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Abstract. This paper formulates a signed real measure of sub-languages of a regular language based on the
principles of automata theory and real analysis. The measure allows total ordering of any set of partially ordered
sublanguages of the regular language for quantitative evaluation of the controlled behaviour of deterministic finite

state automata under different supervisors. The computational complexity of the language measure algorithm

- ~————is of polynomial order in the number of states.

1. Introduction. The legal behavior of a physical plant is often modeled by a deterministic
finite-state automaton abbreviated as DFSA in the sequel, which is equivalent to a regular
language (Drobot 1989, Hopcroft et al. 2001, Martin 2001). A parallel combination of the
plant model and the supervisor is a sublanguage of the plant language. This sublanguage
enables restricted legal behavior of the controlled plant (Ramadge and Wonham 1987). Based
on the Myhill-Nerode Theorem, the plant language is partitioned into equivalence classes of
finite-length event strings. Each marked state is characterized by a signed real value that is
chosen based on the designer’s perception of the state’s impact on the system performance.
Conceptually similar to the conditional probability, each event is assigned a cost based on the
state at which it is generated. This procedure permits an event string leading to a good (bad)
marked state to have a positive (negative) measure. A supervisor can be designed in this setting
such that the controlled sub-language attempts to disable as many bad strings as possible and
as few good strings as possible. Different supervisors may achieve this goal in different ways and
generate a partially ordered set of controlled languages. The language meausre creates a total
ordering on the performance of the controlled languages, which provides a precise quantitative
comparison of the controlled plant behavior under different supervisors. This feature can be
formalized as follows :

Given that the relation C induces a partial ordering on a set of controlled sublanguages
{L(S;/G), 3 =1,---,m} of the plant language L(G), the language meausre p induces a total
ordering < on {u(L(S;/G))}. In other words, the range of the set function u is totally ordered
while its domain could be partially ordered.

1This work has been supported in part by Army Research Office (ARO) under Grant No. DAAD19-01-1-
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Numerical evaluation of the language measure requires Gaussian elimination of a single
variable involving a real square matrix of dimension equal to the number of states. As such the
computational complexity of the algorithm is of polynomial order in the number of states.

The contribution of this paper is formulation of a novel concept for quantification of discrete
event system (DES) performance. To this end, a measure of regular languages has been
constructed based on the fundamental principles of real analysis and automata theory. This is
a signed real meausre that can be used to quantify any sublanguage of a given regular language
based on specified parameters as explained in subsequent sections. As such, new performance
indices of DES supervisors can be defined in terms of the proposed language measure, regardless
of how the supervisor is designed (e.g., maximally permissive or not; blocking or non-blocking;
and completely or partially observed).

2. DFSA Language Measure. Let G = (Q,%,6, %, @m) be a DFSA model that
represents the discrete-event dynamic behavior of a physical plant. Let n denote the cardinality
of the state set Q, i.e., IQl =n, and T = {1,--- ,n} the index of Q; & the (finite) alphabet
of events; ©* is the set of all finite-length strings of events including the empty string ¢;
0: QXL —=Qisa (possibly partial) function of state transitions and 6* : Q X * — Q is an
extension of 4; the state g; is the initial state; and @y, is the set of marked states () CQm CQ.

DEFINITION 2.1 The language L(G;) generated by a DFSA G; initialized at the state q; € Q
s defined as : '

L(G:) = {s € Z*|6"(gi, 5) € Q} (1)

The language L,,(G;) marked by a DFSA G initialized at the state q; € Q s defined as :
Lm(Gi) ={se E*6%(qs,5) € Qm} (2)

The set @y, of marked states is partitioned into QF and Q7 ie., Q,, = QR UQ;, and
QF N Q; = 0, where QF contains all good marked states that we desire to reach, and Q.
contains all bad marked states that we want to avoid, although it may always be possible to
completely avoid the bad states while attempting to reach the good states. In general, the
marked language L,,(G;) consists of both good and bad event strings that, starting from the
initial state, g;, respectively lead to Qf and Q. Any event string belonging to the language
LY(G;) = L(G;) - L (G;) leads to one of the non-marked states belonging to Q — Q,, and
L%(G;) does not contain any one of the good or bad strings. Ray and Phoha (2002) have
provided a detailed explanation on partitioning of the language into positive, negative, and
zero measures following the Hahn Decomposition Theorem (Rudin 1987).

DEFINITION 2.2 For every g € Q, let L(gi,qx) denote the set of all strings that, starting from
the state q;, terminate at the state dk, t.e.,

L(gi qx) = {s € £*|6"(gi, ) = q € Q) (3)
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Based on the equivalence classes defined in the Myhill-Nerode Theorem (Hopcroft, Motwani
and Ullman 2001), the regular languages L(G;) and L, (G;) can be expressed as :

LG = | Llaoa) = | L(gi ax) (4)
a€Q k=1
Lm(Gi) = |J Llguax) =LH ULy, (5)
qkein

where the sublanguage L(g;,qx) C G; having the initial state ¢; is uniquely labeled by the
terminal state gx,k € Z and L(g;, q;) 0 L(gi,qx) =0V j # k; and

iy, = |J Laaw)
FIaxs

U Lg:9)

q€Qm

and L,

are good and bad sublanguages of L,,(G;), respectively. Then,

LGy = |J Llg9)

9€Qm
and L(G,,) = LO(Gt) U L;(Gz) U L;,'(Gz)

DEFINITION 2.3 © be a o-algebra of L(G;). Then, the set function y: © — R = (—00, +00),
is called a signed real meausre if the following two conditions are satisfied. (Rudin 1987)

(1) u(0) =0;
(mu<GKJ==§ummv33e@mmKﬂuq=@ﬁj¢h
j=1 i1

Now we construct a signed real measure p : 28(G9) — R for a given DFSA such that :

=0, Q¢Qm
Vge@, wlig,@)] >0, q€Q (6)
<0, qe@,

To achieve the above goal of signed measure, we characterize the marked states such that each
state in @}, is assigned a positive weight and each state in Q;,., a negative weight; and each
unmarked state is assigned the zero weight. The weights are chosen by the designer based on
the perception of each marked state’s role in the system performance.
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DEFINITION 2.4 The characteristic Junction x : Q — [~1, 1] that assigns a signed real weight
to state-based sublanguages L(g;, q) is defined as :

['—110): gc Qf_n
Vge@, x(q) € {0}, ¢ Qm (7)
0,1, 1€}

The state weighting vector, denoted by X = [x1 x2-- -xn]T,‘where Xt = x(qx) Y k, is called
the X -vector. The k-th element Xk of X -vector is the weight assigned to the corresponding
terminal state qy.

To compute the measure of the language L(g;, q), we assign a cost to each string terminating
at the state ¢ starting from the initial state gi- To this end, the event cost is defined conceptually
similar to the conditional transition probability, assuming that the DFSA model is Markov.

- DEFINITION 2.5 The event cost of the DFSA G; is defined as a (possibly partial) function 7 :
E*x Q —[0,1) such thatV ¢; € Q, Vo, €L, Vse ¥,
(1) #loj, @] = 735 € [0,1); >0 i < 1;
(2) 7oy, q:] =0 if 6(qs,05) is undefined; 7|e, g =1;
(3) 7-1-[0-_7'33 Q‘L] = 7?[0-,7" QZ]ﬁ—[s’ 5(Q’L7 Uj)]'
Now we introduce the language measure in terms of the event cost function % and the
characteristic function .

DEFINITION 2.6 The signed real measure of every singleton string set {s} € 2L(Gi)  where
s € L(q,q:), is defined as : , R

n({s}) = 7[s, q:]x(q)

implaying that

= 03 q ¢ Qm
Vse L(gi,q), w({shq >0, qeQf (8)
<0, geQ

It follows from 2.6 that the signed meausre of the sub-langage

of all events starting at ¢; and terminating at ¢ is :

wLig) = > #s,al | x()

SGL(Ql 1Q)
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DEFINITION 2.7 The signed real measure of the language of a DFSA G; initialized at a state
g €Q, s defined as :

pi = w(L(G)) = > m(L(4i,9) (10)
q€Q
The language measure vector, denoted as

p=lu1 g2 pnls
is called the p-vector.

Since n(L(g,q;)) =0V q & Qm (Definition 2.6), it follows from Definition 2.7 that j; is the
signed measure of the marked language L (G;) of the DFSA G, i.e.,

pi = w(Lm(Gi))-

3. Language Measure Computation. Various methods of obtaining regular expressions
tor DFSAs are reported in Hopcroft (2001) and Drobot (1989). While computing the measure
| of a given DFSA, the same event may have different significance when emanting from different
states. This requires assigning (possibly) different values to the same event defined on different
states. Therefore, it is necessary to obtain a regular expression which explicitly yields the
state-based event sequences. A procedure for language measure computation, which is more
elegant than that proposed by Ray and Phoha (2002), is presented below.

DEFINITION 3.1 Let L; = L(G;),1 € Z, denote the reqular expression representing the marked
language of an n-state DFSA G; = (Q, X, 8, qi, Qm) where g; is the initial state.

DEFINITION 3.2 Let af denote the set of event(s) o € T that is defined on the state g; and
leaeds to the state qx € Q, where j,k € T, i.e., 6(¢j,0) =qk, V0 € of CX.

LEMMA 3.1 Let u,v be two known regular expression and r be an unknown regular expression
that satisfies the following algebraic identity :
T =ur+v A (1)

Then, the following reldtions are true :
(1) r = u*v is a solution to equation 11
(2) Ife € u, thenT =u*v is the unique solution to equation 11.
The proof of Lemma 3.1 can be found in (Drobot 1989).

EXAMPLE 3.1 Let & = {a,b}, Q = {1,2,3}, the unitial state is 1 the sole marked state is 2 in
Figure 1. Let the set of linear algebraic equations represent the transitions at each state of the
DFSA. ‘

Li = _CL%L1 + b%Lg ‘

Ly = G%Ll + b%Lg + € (12)

Ly = aiLy + b3y ’
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where the ‘forcing’ term e s introduced on the right side of the i-th equation whenever g € Qm,

© € Z. By application of Lemma 3.1, the regular expression for the marked language Ln(Gy)
18 : :

=Ly~ (a?)" % (a} (a1)" 83 + ta} (al)" 13 + ta2)”

Fig. 1. Example 1

The method of system description in Example 3.1 can be extended to the general case
without any difficulty. Given a DFSA G = (Q,%,0,¢;, Qm) with |Q| = n, we proceed to
obtain the system equation by a set of regular expressions L; of the language L (G:),1 €I, as
follows :

Vg €Q, L;= Z Rij+&, ieT _  (13)

j
where Vi, R; ; is defined as :
L. 130 €%, such that §(¢i,0) = ¢; € Q, j € T, then Ry; = 07 L;, otherwise, Ry ; = 0.
2. If ¢; € Qm, & = ¢, otherwise, & = . |
The set of symbolic equations may be written as :

Li=) olL;+¢& (14)
J

We note the following special cases.
LI & =0,V L;, then L,,,(G) = 0. This implies that the DFSA has no marked state.
2. If 3 ¢; € Q such that L; = ¢, then ¢; is marked. Furthermore, ¢; is a deadlock state.

In order to convert the symbolic equations (14) into a set of algebraic equations, we introduce
the (one-hop) state transition cost that is defined below.

ﬁ
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DEFINITION 3.3 The state transition cost of the DFSA G; 1s defined as a function T :
Q x Q — [0,1) such thatV gi,q; € &, T3, @) = Poesislen0)=a; 7o, qi) = mij and mi; =0 if
{0 €T :6(qi,0) = g5} =0. Then xn state transition cost matric is defined as :

m1 T2 o Tin i
To1 22 -+ T2n
I = .
L Tnl Tn2 s Tnn |

and is referred to as the II-matriz in the sequel.

' Now we present an alternative form of language measure (Definition 2.7) in terms of the
state transition cost (Definition 3.3) instead of event cost (Definitions 2.5) as delineated below.

THEOREM 3.1 The language measure of the sumbolic equation 14 is given by

I = Wik X (15)

Proof: Following Equation 13 .and Definition 2.4 :

Xi if gi =£
. (16)
0 otherwise

Viel M(SJ = {

Therefore, X = [x1 X2 " xn]T is the forcing vector in Equation 14. Starting from the
state q;, the measure

po=pls) = u| > olLi+&
| j

= | Do 0lL; | +ul&)
= Zu(af L;) + (&)
~ iw(a{ (L) + w(Es)
= imju(Lj) + p(&i)

j

= Zﬂij,u*j + Xi
J




66 XI WANG AND ASOK RAY

The third equality in the above derivation follows from the fact that & N olL; = 0. It is also
true that

Vi#k, olLinckL,=10 (17)

since each string in o7L; starts with an event in o] while each string in oF Ly, starts from

an event in of for some k # j. This Justifies the fourth equality. Since the DFSA model
is modeled to be Markov, u(olL;) = p(o7)u(L;). Therefore, by Definitions 2.5 and 3.2,
(o7 Ls) = mlaslalu(Ly) = miju(L;).

In vector notation, Equation 15 in Theorem 3.1 is expressed as : p = IIp + X whose
solution is given by :

b= (I -Mm)-'x (18)

provided that the matrix I — IT is nonsingular. Definitions 2.5 and 3.3 state that each element
in the II-matrix is non-negative and each row sum is less than 1. These conditions make the
II-matrix a contraction operator that is sufficient for the matrix (I—1II)"! to be a bounded
linear operator (Naylor and Sell 1982). Therefore, Definitions 2.5 and 3.3 provide a sufficient
condition for the language measure p of the DFSA G to be finite,

The j-th element of the i-th row of the (I —II)~! matrix, denoted as z/g y is the language
measure of a DFSA with the same state transition function § as & and having the following
properties : (i) the initial state is g;; (i) g; is the only marked state; and (iii) the y-value of q;
Is equal to 1. Then, p; = u(L,(G;)) is given by u; = 2 v X;j- Numerical evaluation of the
language measure of G; requires Gaussian elimination of the single variable u; involving the
real square matrix (I — IT). As such the computational complexity of the language measure

algorithm is of polynomial order in the number of states.

RSSO N

In general, the language measure of G; does not require computation of u;, j # i. However,
on-line supervisory control may require the information on the performance of the automation
starting from the current sate g;,7 # 1. In that case, Wi = Zj v!xj, 1 # 1 should be computed.

EXAMPLE 3.2 (Example 3.1 revisited) Let us assign the II-matrid and X -vector in Ezample
3.1 as follows :

0304 O 0
II=]02 0 06 {, X=11
0504 O 0
' I
then p = (I — II)~1X = [1.2048 2.1084 1.4458]T therefore, u; = 1.2048, pp = 2.1084, and E
11 = 1.4458. | ¢

4. Usage of the Language Measure for Supervisor Synthesis. The (signed) language

measure /1 could serve as an index for synthesis of an optimal control policy that maximizes the G
performance of a controlled sublanguage. The salient concept is succinctly presented below. g
Let S = {S8%8",---,5} be a set of supervisory control policies for the open loop M

plant automation G where S° is the null controller (i.e., no event is disabled) implying that
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L(8°/G) = L(G). Therefore the controller cost matrix TI(S°) = II° that is the II-matrix of
the open loop plant automation G. For a supervisor Sk ke {1,2,---,N}, the control polcy
is required to selectively disable certain controllable events so that the following (elementwise)
inequality holds : TI*F = TI(S¥) < T1° and L(S*/G) C L(G),V S* € S. The task is to synthesize
an optimal cost matrix TI* < II° that maximizes the performance vector p* = I -IT")1X,
e, pr>pk=[I - Hk]"lX ¥ II* < TI° where the inequalities are implied elementwise. The
research work in this direction is in progress and some of the results are reported in recent
publications (Fu et al. 2002, 2003).

5. Summary and Conclusions. This paper presents the concept, formulation and
validation of a signed real measure for any regular language and its sublanguages. Specifically,
the relative performance of supervisors can be quantitatively evaluated in terms of the measure
of the controlled sublanguages. Positive weights are assigned to good marked states and negative
weights to bad marked states so that a controllable supervisor is regarded (penalized) for
deleting strings leading to bad (good) marked states. As such the measure of the (open loop)
plant language may be less than that of a (proper) controlled sublanguage.

- .Cost assignment to each event based on the state, where it is generated, is conceptually
similar to the conditional probability of the event. The procedure of controller evaluation in
terms of its language measure is validated by the well-known example of dining philosophers for
three different supervisors. A relatively less permissive supervisor could be more effective than
another supervisor that may not adequately delete event strings leading to bad marked states.
The computational complexity of the language measure algorithm is of polynomial order in the
number of states.

Potential applications of the language measure are model identification, model order
reduction, and analysis and synthesis of robust and optimal control and diagnostic systems

in the DES setting.
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