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Abstract

The discrete-event dynamic behavior of physical plants is often represented by regular languages that can
be realized as deterministic finite state automata (DFSA). The concept and construction of signed real mea-
sures of regular languages have been recently reported in literature. Major applications of the language
measure are: quantitative evaluation of the discrete-event dynamic behavior of unsupervised and supervised
plants; and analysis and synthesis of optimal supervisory control algorithms in the discrete-event setting.
This paper formulates and experimentally validates an on-line procedure for identification of the language
measure parameters based on a DFSA model of the physical plant. The recursive algorithm of this identi-
fication procedure relies on observed simulation and/or experimental data. Efficacy of the parameter iden-
tification procedure is demonstrated on the test bed of a mobile robotic system, whose dynamic behavior is
modelled as a DFSA for discrete-event supervisory control.
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1. Introduction

The discrete-event dynamic behavior of physical plants is often modelled as regular languages
that can be realized by deterministic finite state automata (DFSA) [3]. The (regular) sublanguage
of a controlled plant could be different under different supervisors that are constrained to satisfy
their respective specifications [7]. Such a partially ordered set of sublanguages requires a quanti-
tative measure for total ordering of their respective performance. Two techniques for language
measure computation have been recently reported. While the first technique [10] leads to a system
of linear equations whose (closed form) solution yields the language measure vector, the second
technique [8] is a recursive procedure with finitely many iterations. A sufficient condition for
finiteness of the signed real measure has been established in both cases.

The language measure serves as a common quantitative tool to compare the performance of
different supervisors and is assigned an event cost eP-matrix and a state characteristic X-vector
[10,8]. Event costs (i.e., elements of the eP-matrix) are analogous to the state-based conditional
probabilities of the respective events; therefore, they are physical phenomena dependent on the
plant behavior. On the other hand, the X-vector is chosen solely relying on the designer�s percep-
tion of the individual state�s impact on the system performance. In the performance evaluation of
both the unsupervised and supervised plant behavior, one of the critical parameters is the event

cost matrix eP that, in turn, determines the state transition cost matrix P. For example, Fu
et al [2] have proposed state-based optimal control policies by selectively disabling controllable
events to maximize the language measure of the controlled plant language. Furthermore, since
the plant behavior is often slowly time-varying, there is a need for on-line parameter identification
to generate up-to-date values of the eP-matrix within allowable bounds of errors.

This paper complements the earlier work [10] that reported theoretical formulation of a lan-
guage measure without specifically stating how to obtain the underlying (e.g., event cost matrixeP-matrix) parameters. The main contribution of the present paper is development of a recursive
procedure to identify the eP-matrix parameters of the language measure based on real-time exper-
imentation and/or simulation. The recursive parameter estimation scheme permits on-line synthe-
sis of optimal supervisory control [2] of discrete-event systems based on the language measure.
The parameter identification procedure is supported by a stopping rule that determines the num-
ber of experiments to be conducted for a given bound of allowable estimation error.

The paper is organized in five sections including the present section. The language measure is
briefly reviewed in Section 2 including introduction of the notations. Section 3 presents the main
result—formulation of the algorithm for eP-matrix parameter identification and the associated
stopping rules. Section 4 validates the algorithm through learning by simulation as well as by
experimentation on the test bed of a mobile robotic system. The paper is concluded in Section
5 with a brief discussion on robustness of the identification procedure.
2. Brief review of language measure

This section first introduces the signed real measure of regular languages, which is reported in
[10,8].



X. Wang et al. / Applied Mathematical Modelling 29 (2005) 597–613 599
Let Gi � hQ,R,d,qi,Qmi be a trim (i.e., accessible and co-accessible) finite-state automaton
model that represents the discrete-event dynamics of a physical plant, where Q ¼ fqk : k 2 IQg
is the set of states and IQ � f1; 2; . . . ; ng is the index set of states; the automaton starts with
the initial state qi; the alphabet of events is R ¼ frk : k 2 IRg with R

T
IQ ¼ ;, and IR �

f1; 2; . . . ; ‘g is the index set of events; d:Q · R ! Q is the (possibly partial) function of state tran-
sitions; and Qm � fqm1

; qm2
; . . . ; qmr

g 
 Q is the set of marked (i.e., accepted) states with qmk
¼ qj

for some j 2 IQ.
Let R* be the Kleene closure of R, i.e., the set of all finite-length strings made of the events

belonging to R as well as the empty string � that is viewed as the identity of the monoid R* under
the operation of string concatenation, i.e., �s = s = s�. The extension d̂ : Q� R� ! Q is defined
recursively in the usual sense [3] [7]. For discrete event supervisory control [7], the event alphabet
R is partitioned into sets, Rc and Ruc of controllable and uncontrollable events, respectively, where
each event in Rc and no event in Ruc can be disabled by the supervisor.

Definition 2.1. The language L(Gi) generated by a DFSA G initialized at the state qi 2 Q is
defined as
LðGiÞ ¼ fs 2 R� j d̂ðqi; sÞ 2 Qg ð1Þ
Definition 2.2. The language Lm(Gi) marked by a DFSA Gi initialized at the state qi 2 Q is defined
as
LmðGiÞ ¼ fs 2 R� j d̂ðqi; sÞ 2 Qmg ð2Þ
The language L(Gi) is partitioned as the non-marked and the marked languages, Lo(Gi) �
L(Gi) � Lm(Gi) and Lm(Gi), consisting of event strings that, starting from qi 2 Q, terminate at
one of the non-marked states in Q � Qm and one of the marked states in Qm, respectively. The
set Qm is further partitioned into Qþ

m and Q�
m , where Qþ

m contains all good marked states that
are desired to be terminated on and Q�

m contains all bad marked states that one may not want
to terminate on, although it may not always be possible to avoid the bad states while attempting
to reach the good states. The marked language Lm(Gi) is further partitioned into Lþ

mðGiÞ and
L�
mðGiÞ consisting of good and bad strings that, starting from qi, terminate on Qþ

m and Q�
m ,

respectively.

A signed real measure l : 2R� ! R � ð�1;1Þ is constructed for quantitative evaluation of
every event string s 2 R*. The language L(Gi) is decomposed into null, i.e., Lo(Gi), positive, i.e.,
Lþ
mðGiÞ, and negative, i.e., L�

mðGiÞ sublanguages.
Definition 2.3. The language of all strings that, starting at a state qi 2 Q, terminates on a state
qj 2 Q, is denoted as L(qi,qj). That is,
Lðqi; qjÞ � fs 2 LðGiÞ : d̂ðqi; sÞ ¼ qjg ð3Þ
Definition 2.4. The characteristic function that assigns a signed real weight to state-partitioned
sublanguages L(qi,qj), i = 1,2, . . . ,n, j = 1,2, . . . ,n is defined as: v:Q![�1,1] such that
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vj � vðqjÞ 2

½�1; 0Þ; if qj 2 Q�
m

f0g; if qj 62 Qm

ð0; 1�; if qj 2 Qþ
m

8>><
>>: ð4Þ
Definition 2.5. The event cost is conditioned on a DFSA state at which the event is generated,
and is defined as ~p : R� � Q ! ½0; 1� such that "qj 2 Q "rk 2 R, "s 2 R*,

(1) ~p½rk; qj� � ~pjk 2 ½0; 1Þ;
P

k~pjk < 1;

(2) ~p½r; qj� ¼ 0 if d(qj,r) is undefined; ~p½�; qj� ¼ 1;

(3) ~p½rks; qj� ¼ ~p½rk; qj� ~p½s; dðqj; rkÞ�.

The event cost matrix is defined as
eP ¼

~p11 ~p12 . . . ~p1l

~p21 ~p22 . . . ~p2l

..

. ..
. . .

. ..
.

~pn1 ~pn2 . . . ~pnl

2
6666664

3
7777775

ð5Þ
and is referred to as the eP-matrix in the sequel.

An application of the induction principle to part (3) in Definition 2.5 shows
~p½st; qj� ¼ ~p½s; qj�~p½t; d̂ðqj; sÞ�. The condition

P
k~pjk < 1 provides a sufficient condition for the exis-

tence of the real signed measure as discussed in [9] along with additional comments on the physical
interpretation of the event cost.

The next task is to formulate a measure of sublanguages of the plant language L(Gi) in terms of
the signed characteristic function v and the non-negative event cost ~p.

Definition 2.6. The signed real measure l of a singleton string set fsg 
 Lðqi; qjÞ 
 LðGiÞ 2 2R�
is

defined as
lðfsgÞ � epðs; qiÞvðqjÞ 8s 2 Lðqi; qjÞ: ð6Þ
The signed real measure of L(qi,qj) is defined as
l Lðqi; qjÞ
� �

�
X

s2Lðqi;qjÞ
lðfsgÞ ð7Þ
and the signed real measure of a DFSA Gi, initialized at the state qi 2 Q, is denoted as
li � lðLðGiÞÞ ¼
X
j

l Lðqi; qjÞ
� �

ð8Þ
Definition 2.7. The state transition cost, p:Q · Q ! [0,1), of the DFSA Gi is defined, for all qi,
qj 2 Q, as follows:
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pij ¼

P
r2R

~p½r; qi�; if dðqi;rÞ ¼ qj

0 if fdðqi; rÞ ¼ qjg ¼ ;:

8<
: ð9Þ
Consequently, the n · n state transition cost P-matrix is defined as
P ¼

p11 p12 . . . p1n

p21 p22 . . . p2n

..

. ..
. . .

. ..
.

pn1 pn2 . . . pnn

2
66664

3
77775 ð10Þ
Wang and Ray [10] have shown that the measure li � l(L(Gi)) of the language L(Gi), with the
initial state qi, can be expressed as: li ¼

P
jpijlj þ vi where vi � v(qi). Equivalently, in vector

notation:
l ¼ Pl þ X ð11Þ

where the measure vector l � [l1l2 . . .ln ]T and the characteristic vector X � [v1v2 . . .vn]

T. Fol-
lowing Definitions 2.4 and 2.5, there exists h 2 (0,1) such that the induced infinity norm
kPk1 � maxi

P
jpij ¼ 1� h. The matrix operator [I � P] is invertible implying that the inverse

[I � P]�1 is a bounded linear operator [5] with its induced infinity norm k[I � P]�1k1 6 h�1.
Therefore, the language measure vector can be expressed as
l ¼ ½I� P��1
X ð12Þ
where l 2 Rn and computational complexity [9] of the measure l is O(n3).
3. Estimation of language measure parameters

This section presents a recursive algorithm for identification of the language measure parame-
ters (i.e., elements of the event cost matrix eP) (see Definition 2.5) which, in turn, allows compu-
tation of the state transition cost matrix P (see Definition 2.7) and the language measure l-vector
in Eq. (12). It is assumed that the underlying physical process evolves at two different time scales.
In the fast-time scale, i.e., over a short time period, the system is assumed to be an ergodic, dis-
crete Markov process. In the slowly-varying time scale, i.e., over a long period, the system (pos-
sibly) behaves as a non-stationary stochastic process. For such a slowly-varying non-stationary
process, it might be necessary to redesign the supervisory control policy in real time. In that case,
the eP-matrix parameters should be updated at selected slow-time epochs.

3.1. A recursive parameter estimation scheme

Let pij be the transition probability of the event rj at the state qi, i.e.,
pij ¼
P ½rj j qi�; if 9q 2 Q; s:t: q ¼ dðqi;rjÞ
0; otherwise

�
ð13Þ
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and its estimate be denoted by the parameter p̂ij that is to be identified from the ensemble of sim-
ulation and/or experimental data.

Let a strictly increasing sequence of time epochs of consecutive event occurrence be denoted as:
T � ftk : k 2 N0g ð14Þ

where N0 is the set of non-negative integers. Let the indicator w : N0 �IQ �IR ! f0; 1g repre-
sent the incident of occurrence of an event. For example, if the DFSA was in state qi at time epoch
tk�1, then
wijðkÞ ¼
1; if rj occurs at the time epoch tk 2 T
0; otherwise

�
ð15Þ
Consequently, the number of occurrences of any event in the alphabet R is represented by
W : N0 �IQ ! f0; 1g. For example, if the DFSA was in state qi at the time epoch tk�1, then
WiðkÞ ¼
X
j2IR

wijðkÞ ð16Þ
Let n : N0 �IQ �IR ! N0 represent the cumulative number of occurrences of an event at a state
up to a given time epoch. That is, nij(k) denotes the number of occurrences of the event rj at the state
qi up to the time epoch tk 2 T. Similarly, letN : N0 �IQ ! N0 represent the cumulative number of
occurrences of any event in the alphabet R at a state up to a given time epoch. Consequently,
NiðkÞ ¼
X
j2IR

nijðkÞ ð17Þ
A frequency estimator, p̂ijðkÞ, for probability pij(k) of the event rj occurring at the state qi at the
time epoch tk, is obtained as
p̂ijðkÞ ¼
nijðkÞ
NiðkÞ

lim
k!1

p̂ijðkÞ ¼ pij
ð18Þ
Convergence of the above limit is justified because the occurrence of an event at a given state of a
stationary Markov chain can be treated as an independent and identically distributed random
variable.

A recursive algorithm of learning pij is formulated as a stochastic approximation scheme, start-
ing at the time epoch t0 with the initial conditions: p̂ijð0Þ ¼ 0 and nij(0) = 0 for all i 2 IQ; j 2 IR;
and Wi(0) = 0 for all i 2 IQ. Starting at k = 0, the recursive algorithm runs for {tk: k P 1}. For
example, upon occurrence of an event rj at a state qi, the algorithm is recursively incremented as:
nijðkÞ ¼ nijðk � 1Þ þ wijðkÞ
NiðkÞ ¼ Niðk � 1Þ þ WiðkÞ

ð19Þ
Next it is demonstrated how the estimates of the language parameters (i.e., the elements of event
cost matrix eP) are determined from the probability estimates. The set of unmodelled events at
state qi, denoted by Ru

i 8i 2 IQ, accounts for the row-sum inequality:
P

j~pij < 1 (see Definition
2.5). Then, P ½Ru

i � ¼ hi 2 ð0; 1Þ and
P

i~pij ¼ 1� hi. An estimate of the (i, j)th element of the eP-ma-
trix, denoted by ~̂pij, is approximated as
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~̂pijðkÞ ¼ p̂ijðkÞð1� hiÞ 8j 2 IR ð20Þ
Additional experiments on a more detailed automaton model would be necessary to identify the
parameters hi8i 2 IQ. Given that hi � 1, the problem of conducting additional experimentation
can be circumvented by the following approximation:

A single parameter h � hi8i 2 IQ, i 2 IQ, such that 0 < h � 1, could be selected for conve-
nience of implementation. From the numerical perspective, this option is meaningful because it
sets an upper bound on the language measure based on the fact that the sup-norm klk1 6 h�1.

Note that each row sum in the eP-matrix being strictly less than 1, i.e.,
P

j~pij < 1, is a sufficient
condition for finiteness of the language measure.

Theoretically, ~pij is the asymptotic value of the estimated probabilities ~̂pijðkÞ as if the event rj

occurs infinitely many times at the state qi. However, dealing with finite amount of data, the objec-
tive is to obtain a good estimate p̂ij of pij from independent Bernoulli trials of generating events.
Critical issues in dealing with finite amount of data are: (i) how much data are needed; and (ii)
when to stop if adequate data are available. Section 3.2 addresses these issues.

3.2. Stopping rules for recursive learning

A stopping rule is necessary to find a lower bound on the number of experiments to be con-
ducted for identification of the eP-matrix parameters. This section presents two stopping rules that
are discussed below.

The first stopping rule is based on an inference approximation having a specified absolute error
bound e with a probability k. The objective is to achieve a trade-off between the number of exper-
imental observations and the estimation accuracy.

A bound on the required number of samples is estimated using the Gaussian structure for
binomial distribution that is an approximation of the sum of a large number of independent
and identically distributed (i.i.d.) Bernoulli trials of ~̂pijðtÞ. The central limit theorem yields

~̂pij � N ~pij;
~pijð1�~pijÞ

N

� �
, where N indicates normal (or Gaussian) distribution with E½~̂pij� � ~pij

and Var½~̂pij� � r2 � ~pijð1�~pijÞ
N , provided that the number of samples N is sufficiently large. Let

D ¼ ~̂pij � ~pij, then
D
r � Nð0; 1Þ. Given 0 < e � 1 and 0 < k � 1, the problem is to find a bound

Nb on the number N of experiments such that P{jDj P e} 6 k. Equivalently
P
j D j
r

P
e
r

� �
6 k ð21Þ
that yields a bound Nb on N as
Nb P
n�1ðkÞ

e

� �2

~pijð1� ~pijÞ ð22Þ
where nðxÞ � 1�
ffiffi
2
p

q R x
0
e�

t2
2 dt. Since the parameter ~pij is unknown, one may use the fact that

~pijð1� ~pijÞ 6 0:25 for every ~pij 2 ½0; 1� to (conservatively) obtain a bound on N only in terms
of the specified parameters e and k as
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Nb P
n�1ðkÞ
2e

� �2

ð23Þ
The above estimate of the bound on the required number of samples is less conservative than that
obtained from the Chernoff bound and is significantly less conservative than that obtained from
Chebyshev bound that does not require the assumption of any specific distribution of D except for
finiteness of the rth (r = 2) moment.

The second stopping rule, which is an alternative to the first stopping rule, is based on the prop-
erties of irreducible stochastic matrices. Following Eq. (18) and the state transition function d of
the DFSA, the state transition matrix is constructed at the kth iteration as P(k) that is an irreduc-
ible n · n stochastic matrix under stationary conditions. Similarly, the state probability vector
p(k) � [p1(k)p2(k). . .pn(k)] is obtained by following Eq. (18):
piðkÞ ¼
NiðkÞP

j2IQ
NjðkÞ

ð24Þ
The stopping rule makes use of the Perron–Frobenius theorem [6] to establish a relation between
the state probability vector p(k) and the irreducible stochastic matrix P(k). There is a unique unity
eigenvalue of P(k) and the corresponding left eigenvector p(k) (normalized to unity in the sense of
absolute sum) representing the state probability vector, provided that the matrix parameters have
converged after a sufficiently large number of iterations. That is,
kpðkÞðI� PðkÞÞk1 6
1

k
! 0 as k ! 1
Equivalently,
kðpðkÞ � pðk þ 1ÞÞk1 6
1

k
! 0 as k ! 1 ð25Þ
Taking the expected value of kp(k)k1 to be 1
n, a threshold of g

n is specified, where n is the number of
states and 0 < g � 1 is a constant. A lower bound on the required number of samples is deter-
mined from Eq. (25) as
N stop � Integer
n
g

� �
ð26Þ
based on the number of states n and the specified tolerance g.
4. Language parameter identification

This section presents on-line identification of the eP-matrix in a behavior-based mobile robotic
system, Pioneer 2 AT, which is controlled by a discrete-event supervisor. The scenario for the
robot movement is briefly delineated below.

(1) The robot explores an unknown environment by random search;
(2) The robot approaches a recognizable object upon detection by the camera;



Fig. 1. DFSA plant model G for the experiment scenario.
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(3) The robot grabs the object and searches for a recognizable goal;
(4) The robot approaches the destination upon detecting the object and releases the object at the

destination;
(5) The robot keeps on repeating the same procedure unless commanded to stop.

Fig. 1 shows the deterministic finite state automaton (DFSA) model of the plant (i.e.,
the mobile robotic system). The corresponding alphabet R of discrete events is listed in
Table 1. The set Q of states and the assigned state characteristic vector are listed in Table
2. The state transition cost matrix P (which is derived from the event cost matrix eP) is listed
in Table 3. The task is to identify the eP-matrix for the regular language generated by the
DFSA plant model. The next subsection presents Matlab simulation of a typical scenario of
the robotic system operation to demonstrate how the on-line identification of the eP-matrix
works.
4.1. Parameter identification by robotic system simulation

This subsection presents a graphical design and development environment for hybrid system
simulation using the Matlab simulink and stateflow, which is event-driven and is based on the the-
ory of finite state machines. In this setting, the robot dynamics remains unaffected when the dis-
crete-event supervisor changes its internal states; in other words, the continuous dynamics and
discrete state space are decoupled.

The test facility allows on-line synthesis and verification of DES control policies using the lan-
guage measure. The simulation block diagram in Fig. 2 shows the top level functions, in which the
major blocks represent linear state space model of robot motion dynamics, obstacle avoidance
using a simple sonar model, object detection by a simplified laser scanner model, and object rec-
ognition by a camera model.



Table 1
Event alphabet R for the Pioneer 2 AT robot

Event Description Controllable

a Approach the object
p

A Avoid obstacle successfully
c Reach goal with an object
C Find an object but gripper full
d Drop an object

p

g Grab an object
p

h Return to home
p

i Ignore the current observed target
p

l Lost the target
o Obstacle ahead
p Drop an object successfully
P Fail to drop an object
q Grab an object successfully
Q Fail to grab an object
T Find goal with an target
s Search recognizable target

p

v Avoid obstacle
p

w Reach target without an object
W Find object 1
x Lost the goal
X Find target 2
y Lost an object

Table 2
State set Q of the plant model G and its X-vector

State Description v

0 Robot ready for mission 0.0
1 Searching for target 0.0
2 Found object 2 0.1
3 Fount an object but gripper is full 0.0
4 Approaching target 0.0
5 Ready to drop object at destination 0.0
6 Ready to grab object 0.0
7 Drop an object successfully 0.8
8 Grab an object successfully 0.4
9 Avoiding obstacle 0.0
10 Lost target �0.2
11 Dropping an object at destination 0.0
12 Grabbing an object 0.0
13 Failed grabbing or dropping �1
14 Found object 1 0.3
17 Found the destination 0.0
16 Ignoring an object �0.1
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The simulation is initiated with robot�s random walk. The robot dynamic model was obtained
by system identification of experimental data collected from the continuous motion of the robot



Table 3
P-matrix (17 · 17) for the discrete-event model G

pij q0 q1 q2 q3 q4 q5 q6 q7 q8 q9 q10 q11 q12 q13 q14 q17 q16

q0 0 .9500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
q1 0 .4087 .0254 0 0 0 0 0 0 .4087 0 0 0 0 .0288 .0785 0
q2 0 0 0 0 .4396 0 0 0 0 0 0 0 0 0 0 0 .5104
q3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
q4 0 0 0 0 0 .3760 0.3760 0 0 0 .1979 0 0 0 0 0 0
q5 0 0 0 0 0 0 0 0 0 0 0 .95 0 0 0 0 0
q6 0 0 0 0 0 0 0 0 0 0 0 0 .95 0 0 0 0
q7 0 .9500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
q8 0 .9500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
q9 0 .4750 0 0 0 0 0 0 0 .4750 0 0 0 0 0 0 0
q10 0 .9500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
q11 0 0 0 0 0 0 0 .95 0 0 0 0 0 0 0 0 0
q12 0 0 0 0 0 0 0 0 .95 0 0 0 0 0 0 0 0
q13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
q14 0 0 0 0 .4495 0 0 0 0 0 0 0 0 0 0 0 .5005
q17 0 0 0 0 .5200 0 0 0 0 0 0 0 0 0 0 0 .4300
q16 0 .3484 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .6016
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Fig. 2. Matlab robot simulation block diagram.
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motion. The experiments for system identification of the robot dynamics were conducted with
pseudo random inputs in both time and speed under the following constraints: (i) 2 s 6 td 6 10 s;
(ii) �300 mm/s 6 v 6 300 mm/s; (3) �80 deg/s 6 x 6 80 deg/s, where td is the time duration in
which the robot runs at constant speed; v and x are the linear and angular velocities of the robot,
respectively. The subspace technique for system identification of multivariable systems was ap-
plied using the n4sid routine in Matlab IDENT toolbox. (A multivariable autoregressive with
external input (ARX) model was found to be inaccurate to capture the nonlinear dynamics.)
The resulting state space model, having the reference and measured velocity vector [vx]T as the
input and output, is given below.
xnþ1 ¼ Axn þ Bun ð27Þ

yn ¼ Cxn ð28Þ

A ¼

0:8579 0:0958 �0:3488 �0:0118

�0:0012 0:6882 �0:1532 0:0540

0:1415 0:3104 0:6644 �0:5791

�0:0893 0:2350 0:3603 0:6374

2
666664

3
777775

B ¼

�0:3081 �0:0037

�0:0032 0:6524

0:4281 �0:2781

�0:1809 �0:4719

2
6664

3
7775
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C ¼
�0:4808 0:2368 �0:5129 �0:2716

0:0138 0:4664 0:0547 0:2910

� �
Fig. 3 shows that the results of the random walk experiment on the robotic system are in good
agreement with those predicted by the model. Note that, in Fig. 3, the variations of the model
predictions from the actual measured data are largely due to randomly varying environmental dis-
turbances (e.g., floor friction).

Fig. 4 shows a typical trajectory of the supervised robot in a single mission cycle and Fig. 5
shows the DES control structure of the robotic system. A mission cycle is defined as the comple-
tion of the first four steps of the scenario. Four positions of the robot are shown: mission start
point in the top left corner; the place where the robot grabs an object; the place where the robot
drops the object; and the place where the robot begins its journey to return home. Note that when
the robot sequentially detects an object, a goal, and its home, then its motion is further regulated
by its supervisor to avoid potential collisions and to improve its performance.

Fig. 6 presents the results of on-line identification pertinent to some of the non-zero elements of

the eP-matrix. It is seen that the transition probabilities indeed converge, possibly at different
rates, in this structured environment. Environment disturbances have not yet been simulated.
For example, since the lighting condition in the actual scene may vary over time and space, it
is possible that robot loses the detected object during approaching. The next section investigates
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Fig. 3. System identification of the mobile robot.



Fig. 4. A typical trajectory of the simulated robot.
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the impact of noise and disturbances effects on the convergence of eP-matrix learning based on
real world experiments.

4.2. On-line parameter identification by robotic experiments

This section describes experiments on the robotic test bed for language measure identification.
Fig. 5 shows the supervisory control system of a Pioneer 2 AT robot. A network device server,
called Player, has been used to manage the robot�s sensors and actuators. The main Pioneer 2
AT sensors include a Sony EVI D30 camera, a SICK LMS200 laser scanner, and Polaroid ultra-
sonic sonar sensors. The camera recognizes different targets, including the object, destination, and
home base. The laser scanner is used to measure its distance from the target. The sonar and laser
scanners together provide robust obstacle avoidance. The continuous controller, provided in the
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Fig. 6. Selected non-zero eP elements in simulation.
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Pioneer 2 AT software system, sends desired speed signals to the robot through the Player while
the sensor readings are relayed by Player�s measurement module. Conceptually, the continuous-
to-discrete (C/D) interface acts as the discrete-event generator and the discrete-to-continuous
(D/C) interface converts controllable discrete events sent by robotic DES controller into contin-
uous signals. The details of the DES control system that are not presented here to space limita-
tions will be reported in a forthcoming publication.

Convergence of some of the non-zero elements of the eP-matrix is shown in Fig. 7. The conver-
gence rate in the experimental identification is often slower than that obtained in simulation due
to the presence of environmental noise (e.g., floor friction and light intensity). Moreover, these
elements may occasionally converge to different values because of the presence of spurious biased
disturbances. Due to the noisy nature of the actual sensor readings, some of the events are gen-
erated more often than those in the simulation. While the simulation efforts prove the concept, it is
the real-time experimental data that provides the information to the DES control system.

The characteristic vector X needs to be specified, as listed in Table 2, for the purpose of perfor-
mance evaluation in terms of the language measure l. A value of 0.4 is assigned to state 8 where
the robot grabs an object successfully. The state, where the robot successfully drops an object at
the destination and also represents the end of the current mission, is assigned a value of 0.8. The
two colored objects are given different levels of importance; if the robot discovers a pink object, it
receives a credit of 0.3, whereas a green object is assigned a smaller value of 0.1. Loss of an object
and ignoring an object are assigned penalties of �0.2 and �0.1, respectively.
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5. Summary and conclusions

This paper presents a recursive procedure for on-line identification of the event cost matrix,

called the eP-matrix, that is critical for analysis and synthesis of language-measure-based supervi-
sory control systems. Given a bound parameter on identification error within a specified confi-
dence level, the elements of the eP-matrix are shown to converge for a stationary process based
on a stopping rule. It is demonstrated by both simulation studies and experimentation on a mobile
robotic system that elements of the eP-matrix converge in a structured environment. For slowly
varying non-stationary processes, the eP-matrix should be periodically updated for on-line synthe-
sis of optimal control policies [2]. This is recommended as future research.

The identification procedure of the eP-matrix parameters is dependent on the event generation
mechanism. Different event generators may cause the elements of eP-matrix converge to different
transition probabilities. Ongoing efforts in this direction include formulation of event generation
mechanisms using particle filters [1,4] to estimate conditional probability density distributions
propagating over time.
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