthesis of the optimal control without event
disabling cost. In contrast, for Case (b), all elements the event disabling cost @aimixrable 11|

are used for synthesis of the optimal control with event disabling cost. At successive iterations, Table
IV lists the performance vectors in Case (a): for the unsupervised (i.e., open loop) plaat, in
iteration 1, andz? in iteration 2 when the synthesis is completed because of no sign change between
elements ofz! and z2. Table IV shows thagi? > ! > i° elementwise. This is due to disabling the
controllable event: leading to states 7, 8 and 10 as indicated by the dashed arcs in the state transition
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(a) Supervision without Event Disabling Cost (b) Supervision with Event Disabling Cost

Fig. 1. Finite State Machine Diagrams of Optimally Supervised Systems

diagram of Figure 1(a). Consequently, the states 7, 8, and 10 become isolated as there are no other
events leading to these states. Starting with the initial state 1, indicated by an external arrow in Figure
1(a), the optimal performance is 0.0850 that is the first eleméndf the performance vectgi® as

seen in the top right hand corner in Table IV.

The results are different for Case (b) because the event disabling cost is taken into account in
optimal supervisor synthesis as seen in Table V and Figure 1(b); in this case, only the state 8 is
isolated due to disabling of the controllable evénat the state 6. At successive iterations, Table V
lists the performance vectors for this Case (b) whette= 1i° for the unsupervised (i.e., open loop)
plant; 7' in iteration 1, andj? in iteration 2 when the synthesis is completed because of no sign
change between elements @f and 772. (Note that, in general, the number of iterations needed for
supervisor synthesis without and with event disabling cost may not be the same.) Table V shows that
n? > nt > 7° elementwise. This is due to disabling of the controllable event k leading to the state 8 as
indicated by the dashed arcs in the state transition diagram of Figure 1(b). Consequently, the state 8
(shown in a dotted circle in Figure 1 (b)) becomes isolated as there are no other events leading to this
state. Starting with the initial state 1, indicated by an arrow in Figure 1(b), the optimal performance
is 0.0841 that is the first elemeni of the performance vectaf as seen in the top right hand corner
in Table V. Clearly, the performance of the supervisor in Case (b) is suboptimal with respect to Case
(a). That is, the performance in Case (b) cannot excel that in Case (a)) where the event disabling cost
is not taken into account.

VI. SUMMARY AND CONCLUSIONS

This paper presents the theory, formulation, and validation of optimal supervisory control policies
for dynamical systems, modeled as deterministic finite state automata (DFSA), which may have already
been subjected to constraints such as control specifications. The synthesis procedure for optimal control
without and with event disabling cost is quantitative and relies on a signed real measure of regular
languages, which is based on a specified state transition cost matrix and a characteristic vector [10].

The state-based optimal control policy without event disabling cost maximizes the language measure
vector i by attempting to selectively disable controllable events that may lead to bad marked states
and simultaneously ensuring that the remaining controllable events are kept enabled. The goal is to
maximize the measure of the controlled plant language without any further constraints. The control
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policy induced by the updated state transition cost matrix yields maximal performance and is unique in
the sense that the controlled language is most permissive (i.e., least restrictive) among all controller(s)
having the optimal performance.

The performance measure vectgr for optimal control with disabling cost, is obtained as the
language measure vector of the supervised plant minus the disabling cost characteristic vector. The
optimal control policy maximizes the performance vector elementwise by attempting to avoid termina-
tion on bad marked states by selectively disabling controllable events with reasonable disabling costs,
and simultaneously ensuring that the remaining controllable events are kept enabled. As the cost of
event disabling approaches zero, the optimal control policy with event disabling cost converges to that
without event disabling cost.

Derivation of the optimal supervisory control policies requires at mogérations, where: is the
number of states of the DFSA model and each iteration is required to solve asetimlltaneous
linear algebraic equations having complexity@fn?)[10]. As such computational complexity of the
control synthesis procedure is polynomial in the number of DFSA model states. The procedure for
synthesis of the optimal control algorithm has been validated on the DFSA model of a twin-engine
surveillance aircratft.

Future areas of research in optimal control include robustness of the control policy relative to
unstructured and structured uncertainties in the plant model including variations in the language
measure parameters [2].

APPENDIXA.
PROOFS OFPROPOSITIONS OPTIMAL CONTROL WITHOUT EVENT DISABLING COST

This appendix presents the proofs of five propositions and two crollaries, presented in Section lll.

Proof of Proposition 3.1 The DFSA satisfies the identify; = > %, uf + x; that leads to
0e{1,2, - n}

the inequalityu > (%: ) 1+ = (1—%: k) 1k > x;. The proof follows from(l—zg: ) >0
(see Definitions 2.5 and 2.7).

Proof of Corollary to Proposition 3.1: The proof is similar to that of Proposition 3.1.

Proof of Proposition 3.2 It follows from the the properties of the measure vegidhat:

gl gk — ([I— Hk+1}_1 —[r- Hk]—1> X
= [I -1 (I =% — [T =) [T —T%] ' g
_ [I _ Hk+1}—1 (Hk+1 _ Hk]) i
Deﬂmng the matrixA* = II**' — 11, let the j* column of A" be denoted ag\*. Then, AY <0

if M < 0 and A’f > 0 if ,uk > 0, and the remaining columns df* are zero vectors This |mpI|es
that: Akjit — ZA’“ * > 0. Sincell* < I1° Vk, [I — ITFM]~! > 0 elementwise. Then, it follows that

I — H’““]—lA’m’c > 0= "' > pF. Foruh # 0 and A* as defined aboved*zi” = 0 if and only if
A* = 0. Then,IT**! = I1* and i*** = p*.

Proof of Corollary to Proposition 3.2: Since only;* column of[I — IT**!] is different from that
of [I — IT¥] and the remaining columns are the same, jtheow of the cofactor matrix of7 — IT**!]
is the same as that of the cofactor matrix|bf- I1*]. Therefore,

Det [I — l_IkH],ufJr1 = Det[I — Hk]uf
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Since both determinants are real positive by Property 5 ofl4meatrix, u? andu;?+ ! have the same
sign.

Proof of Proposition 3.3 Let us consider an arbitrary cost matiik< I1° and ji = [I — I1]"'y.
It will be shown thati < p*. Let us rearrange the elements of thévector such thafi* =
i -y | i, -+ Tand the cost matriceB and IT*are also rearranged in the order in which

.

>0 20

the ji*-vector is arranged.

According to Proposition 3.2, no controllable event leading to statels= 1, 2, --- | /, is disabled
and all controllable events leading to staigs k=/¢+1, {+2, --- | n, are disabled. Therefore, the
elements in the first columns of[I* are the same as those of tHe and only the elements in the last
(n—¢) columns are decreased to the maximum permissible extent by disabling all controllable events.
In contrast, the columns df are reduced by an arbitrary choice. Therefore, defididf = [IT—IT*],
the first/ columns of AIl < 0 and the lastn — ¢) columns of AIl > O.

Since i* = [ -+ py | gy, - )T and [T — T > 0 elementwise, angi — @ = [I —

.

v g

- 20 <0

I1)~! [IT — I1*] 4*, it follows that

L n
—pt=[—1]" (ZC’olj-,u;—l— Z COlj‘M;) <0

j=t+1

J/

g g

<0 <0

Therefore,fi < ii* for any arbitrary choice 06 < IT < II°.

Proof of Proposition 3.4 Disabling controllable event(s) leading to a statewith performance
measureu; = 0 does not alter the performance vecfor The optimal control does not disable any
controllable event leading to the states with zero performance. This implies that, among all controllers
with the identical performancg*, the control policy induced by thH*-matrix is most permissive.

Proof of Proposition 3.5 Following Proposition 3.2, the sequence of performance vedtdfs
in successive iterations of the two-step procedure is monotonically increasing. The first iteration at
k = 0 disables controllable events following Step 1 of the two-step procedure in Section IlI-A. During
each subsequent iteration in Step 2, the controllable events leading to at least one state are re-enabled.
When Step 2 is terminated, there remains at least one negative elarf’nent() by 3.2. Therefore,
as the number of iterations in Step 2 is at most 1, the total number of iterations to complete the
two-step procedure does not exceed

APPENDIXB.
PROOFS OFPROPOSITIONS OPTIMAL CONTROL WITH EVENT DISABLING COST

This appendix presents the proofs of two propositions, presented in Section IV.
Proof of Proposition 4.1 Given xy* = y — 4*and#* = [I — I1*]~1x*, let us denote the change in
event disabling characteristic vector as:

DF = AL gk = gk gkt

Notice that, elementwise
o { >0 for event disabling

<0 for event re — enabling
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The performance increment at iteratiéris given by:
_ _ -1 _ -1 _
nk+1 _ nk [[ Hk—i—l} Xk+1 [I _ Hk] Xk 1
_ ( Hk+1 1 [1 Hk} ) = []_Hkﬂrlwk
[ Hk+1] [HkJrl _ Hk] [I _ Hk] -1 ¥F - [I _ Hk+1] L
_ { (1 — 1] -1 [IF — T4 7 4 [1 — T1++1] = @k:}
At k = 0, the state transition cost matrix changes froi to 11! as a result of disabling selected
controllable events leading to states with sufficiently negative performance. Let us dendtedhann

of a matrix A as (A);, ij""element of a matrix4 as(A);;, and thei’* element of a vector as (v);;
and/ andj satisfy the following conditions:
6(qe, 05) = g, and d?jk + dfjkﬂ
ThenIT' < T1% wf = 3¢y {ﬁo — f[l} - and
j

9]

(7 = i) = = (1= T0) 7 I = 10— (1 =)' &)

“=3(-mr), (5 ()

p

=— ; ([I - Hl}_1>w <§ (; o (mp + %’)))

Since|[l — Hl] > 0 elementwise and event disabling reqw(e$+ cej) < 0 for all admissiblel, j
andp, it follows from the above equation that — 7° > 0 elementwise.

Next, iterationsk > 1 are considered, for which some of the events disabléd-at) are (possibly)

re-enabled. . .
_ Z% <Hk+1 _ Hk)
j Y

(T_]/H_l i ﬁk)l _ [[ _ sz—i—l] -1 [Hk+1 _ Hk:] ﬁk _ [[ _ Hk—i—l} -1 (Dk).

= ; <[[ — Hkﬂrl)w (; (; ﬁgj(n;,f + c@-))>

Since [I H’ﬂ_l > 0 elementwise and event re-enabling require§$+ cej) > 0 for all admissible
¢,5 andp, it follows from the above equations thatt' — 7* > 0 for £ > 0.

i

Proof of Proposition 4.2 The optimal supervisof is synthesized by disabling and re-enabling
certain controllable events at selected states. It is to be shown that the performance of any (controllable)
supervisorS is not superior to that of, i.e.,7* > 7° VS € S.

Let an arbitrary superviso$ € S disable controllable events; at selected stateg, which are not
disabled bysS, i.e., (n, +cg;) > 0 with §(q, o;) = g,, and enable some other controllable eventst
selected stateg, Ieadlng to statey;, which are disabled by, i.e., (15 + c;;) < 0 with 6(qe, 03) = g5

where/, j andj satisfy the conditiony; dfj and dS + d

Denoting the difference in event disabllng characterlstlc vectors and the state transition cost matrices
of S andS as:w = 3°*—75° = x°*— x°, the corresponding difference in performance vectors is obtained
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as:
7o =[5 g - [1_ HS]_IXS
:[I-Hﬂ*gS—P>JﬁTJ@S—ﬂ
:<U—Hﬂ1—[1—nﬂl)xﬁ+P—nﬂlw
::P—Hﬂq[ﬁtdﬁ}U—Hﬂ42&+P—Hﬂ4@
:[I—Hﬂ_lhﬁ—ﬂﬂif+[]—ﬂﬂ4@
Letting A = I1° — 1%, the folloyving equality conditions are defined:
Ay, = zj; T and Ay = — ij 45

Noting that the subscript depends on botk and j, and the subscripi depends on bot# and j,
the product of the matrix\ € R"*" and the performance vectgf € R" is obtained as:

(A7) = 22 Dy + 3 Dy
p P

= % (Zﬁgjﬁf,) - Z (Zﬁ'@ 77;;)

The changes in the event disabling characteristic vector and the performance vector are then respec-
tively expressed as follows:

(@)e = Z i Coi

%

:;(P—Hﬂllem&m%

The ¢** element of the vectofA - 77° + @) is obtained as:

(A7D° + @),

3 () (5
—|—ij (Z ﬁnggj) — Z (Z 7?@6@)
= (Z 7o (m, + %‘)) -2 (Z 5 (05 + Cej)) >0

P\ j

-1—1
becausg(n; + c,;) > 0 and (n; + ¢,;) < 0. Therefore, since[[ - HS} >0and(A7p°+w) >0
elementwise, it follows tha{* — 77°) > 0 elementwise.
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