
International Journal of Control
Vol. 78, No. 12, 15 August 2005, 949–967

Signed real measure of regular languages

for discrete event supervisory control

A. RAY*

Department of Mechanical Engineering, The Pennsylvania State University, University Park, PA 16802, USA

(Received 9 October 2004; in final form 27 May 2005)

This paper reviews, expands, and clarifies the underlying concepts of a signed real measure of

regular languages, which has been used as a novel tool for synthesis of discrete event

supervisory control systems. The language measure is constructed upon the principles of

automata theory and real analysis. It allows total ordering of a set of partially ordered

sublanguages of a regular language for quantitative evaluation of the supervised behaviour

of deterministic finite state automata (DFSA) under different supervisors. In the setting of

the language measure, a supervisor’s performance is superior if the supervised plant is more

likely to terminate at a good marked state and/or less likely to terminate at a bad marked

state. The computational complexity of the language measure algorithm is polynomial in

the number of DFSA states.

1. Introduction

Discrete event systems belong to a special class of
dynamical systems. The states of a discrete event
system may take discrete (or symbolic) values and

change only at (possibly asynchronous) discrete instants
of time, in contrast to the familiar continuously varying
dynamical systems of the physical world, which can be

modelled by differential or difference equations. The
dynamics of many human-engineered systems evolve
asynchronously in time via complex interactions of

various discrete-valued events with continuously varying
physical processes. The relatively young discipline of
discrete event systems has undergone rapid growth

over the last three decades with the evolution of
human engineered complex systems, such as integrated

control and communication systems, distributed sensing
and monitoring of large-scale engineering systems,
manufacturing and production systems, software

fault management, and military Command, Control,
Computer, Communication, Intelligence, Surveillance,
and Reconnaissance (C4ISR) systems.
The discipline of discrete event systems was initiated

with simulation of human-engineered processes about

four decades ago in the middle of nineteen sixties. The
art of discrete event simulation emerged with the devel-
opment of a simulation software package, called GPSS,
that was followed by numerous other software simula-
tion tools, such as SIMSCRIPT II.5, SLAM II, and
SIMAN (Law and Kelton 1991). Shortly thereafter,

computer scientists and control theorists entered the
field and brought in theoretical concepts of languages
and automata in modelling discrete event systems. In
the late nineteen sixties, Arbib (see Kalman et al. 1969)
showed how algebraic methods could be used to explore
the structure of finite automata to model dynamical
systems. Around that time, computer scientists focused

on formal languages, automata theory, and computa-
tional complexity for application of language-theoretic
concepts (e.g., regular expressions and context-free
grammars) in software development including design of
compilers and text processors (Yu 1997, Hopcroft et al.
2001). In the late nineteen seventies and early nineteen
eighties, Ho and co-workers introduced the concept of

finite perturbation in discrete event systems for
modelling and analysis of human-engineered systems
(Ho and Cao 1991). So far, no concrete theoretical
concept and mathematical tools had been available for
analysis and synthesis of discrete event control systems.

The concept of discrete event supervisory (DES)
control was first introduced in the seminal paper of*Email: axr2@psu.edu
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Ramadge and Wonham (1987) and this important
paradigm has been subsequently extended by other
researchers (for example, see citations in Kumar and
Garg (1995) and Cassandras and Lafortune (1999),
and the October 2000 issue of Part B of IEEE
Transactions on Systems, Man, and Cybernetics).
These efforts have led to the evolution of a new
discipline in decision and Control, called Supervisory
Control Theory (SCT), that requires partitioning the
discrete-event behaviour of a physical process, called
the plant, into legal and illegal categories. The legal
behaviour of plant dynamics is modelled by a determi-
nistic finite-state automaton, abbreviated as DFSA in
the sequel. The DFSA model is equivalent to a regular
language that is built upon an alphabet of finitely
many events; the event alphabet is partitioned into
subsets of controllable events (that can be disabled)
and uncontrollable events (that cannot be disabled).
Based on the regular language of an unsupervised
plant, SCT synthesizes a DES controller as another
regular language, having the common alphabet with
the plant language, that guarantees restricted legal
behaviour of the supervised plant based on the desired
specifications. Instead of continuously handling numeri-
cal data, DES controllers are designed to process event
strings to disable certain controllable events in the
physical plant. A number of algorithms for DES control
synthesis have evolved based on the automata theory
and formal languages relying on the disciplines of
Computer Science and Control Science. In general, a
supervised plant DFSA is synthesized as a parallel
composition of the unsupervised plant DFSA and a
supervisor DFSA (Cassandras and Lafortune 1999).
The supervised plant DFSA yields a sublanguage
of the unsupervised plant language, which enables
restricted legal behaviour of the supervised plant
(Ramadge and Wonham 1987, Kumar and Garg 1995,
Cassandras and Lafortune 1999). These concepts have
been extended to several practical applications, includ-
ing hierarchical Command, Control, Communication,
and Intelligence (C3I ) systems (Phoha et al. 2002).
Apparently, there have been no quantitative methods
for evaluating the performance of supervisory control-
lers and establishing thresholds for their performance.
The concept of permissiveness has been used in DES

control literature (Kumar and Garg 1995, Cassandras
and Lafortune 1999) to facilitate qualitative comparison
of DES controllers under the language controllability
condition. Design of maximally permissive DES
controllers has been proposed by several researchers
based on different assumptions. However, maximal
permissiveness does not imply best performance of the
supervised plant from the perspective of achieving
plant operational objectives. For example, in the
travelling salesman problem, a maximally permissive

supervisor may not yield the least expensive way of
visiting the scheduled cities and returning to the starting
point because no quantitative measure of performance
is addressed in this type of supervisor design.

The above argument evinces the need for a signed real
measure of regular languages, which can be used for
quantitative evaluation and comparison of different
supervisors for a physical plant, instead of relying on
permissiveness as the (qualitative) performance index.
Construction of the proposed language measure follows
Myhill–Nerode Theorem (Martin 1997, Hopcroft et al.
2001), which states that a regular language can be
partitioned into finitely many right-invariant equiva-
lence classes. In other words, a state-based partitioning
of the (unsupervised) plant language yields equivalence
classes of finite-length event strings. Each marked state
is characterized by a signed real value that is chosen
based on the designer’s perception of the state’s
impact on the system performance. Conceptually similar
to conditional probability, each event is assigned a cost
based on the state at which it is generated. This
procedure permits a string of events, terminating on a
good (bad) marked state, to have a positive (negative)
measure. A supervisor can be designed in this setting
such that the supervisor attempts to eliminate as many
bad strings as possible and retain as many good strings
as possible. Different supervisors may achieve this goal
in different ways and generate a partially ordered set
of supervised sublanguages. The language measure
then creates a total ordering on the performance of
the supervised sublanguages, which provides a precise
quantitative comparison of the controlled plant
behaviour under different supervisors. This feature is
formally stated as follows.

Given that the relation � induces a partial ordering on a set

of supervised sublanguages fLðS j=GÞ, j ¼ 1, . . . ,Ng of the

plant language LðGÞ under supervisors whose languages

are fLðS jÞ, j ¼ 1, . . . ,Ng, the language measure � induces

a total ordering � on f�ðLðS j=GÞÞg. In other words, the

range of the set function � is totally ordered while its

domain could be partially ordered.

The above problem was first addressed by Wang and
Ray (2004) who proposed a signed measure of regular
languages; an alternative approach was proposed by
Ray and Phoha (2003) who constructed a vector space
of formal languages and defined a metric based on the
total variation measure of the language.

This paper reviews, clarifies and expands the contents
of previous publications (Ray and Phoha 2003, Wang
and Ray 2004) from the perspectives of discrete-event
supervisory control within a unified framework and
also introduces new concepts and ramifications of the
language measure and its parameter identification.
Systematic procedures for computation of the language
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measure are developed in this paper and they are
illustrated with an engineering example. The major
objective here is rigorous formulation and systematic
construction of a real signed measure of regular
languages, based on the fundamental principles of
automata theory and real analysis. The quantitative
tools are readily applicable to analysis and synthesis
of discrete-event supervisory control algorithms.
Specifically, performance indices of supervisors can be
defined in terms of the language measure.
The signed real measure for a DFSA, presented in this

paper, is constructed based on assignment of an event
cost matrix and a characteristic vector. Two techniques
for language measure computation have been recently
reported. While the first technique (Wang and Ray
2004) leads to a system of linear equations whose
(closed form) solution yields the language measure
vector, the second technique (Ray and Phoha 2003) is
a recursive procedure with finite iterations. A sufficient
condition for finiteness of the signed measure has been
established in both cases; and an upper bound is
established for the max norm of the language measure
vector.
In order to induce total ordering on the measure of

different sublanguages of a plant language under
different supervisors, it is implicit that same strings in
different sublanguages must be assigned the same
measure. This is accomplished by a quantitative tool
that requires a systematic procedure to assign a
characteristic vector and an event cost matrix. The
clarifications and extensions presented in this paper
are intended to enhance development of a systematic
analytical tool for synthesizing discrete-event
supervisory control. For example, Ray et al. (2004)
have proposed unconstrained optimal control of regular
languages where a state-based optimal control policy is
obtained by selectively disabling controllable events to
maximize the measure of the supervised plant language.
The paper is organized in eight sections including the

present introductory section and two appendices.
Section 2 briefly describes the language measure and
introduces the notations. Section 3 presents the proce-
dure by which the performance of different supervisors
can be compared based on a common quantitative
tool. It also discusses two methods for computing
language measure. Section 4 addresses issues regarding
physical interpretation of the event cost used in the
language measure. Section 5 presents a recursive
algorithm for identification of the language parameters
(i.e., elements of the event cost matrix). Section 6
illustrates the usage of the language measure for con-
struction of metric spaces of formal languages and
synthesis of optimal discrete-event supervisors. Section 7
presents an application of the language measure on the
discrete-event model of a twin-engine unmanned

aircraft (Ray and Phoha 2003, Ray et al. 2004).
The paper is summarized and concluded in x 8 along
with recommendations for future research. Appendix I
provides pertinent mathematical background of mea-
sure theory as needed in the main body of the paper.
Appendix II establishes a sufficient condition for abso-
lute convergence of the language measure.

2. Language measure concept

This section first introduces the signed real measure of
regular languages, originally reported in (Ray and
Phoha 2003, Wang and Ray 2004). Then, the underlying
concepts of language measure are clarified in the context
of discrete event supervisory (DES) control.

Let Gi � hQ,�, �, qi,Qmi be a trim (i.e., accessible and
co-accessible) finite-state automaton model (Ramadge
and Wonham 1987, Cassandras and Lafortune 1999)
that represents the discrete-event dynamics of a physical
plant, where Q ¼ fqk: k 2 IQg is the set of states and
IQ � f1, 2, . . . , ng is the index set of states; the automa-
ton starts with the initial state qi; the alphabet of
events is � ¼ f�k: k 2 I�g, and I� � f1, 2, . . . , ‘g is the
index set of events; �:Q��! Q is the (possibly
partial) function of state transitions; and Qm �

fqm1
, qm2

, . . . , qmr
g � Q is the set of marked (i.e.,

accepted) states with qmk
¼ qj for some j 2 IQ.

Let �� be the Kleene closure of �, i.e., the set of all
finite-length strings made of the events belonging to �
as well as the empty string � that is viewed as the
identity of the monoid �� under the operation of
string concatenation, i.e., �s ¼ s ¼ s�. The extension
�̂�:Q��� ! Q is defined recursively in the usual sense
(Martin 1997, Hopcroft et al. 2001). For DES control
(Ramadge and Wonham 1987), the event alphabet � is
partitioned into sets, �c and ���c of controllable
and uncontrollable events, respectively, where each
event in �c and no event in ���c can be disabled by
the supervisor.

Definition 1: The language LðGiÞ generated by a
DFSA Gi initialized at the state qi 2 Q is defined as

LðGiÞ ¼ fs 2 �� j �̂�ðqi, sÞ 2 Qg: ð1Þ

Since the state transition function � is allowed to be
a partial function, LðGiÞ � �� following Definition 1;
if � is a total function, then the generated language
LðGiÞ ¼ ��.

Definition 2: Given a DFSA plant model Gi, having
the set of controllable events �c � �, let S and eSS be two
controllable supervisors (i.e., each of S and eSS is repre-
sented by an event disabling mapping LðGiÞ ! 2�c ).
Let the languages of the plant supervised by S and eSS
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be denoted as LðS=GiÞ and LðeSS=GiÞ, respectively. Then, S

is said to be less permissive (or more restrictive) than eSS,
denoted as S � eSS, if the following condition holds.

S � eSS if LðS=GiÞ � LðeSS=GiÞ: ð2Þ

In other words, S may disable a larger set of control-
lable events than eSS following the execution of an event
string s 2 ��.

Definition 3: The language LmðGiÞ marked by a DFSA
Gi, initialized at the state qi 2 Q, is defined as

LmðGiÞ ¼ fs 2 �� j �̂�ðqi, sÞ 2 Qmg: ð3Þ

Definition 4: For every qi, qk 2 Q, let Li,k denote the
set of all strings that, starting from the state qi, termi-
nate at the state qk, i.e.,

Li,k ¼ fs 2 �� j �̂�ðqi, sÞ ¼ qkg: ð4Þ

In order to obtain a quantitative measure of the marked
language, the set Qm of marked states is partitioned into
Qþm and Q�m, i.e., Qm ¼ Qþm [Q

�
m and Qþm \Q

�
m ¼ ;.

The positive set Qþm contains all good marked states
that one would desire to reach, and the negative set
Q�m contains all bad marked states that one would not
want to terminate on, although it may not always be
possible to completely avoid the bad states while
attempting to reach the good states. From this perspec-
tive, each marked state is characterized by an assigned
real value that is chosen based on the designer’s percep-
tion of the state’s impact on the system performance.

Definition 5: The characteristic function �:Q!
[�1, 1] assigns a signed real weight to a state-based sub-
language Li,j, having each of its strings terminating on
the same state qj, and is defined as

8qj 2 Q, �ðqjÞ 2
½�1, 0Þ, qj 2 Q�m
f0g, qj =2Qm

ð0, 1�, qj 2 Qþm:

8<: ð5Þ

The state weighting vector, denoted by X ¼

½�1 �2 . . . �n�
T , is called the X-vector, where

�j ��ðqjÞ. That is, the jth element �j of X-vector is the
weight assigned to the corresponding state qj.
In general, the marked language LmðGiÞ consists of

both good and bad strings, which start from the initial
state qi, respectively lead to Qþm and Q�m. Denoting the
set difference operation by ‘‘–’’, any event string belong-
ing to the language L0ðGiÞ � LðGiÞ � LmðGiÞ leads to
one of the non-marked states belonging to Q�Qm

and L0ðGiÞ does not contain any one of the good or

bad strings. Partitioning Qm into the positive set Qþm
and the negative set Q�m leads to partitioning of the
marked language LmðGiÞ into a positive language
LþmðGiÞ and a negative language L�mðGiÞ. Based on the
equivalence classes defined in the Myhill–Nerode
Theorem (Hopcroft et al. 2001), the regular languages
LðGiÞ and LmðGiÞ can be expressed as

LðGiÞ ¼
[
k2IQ

Li,k ð6Þ

LmðGiÞ ¼ LþmðGiÞ
[

L�mðGiÞ ð7Þ

where the sublanguage Li,k � LðGiÞ is uniquely labelled
by the state qk, k 2 IQ and Li,k \ Li,j ¼ ; 8k 6¼ j;
and LþmðGiÞ � [qk2QþmLi,k and L�mðGiÞ � [qk2Q�mLi,k are
good and bad sublanguages of LmðGiÞ, respectively.
Then, the null sublanguage L0ðGiÞ ¼ [qk =2Qm

Li,k and
LðGiÞ ¼ L0ðGiÞ [ L

þ
mðGiÞ [ L

�
mðGiÞ.

Now a signed real measure is constructed as �i:
2LðGiÞ ! R � ð�1,1Þ on the �-algebra M ¼ 2LðGiÞ.
(Appendix I provides details of measure-theoretic
definitions and results.) With this choice of �-algebra,
every singleton set made of an event string s 2 LðGiÞ

is a measurable set, which allows its quantitative
evaluation based on the above state-based decomposi-
tion of LðGiÞ into null (i.e., L0ðGiÞ), positive (i.e.,
LþmðGiÞ), and negative (i.e., L�mðGiÞ) sublanguages.

Conceptually similar to the conditional probability,
each event is assigned a cost based on the state at
which it is generated.

Definition 6: The event cost of the DFSA Gi is defined
as a (possibly partial) function ~��: ��� Q! ½0, 1� such
that 8qi 2 Q, 8�j 2 �, 8s 2 ��,

~��½�j , qi� ¼ 0 if �ðqi, �jÞ is undefined; ~��½�, qi� ¼ 1;

~��½�j , qi� � ~��ij 2 ½0, 1Þ;
X
j2I�

~��ij < 1;

~��½�js, qi� ¼ ~��½�j, qi� ~��½s, �ðqi, �jÞ�:

ð8Þ

A simple application of the induction principle to
the last part of Definition 6 shows ~��½st, qj� ¼ ~��½s, qj �
~��½t, �̂�ðqj, sÞ�. The condition

P
k2IQ

~��jk < 1 provides a
sufficient condition for the existence of the real
signed measure as discussed in x 3 and Appendix II.
Additional comments on the physical interpretation of
the event cost are provided in x 4.

The n� ‘ event cost matrix is defined as

e&& ¼
~��11 ~��12 . . . ~��1‘
~��21 ~��22 . . . ~��2‘
..
. ..

. . .
. ..

.

~��n1 ~��n2 . . . ~��n‘

2664
3775: ð9Þ
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Definition 7: The state transition cost, �:Q�Q!
½0, 1Þ, of the DFSA Gi is defined as follows.

8i, j 2 IQ,

�ij ¼

P
�2� ~��½�, qi�, if �ðqi, �Þ ¼ qj

0 if f�ðqi, �Þ ¼ qjg ¼ ;:

�
ð10Þ

The n� n state transition cost matrix is defined as

& ¼

�11 �12 . . . �1n
�21 �22 . . . �2n
..
. ..

. . .
. ..

.

�n1 �n2 . . . �nn

2664
3775 ð11Þ

and is referred to as the &-matrix in the sequel.

Definition 8: Given a DFSA Gi � hQ,�, �, qi,Qmi the
cost �i of a sublanguage K � LðGiÞ is defined as the
sum of the event cost ~�� of individual strings belonging
to K .

�iðKÞ ¼
X
s2K

~��½s, qi�: ð12Þ

Definition 9: For a given DFSA Gi, the signed real
measure of every singleton string set fsg 2 Li,j � LðGiÞ

is defined as �iðfsgÞ � ~��ðs, qiÞ�j implying that

8s 2 Li, j, �iðfsgÞ

¼ 0, qj =2Qm

> 0, qj 2 Qþm
< 0, qj 2 Q�m

8<: ð13Þ

Thus an event string terminating on a good (bad)
marked state has a positive (negative) measure and
one terminating on a non-marked state has zero
measure. It follows from Definition 9 that the signed
measure of the sublanguage Li,j � LðGiÞ of all events,
starting at qi and terminating at qj , is

�iðLi, jÞ ¼
X
s2Li, j

~��½s, qi�

0@ 1A� j ð14Þ

Definition 10: The signed real measure of the language
of a DFSA Gi initialized at a state qi 2 Q, is defined as

�i � �
iðLðGiÞÞ ¼

X
j2IQ

�iðLi,jÞ: ð15Þ

The language measure vector, denoted as l ¼

½�1 �2 . . .�n�
T , is called the l-vector.

Remark 1: �iðLmðGiÞÞ ¼ �i 8i 2 IQ because �k ¼ 0
8qk 2 Q�Qm.

It follows from Definition 10 that �iðLi,jÞ ¼ �
iðLi,jÞ�j.

Under the condition of
P

k ~��jk < 1 in Definition 6,
convergence of the signed real language measure
�i has been proved in (Ray and Phoha 2003,

Wang and Ray 2004). The total variation measure j�ij

of �i has also been shown to be finite for every i 2 IQ
(Ray and Phoha 2003).

In the above setting, the role of the language measure
in DES control synthesis is explained below.

A discrete-event non-marking supervisor S restricts the

marked behaviour of an unsupervised (i.e., uncontrolled)

plant Gi such that LmðS=GiÞ � LmðGiÞ. The unsupervised

marked language LmðGiÞ consists of good strings leading

to Qþm and bad strings leading to Q�m. A supervised (i.e.,

controlled) language LmðS=GiÞ based on a given specifica-

tion of the supervisor S may disable some of the bad strings

and keep some of the good strings enabled. Different super-

visors Sj : j 2 f1, 2, . . . , nsg for a DFSA Gi achieve this goal

in different ways and generate a partially ordered set of

supervised sublanguages fLmðSj=GiÞ: j 2 f1, 2, . . . , nsgg. The

real signed measure �i provides a precise quantitative com-

parison of the controlled plant behaviour under

different supervisors because the set f�iðLmðSj=GiÞÞ:

j 2 f1, 2, . . . , nsgg is totally ordered.

In order to realize the above goal, the performance of
different supervisors has to be evaluated based on a
common quantitative tool. Let G � hQG,�, �G, qG1 ,Q

G
mi

denote the unsupervised plant and S � hQS,�, �S,
qS1 ,Q

S
mi denote the supervisor with respective languages

LðGÞ and LðSÞ and the corresponding marked languages
LmðGÞ and LmðSÞ.

Let G � hQ,�, �, q1,Qmi where Q ¼ QG �QS,
q1 ¼ ðq

G
1 , q

S
1 Þ, Qm ¼ fðp, ~ppÞjp 2 QG

m and ~pp 2 QS
mg and

the transition function � is defined by the formula:
8p 2 QG, ~pp 2 QS, and � 2 �

�ðð p, ~ppÞ, �Þ ¼ �Gð p, �Þ, �Sð ~pp, �Þ
� �

: ð16Þ

Then, the marked language LmðGÞ of the automaton G

is LmðGÞ \ LmðSÞ because G is a parallel composition
(Ramadge and Wonham 1987, Cassandras and
Lafortune 1999) of the automata G and S that have
the common alphabet �. Then, it follows that the exten-
sion �̂� satisfies the condition

8s 2 ��, �̂�ðð p, ~ppÞ, sÞ ¼ ð�̂�Gð p, sÞ, �̂�Sð ~pp, sÞÞ ð17Þ

whenever �̂�Gð p, sÞ and �̂�Sð ~pp, sÞ are defined.
The unsupervised plant language LðGÞ is partitioned

by LG
1, j, 1 � j � nG where jQGj ¼ nG. Similarly, the

supervisor language LðSÞ is partitioned by LS
1,k,

1 � k � nS where jQSj ¼ nS. With this construction,

each of the sublanguages LG
1, j is further partitioned by

LG
1, j \ L

S
1,k. Thus, for any qGj 2 QG

m, the set of strings,
which is retained in LmðGÞ \ LmðSÞ, is given by
LG
1, j \ ð[qSk2Q

S
m
LS
1,kÞ. In this setting, the goal is to synthe-

size a supervisor that will retain many strings that termi-
nate on some state in QGþ

m while discarding many strings
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that terminate on QG�
m . It will yield a relatively high

measure and hence good performance.
The above construction shows how the event cost and

characteristic function assigned to the unsupervised
plant can be used as a quantitative tool with which the
performance of different supervisors can be evaluated
and compared. The following procedure indicates how
this can be accomplished explicitly.

Definition 11: Let G, S and G be defined as above. Let
G represent the unsupervised plant and ~��G be the event
cost function and �G be the characteristic function.
Then, for the DFSA G which represents the language
of the supervised plant, the event cost function ~�� is
defined as

~�� �, qGi , q
S
j

� �h i
¼ ~��G �, qGi

� �
8� 2 � and 8i, j s.t. 1 � i � nG, 1 � j � nS: ð18Þ

The �-vector for the DFSA G is defined as

� qGi , q
S
j

� �� �
¼ �GðqGi ÞJ qSj

� �
ð19Þ

where J ð 	 Þ is the indicator function defined as

J ð pÞ ¼
1 p 2 QS

m

0 p =2QS
m.

�
ð20Þ

Let s 2 LððqG
1
, qS

1
Þ, ðqGj , q

S
k
ÞÞ, i.e., the set of all strings starting

at the state ðqG1 , q
S
1 Þ 2 Q � QG �QS and terminating at

ðqGj , q
S
k Þ. If qGj ¼ �̂�

Gðq1, sÞ, it follows from Definition 9
that �ðfsgÞ ¼ ~��G½s, qG1 ��

GðqGj Þ for the unsupervised (i.e.,
uncontrolled) plant. Following equations (18) and (19),
the measure of the supervised (i.e., controlled) plant
becomes

�1ðfsgÞ ¼ ~�� s, qG1 , q
S
1

� �� �
� qGj , q

S
k

� �� �
¼ ~��G s, qG1

� �
�G qGj

� �
J qSk
� �

: ð21Þ

In other words, if no event in the string s is disabled
by the supervisor, then �1ðfsgÞ in the supervised plant
automaton G remains the same as in the unsupervised
plant automaton G; otherwise, �1ðfsgÞ ¼ 0. Thus,
Definition 11 guarantees that the same strings in
different supervised sublanguages of the unsupervised
plant language LðGiÞ are assigned the same measure.
Hence, the performance of different supervisors can be
compared with a common quantitative tool.
Finally to conclude this section, it should be noted

that while the domain (i.e., 2LðGiÞ) of the language
measure �i is partially ordered, its range which is a
subset of R becomes totally ordered. The set LðGiÞ

with the �-algebra, 2LðGiÞ, forms a measurable space.
In principle, any measure � can be defined on this

measurable space to form a measure space (i.e., the
triple hLðGiÞ, 2

LðGiÞ,�ii). The choice of the signed
language measure, as given by Definitions 9 and 10,
has been motivated by the fact that it bears a physical
significance and hence is qualified to serve as a
performance measure for DES controller synthesis.
Moreover, defining the measure in this way also leads
to simple computational procedures as discussed in the
next section and further elaborated in x 4.

3. Language measure computation

Various methods of obtaining regular expressions for
DFSAs are reported in Martin (1997) and Hopcroft
et al. (2001). While computing the measure of a given
DFSA, the same event may have different significance
when emanating from different states. This requires
assigning (possibly) different costs to the same event
defined on different states. Therefore, it is necessary to
obtain a regular expression which explicitly yields the
state-based event sequences. In order to compute the
language measure, it is convenient to transform the pro-
cedures of evaluating regular expression from symbolic
equations to algebraic ones. The following two methods
(Ray and Phoha 2003, Wang and Ray 2004) are
presented, in detail, for language measure computation.

3.1. Method I: closed form solution

This section presents a closed-form method to compute
the language measure via inversion of a square operator.

Definition 12: Let Li � LðGiÞ, i 2 IQ, denote the
regular expression representing the language of a
DFSA Gi ¼ hQ,�, �, qi,Qmi, where qi is the initial state.

Definition 13: Let �kj denote the set of event(s) � 2 �
that is defined on the state qj and leads to the state
qk 2 Q, where j, k 2 IQ, i.e., �ðqj, �Þ ¼ qk, 8� 2 �

k
j � �.

Then, given a DFSA Gi ¼ hQ,�, �, qi,Qmi the procedure
to obtain the system equation by a set of regular expres-
sions Li of the language LðGiÞ, i 2 IQ, is as follows:

8qi 2 Q, Li ¼
X
j2IQ

Ri,j þ �, ð22Þ

where the operator
P

indicates the sum of regular
expressions (equivalently, union of regular languages);
and Ri, j is defined as follows.

If there exists � 2 � such that �ðqi, �Þ ¼ qj 2 Q for
j 2 f1, . . . , ng, then Ri, j ¼ �

j
i Lj, otherwise, Ri, j ¼ ;.

The set of symbolic equations may be written as

Li ¼
X
j

� j
i Lj þ �: ð23Þ
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The above system of symbolic equations can be solved
using a result given below, which is illustrated through
an example.

Lemma 1: Let u, v be two known regular expressions
and r be an unknown regular expression that satisfies
the following algebraic identity:

r ¼ urþ v: ð24Þ

Then, the following relations are true.

(1) r ¼ u�v is a solution to equation (24).
(2) If � =2 u, then r ¼ u�v is the unique solution to

equation (24).

Proof: The proof of Lemma 1, which is also known as
Arden’s relation, is given in Yu (1997) and Ray and
Phoha (2003). œ

Example 1: In this example, shown in figure 1, the
alphabet is � ¼ fa, bg; the set of states is Q ¼ f1, 2, 3g;
the initial state is 1; and the only marked state is 2.
Let the set of linear algebraic equations representing
the transitions at each state of the DFSA be as follows:

L1 ¼ a11L1 þ b21L2 þ �

L2 ¼ a12L1 þ b32L3 þ �

L3 ¼ a13L1 þ b23L2 þ �

9>=>; ð25Þ

where the ‘forcing’ term � is introduced on the right
side of each equation. For example, by application of
Lemma 1, the regular expression for the language
LðG1Þ is given as

L1 ¼ ða
1
1Þ
�b21ða

1
2ða

1
1Þ
�b21 þ b32a

1
3ða

1
1Þ
�b21 þ b32b

2
3Þ
�
þ �:

Instead of obtaining regular expressions, the language
measure can be directly computed by transforming
this set of equations into a system of linear equations
based on the following result.

Theorem 1: Following Definition 10, the language
measure of the symbolic equation (23) is given by

�i ¼
X
j

�ij�j þ �i: ð26Þ

Proof: Following equation (22) and Definition 5

8i 2 IQ, �ið�Þ ¼ �i: ð27Þ

Therefore, each element of the vector X ¼

½�1 �2 . . . �n�
T is the forcing function in equations

(23) and (24). Starting from the state qi, the measure
of the language Li � LðGiÞ (see Definition 12)

�i ¼ �
iðLiÞ ¼ �

i
X
j

� j
i Lj þ �

 !

¼ �i
X
j

� j
i Lj

 !
þ �ið�Þ

¼
X
j

�ið� j
i LjÞ þ �

ið"Þ�i

¼
X
j

�ð� j
i Þ�

jðLjÞ þ �i

¼
X
j

�i j�j þ �i:

The third equality in the above derivation follows from
the fact that � \ � j

i Lj ¼ ;. It is also true that

8j 6¼ k, � j
i Lj

\
�ki Lk ¼ ; ð28Þ

since each string in � j
i Lj starts with an event in � j

i while
each string in �ki Lk starts from an event in �ki and
� j
i \ �

k
i ¼ ; 8j 6¼ k because Gi is a DFSA. This justifies

the fourth equality. The fifth equality follows from
Definition 8 and the fact that �iðLi, jÞ ¼ �

iðLi, jÞ�ðqjÞ;
therefore, by Definitions 7 and 13, �ið� j

i LjÞ ¼ �½qi, qj �
�jðLjÞ ¼ �ij�j. œ

In vector notation, equation (26) in Theorem 1 is
expressed as

l ¼ &lþ X

whose solution is given by

l ¼ ðI�&Þ�1X ð29Þ

provided that the matrix I�& is invertible. The follow-
ing important result guarantees the existence of l.

Theorem 2: Given DFSAs Gi � hQ,�, �, qi,Qmi, with
the state transition cost matrix &, the matrix ðI�&Þ is
an invertible bounded linear operator and l 2 Rn.

Proof: It follows from Definitions 6 and 7 that the
induced max norm k&k1 � maxi

P
j �ij ¼ 1� � where

� 2 ð0, 1Þ. Then ðI�&Þ is invertible and is a bounded
linear operator and kðI�&Þ�1k1 � �

�1 (Naylor andFigure 1. Finite state machine for Example 1.
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Sell 1982). Then, it follows from equation (29) that

l 2 Rn. œ

Corollary 1 (to Theorem 2): The language measure

vector l is bounded as klk1 � �
�1 where � �

ð1� k&k1Þ.

Proof: The proof follows by applying the norm

inequality property and Theorem 2 to equation (29)

and the fact that the max norm kXk1 � 1 by

Definition 5. œ

Alternatively, sufficient conditions for convergence of �
can be obtained based on the properties of nonnegative

matrices that are given in Appendix II. Therefore,

Definitions 6 and 7 provide a sufficient condition for

the language measure � of the DFSA Gi to be finite.

A closed-form algorithm to compute a language mea-

sure based on the above procedure is presented below.

Algorithm 1: Closed-form computation of the

language measure

(1) For a given Gi � hQ,�, �, qi,Qmi, specify the charac-

teristic vector X (see Definition 5) and determine the

event cost matrix e�� (see Definition 6) via experimen-

tation or simulation, as described later in x 5).
(2) Generate the &-matrix (Definition 7).
(3) Compute the language measure vector l 

ðI�&Þ�1X using Gaussian elimination.
(4) Obtain �i, the ith element of l-vector, which is

the measure of the generated language of the

DFSA Gi.

The jth element of the ith row of the ðI�&Þ�1 matrix,

denoted as � ji , is the language measure of the DFSA

with the same state transition function � as Gi and

having the following properties: (i) the initial state is

qi; (ii) qj is the only marked state; and (iii) the �-value
of qj is equal to 1. Thus, �i � �ðLðGiÞÞ is given by

�i ¼
P

j �
j
i �j. Numerical evaluation of the language

measure of the automaton Gi requires Gaussian elimina-

tion of the single variable �i involving the real invertible

matrix ðI�&Þ. Therefore, the computational com-

plexity of the language measure algorithm is polynomial

in the number of states.

3.2. Method II: recursive solution

This section presents a second method to compute the

language measure using a recursive procedure based

on Kleene’s theorem (Martin 1997) which states that

the marked (i.e., accepted) language of a DFSA is

regular. It also yields an algorithm to recursively con-

struct the regular expression of its language instead of

the closed form solution in Method I.

Definition 14: Given qi, qk 2 Q, a non-empty string p
of events (i.e., p 6¼ �) starting from qi and terminating
at qk is called a path. A path p from qi to qk is said to
pass through qj if there exists s 6¼ � and t 6¼ � such that
p ¼ st; �̂�ðqi, sÞ ¼ qj and �̂�ðqj, tÞ ¼ qk.

Definition 15: A path language p j
ik is defined to be the

set of all paths from qi to qk, which do not pass through
any state qr for r > j, and � =2 p j

ik. The path language pik is
defined to be the set of all paths from qi to qk. Thus, the
language Li,k is obtained in terms of the path language
pik as

Li,k ¼
pii
S
f�g, if k ¼ i

pik, if k 6¼ i

�
) �ðLi,kÞ ¼

�ð piiÞ þ 1, if k ¼ i

�ð pikÞ, if k 6¼ i.

�
Every path language p j

ik is a regular language and is a
subset of LðGiÞ. As shown in Ray and Phoha (2003),
following recursive relation holds for 0 � j � n� 1,
where kQk ¼ n.

Theorem 3: Given a DFSA Gi � hQ,�, �, qi,Qmi, the
following recursive relation holds for 1 � j � n� 1

p0lk ¼ f� 2 �: �ðql�Þ ¼ qkg

p jþ1
lk ¼ p j

lk

[
pjl, jþ1 p j

jþ1, jþ1

� ��
p j
jþ1,k:

9=; ð30Þ

Proof: Since the states are numbered form 1 to n in
increasing order, p0lk ¼ f� 2 �: �ðql , �Þ ¼ qkg follows
directly form the state transition map �: Q��! Q
and Definition 15.

Given p j
lk � p jþ1

lk , let us consider the set p jþ1
lk � p j

lk

in which each string passes through qjþ1 in the path
from ql to qk and no string must pass through qm for
m > ð j þ 1Þ. Then, it follows that

p jþ1
lk � p j

lk ¼ p j
l, jþ1p

jþ1
jþ1,k

where p jþ1
jþ1,k can be expanded as

p jþ1
jþ1,k ¼ p j

jþ1, jþ1p
jþ1
jþ1,k

� �[
pjjþ1,k

that has a unique solution following Theorem 1 because
� =2 p j

jþ1, jþ1 based on Definition 15. Therefore,

p jþ1
lk ¼ p j

lk

[
pjl, jþ1 p j

jþ1, jþ1

� ��
pjjþ1,k: œ

Based on the three lemmas proved below, the above
relations can be transformed into an algebraic equation
conceptually similar to Theorem 1 in Method I. Along
with the procedure to compute the language measure
it is established that, 8i 2 IQ,

Pn
j¼1 �ij < 1 is a sufficient

condition for finiteness of �.
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Lemma 2: �ðð p0kkÞ
�
ð[j 6¼kp

0
kjÞÞ 2 ½0, 1Þ:

Proof: Following Definitions 6 and 8, �ð p0kkÞ 2 ½0, 1Þ.
Therefore, by convergence of geometric series,

� p0kk
� �� [

j 6¼k

p0kj

 ! !
¼

P
j 6¼k � p0kj

� �
1� � p0kk

� � 2 ½0, 1Þ
because

P
j �ð p

0
kjÞ )

P
j 6¼k �ð p

0
kjÞ � �ð p

0
kkÞ. œ

Lemma 3: �ð p j
jþ1, jþ1Þ 2 ½0, 1Þ.

Proof: The path p j
jþ1, jþ1 may contain at most j loops,

one around each of the states q1, q2, . . . , qj. If the path
p j
jþ1, jþ1 does not contain any loop, then �ð p j

jþ1, jþ1Þ 2

½0, 1Þ because 8s 2 p j
jþ1, jþ1, �ðsÞ < 1 and each of s origi-

nates at state j þ 1.
Next let us suppose that there is a loop around q‘

and that does not contain any other loop; this loop
must be followed by one or more events �k generated
at q‘ and leading to some other states qm where m 2
f1, . . . , j þ 1g and m 6¼ ‘. By Lemma 2, �ð p j

jþ1, jþ1Þ 2

½0, 1Þ. Proof follows by starting from the innermost
loop and ending with all loops at qj œ

Lemma 4:

�
�
p j
jþ1, jþ1

��� �
¼

1

1� �
�
p j
jþ1, jþ1

� 2 ½1,1Þ: ð31Þ

Proof: Since �ð p j
jþ1, jþ1Þ 2 ½0, 1Þ from Lemma 3.3, it

follows that

�
�
p j
jþ1, jþ1

��� �
¼

1

1� �
�
p j
jþ1, jþ1

� 2 ½1,1Þ: œ

Finally, the main result of this section is stated as the
following theorem.

Theorem 4: Given a DFSA Gi � hQ,�, �, qi,Qmi the
following recursive result holds for 0 � j � n� 1, where
kQk ¼ n:

�
�
p jþ1
lk

�
¼ � p j

lk

� �
þ
�
�
pjl, jþ1

�
�
�
pjjþ1, k

�
1� �

�
p j
jþ1, jþ1

� : ð32Þ

Proof:

�
�
p jþ1
lk

�
¼ � p j

lk

[
p j
l, jþ1

�
p j
jþ1, jþ1

��
p j
jþ1,k

� �
¼ �

�
p j
lk

�
þ � p j

l, jþ1

�
p j
jþ1, jþ1

��
p j
jþ1,k

� �
¼ �

�
p j
lk

�
þ �

�
p j
l, jþ1

�
�
�
p j
jþ1, jþ1

��� �
�
�
p j
jþ1,k

�
¼ �

�
p j
lk

�
þ
�
�
p j
l, jþ1

�
�
�
p j
jþ1,k

�
1� �

�
p j
jþ1, jþ1

� :

The second step in the above derivation follows from
fact that p j

lk \ p
j
l, jþ1ð p

j
jþ1, jþ1Þ

�p j
jþ1,k ¼ ;. The third step

follows from Definition 8 and the last step is a
consequence of Lemma 4. œ

Based on the above result, a recursive algorithm to com-
pute a language measure is presented below.

Algorithm 2: Recursive computation of the language
measure

(1) For a given Gi � hQ,�, �, qi,Qmi, specify the charac-
teristic vector X (see Definition 5) and determine the
event cost matrix e&& (see Definition 6) via experimen-
tation or simulation, as described in x 5).

(2) Compute the &-matrix (Definition 7).
(3) �ð p0lkÞ ��lk for 1 � l, k � n
(4) for j ¼ 0 to n� 1

for l ¼ 1 to n
for k ¼ 1 to n

�ð p jþ1
lk Þ ¼ �ð p

j
lkÞþ

�ð pjl, jþ1Þ�ð p
j
jþ1, kÞ

1� �ð p j
jþ1,jþ1Þ

end
end
end

(5) Calculate �ðLi,kÞ from �ð pikÞ using Definition 15.
(6) �i �

P
qj2Qm

�ðLi,JÞ�j is a measure of the language
Li of the DFSA Gi.

Since there are only three for loops, the computational
complexity of the above algorithm is polynomial in the
number of DFSA states, same as that of Algorithm 1
in Method I.

4. Event cost: a probabilistic interpretation

The signed real measure (see Definition 10) of a regular
language is based on the assignment of the characteristic
vector X (see Definition 5) and the event cost matrix ~&&
(Definition 6). The characteristic vector is chosen by the
designer based on his/her perception of the individual
state’s impact on the system performance. On the
other hand, the event cost is an intrinsic property of
the plant. The event cost ~��jk is conceptually similar to
the state-based conditional probability of Markov
Chains, except for the fact that it is not allowed to
satisfy the equality condition

P
k ~��jk ¼ 1. (Note thatP

k ~��jk < 1 is a requirement for convergence of the
language measure.) The rationale for this strict
inequality is explained below.

Since the plant model is an inexact representation of
the physical plant, there exist unmodelled dynamics
to account for. This can manifest itself either as
unmodelled events that may occur at each state or as
unaccounted states in the model. Let �u

j denote the set
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of all unmodelled events at state qj of the DFSA
Gi � hQ,�, �, qi,Qmi. Creating a new unmarked absorb-
ing state qnþ1, called the dump state (Ramadge and
Wonham 1987), and extending the transition function
� to �ext: ðQ [ fqnþ1gÞ � ð� [j �

u
j Þ ! ðQ [ fqnþ1gÞ, it

follows that

�extðqj , �Þ ¼

�ðqj, �Þ, if qj 2 Q and � 2 �
qnþ1, if qj 2 Q and � 2 �u

j

qnþ1, if j ¼ nþ 1 and � 2 �
S

�u
j .

8<:
ð33Þ

Therefore the residue �j ¼ 1�
P

k ~��jk denotes the
probability of the set of unmodelled events �u

j

conditioned on the state j. The & matrix can be similarly
augmented to obtain a stochastic matrix&aug as follows:

&aug ¼

�11 �12 . . . �1n �1
�21 �22 . . . �2n �2
..
. ..

. . .
. ..

. ..
.

�n1 �n2 . . . �nn �n
0 0 . . . 0 1

266664
377775: ð34Þ

Since the dump state qnþ1 is not marked, its character-
istic value �nþ1 � �ðqnþ1Þ ¼ 0. The characteristic vector
then augments to

Xaug ¼ ½X
T 0�T

and, with these extensions, the language measure vector
laug � ½�1 �2 	 	 	 �n �nþ1�

T
¼ ½lT �nþ1�

T of the aug-
mented DFSA Gaug � hQ [ fqnþ1g,� [j �

u
j , �ext, qi,Qmi

can be expressed as

laug �
l

�nþ1

� 	
¼

&lþ �nþ1 �1 	 	 	 �n½ �
T

�nþ1

� 	
þ

X

0

� 	
:

ð35Þ

Since �ðqnþ1Þ ¼ 0 and all transitions from the absorbing
state qnþ1 lead to itself, i.e., �nþ1 ¼ �ðLmðGnþ1ÞÞ ¼ 0,
equation (35) reduces to that for the original plant Gi.
Thus, the event cost can now be interpreted as
conditional probability, where the residue �j ¼
1�

P
k ~��jk > 0 accounts for the probability of all

unmodelled events emanating from the state qj. With
this interpretation of event cost, ~��½s, qi� (see Definition
6) denotes the probability of occurrence of the event
string s in the plant model Gi starting at state qi and
terminating at state �̂�ðs, qiÞ. Hence, �iðLi, jÞ (see
Definition 8), which is a non-negative real number, is
directly related to the sum of probabilities that state qi
would be reached via alternative paths as the plant
operates. (Note that �iðLi, jÞ > 1 is possible if Li,j

contains multiple strings.) The language measure
�i � �

iðLðGiÞÞ ¼
P

j2IQ
�iðLi,jÞ ¼

P
j2IQ

�iðLi, jÞ�j is

then directly related (but not necessarily equal) to the
expected value of the characteristic function.

The choice of the characteristic function (see
Definition 5) is based on the importance assigned to
the individual marked states of the DFSA. Therefore,
in the setting of the language measure, a supervisor’s
performance is superior if the supervised plant is more
likely to terminate at a good marked state and/or less
likely to terminate at a bad marked state.

5. Estimation of language measure parameters

This section presents a recursive algorithm for identifica-

tion of the language measure parameters (Wang et al.

2005) (i.e., elements of the event cost matrix e&&) (see
Definition 6) which, in turn, allows computation of the
state transition cost matrix & (see Definition 7) and
the language measure l-vector (see Definition 10). It is
assumed that the underlying physical process evolves
at two different time scales. In the fast-time scale, i.e.,
over a short time period, the system is assumed to be
an ergodic, discrete Markov process. In the slowly-
varying time scale, i.e., over a long period, the system
(possibly) behaves as a non-stationary stochastic pro-
cess. For such a slowly-varying non-stationary process,
it might be necessary to redesign the supervisory control
policy in real time. In that case, the e&&-matrix parameters
should be updated at selected slow-time epochs.

5.1. A recursive parameter estimation scheme

Let pij be the transition probability of the event �j at the
state qi, i.e.,

pij ¼
P½�jjqi�, if 9q 2 Q, s:t: q ¼ �ðqi, �jÞ
0, otherwise

�
ð36Þ

and its estimate be denoted by the parameter p̂pij that is
to be identified from the ensemble of simulation and/
or experimental data.

Let a strictly increasing sequence of time epochs of
consecutive event occurrence be denoted as

T � ftk: k 2 N0g, ð37Þ

where N0 is the set of non-negative integers. Let the indi-
cator  :N0 � IQ � I�! f0, 1g represent the incident of
occurrence of an event. For example, if the DFSA was
in state qi at time epoch tk�1, then

 ijðkÞ ¼
1, if �j occurs at the time epoch tk 2 T
0, otherwise.

�
ð38Þ
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Consequently, the number of occurrences of any event in
the alphabet � is represented by �:N0 � IQ ! f0, 1g.
For example, if the DFSA was in state qi at the time
epoch tk�1, then

)iðkÞ ¼
X
j2I�

 ijðkÞ: ð39Þ

Let n: N0 � IQ � I�! N0 represent the cumulative
number of occurrences of an event at a state up to a
given time epoch. That is, nijðkÞ denotes the number of
occurrences of the event �j at the state qi up to the
time epoch tk 2 T . Similarly, let N: N0 � IQ ! N0

represent the cumulative number of occurrences of any
event in the alphabet � at a state up to a given time
epoch. Consequently,

NiðkÞ ¼
X
j2I�

nijðkÞ: ð40Þ

A frequency estimator, p̂pijðkÞ, for probability pijðkÞ of the
event �j occurring at the state qi at the time epoch tk, is
obtained as

p̂pijðkÞ ¼
nijðkÞ

NiðkÞ

lim
k!1

p̂pijðkÞ ¼ pij :

9>=>; ð41Þ

Convergence of the above limit is justified because the
occurrence of an event at a given state of a stationary
Markov chain can be treated as an independent and
identically distributed random variable.
A recursive algorithm of learning pij is formulated as a

stochastic approximation scheme, starting at the time
epoch t0 with the initial conditions: p̂pijð0Þ ¼ 0 and
nijð0Þ ¼ 0 for all i 2 IQ, j 2 I�; and )ið0Þ ¼ 0 for all
i 2 IQ. Starting at k ¼ 0, the recursive algorithm runs
for ftk: k 
 1g. For example, upon occurrence of an
event �j at a state qi, the algorithm is recursively
incremented as

nijðkÞ ¼ nijðk� 1Þ þ  ijðkÞ

NiðkÞ ¼ Niðk� 1Þ þ�iðkÞ:

)
ð42Þ

Next it is demonstrated how the estimates of the lan-
guage parameters (i.e., the elements of event cost
matrix e��) are determined from the probability esti-
mates. As stated earlier in x 4 the set of unmodelled
events at state qi, denoted by �u

i 8i 2 IQ, accounts for
the row-sum inequality:

P
j ~��ij < (see Definition 6).

Then, P½�u
i � ¼ �i 2 ð0, 1� and

P
i ~��ij ¼ 1� �i. An esti-

mate of the ði, jÞth element of the event cost matrixe&&-matrix, denoted by ~̂��~��ij , is approximated as

~̂��~��ijðkÞ ¼ p̂pijðkÞð1� �iÞ 8j 2 I�: ð43Þ

Additional experiments on a more detailed automaton
model would be necessary to identify the parameters
�i 8i 2 IQ. If �i � 1, the problem of conducting
additional experimentation can be circumvented by the
following approximation.

A single parameter � � �i 8i 2 IQ, i 2 IQ, such that
0 < � � 1, could be selected for convenience of imple-
mentation. From the numerical perspective, this option
is meaningful because it sets an upper bound on the
language measure based on the fact that the max
norm k�k1 � �

�1. Note that each row sum in thee&&-matrix being strictly less than 1, i.e.,
P

j ~��ij < 1, is
a sufficient condition for finiteness of the language
measure (see Appendix II).

Theoretically, ~��ij is the asymptotic value of the
estimated probabilities ~̂��~��ijðkÞ as if the event �j occurs
infinitely many times at the state qi. However, while
dealing with finite amount of data, the objective is to
obtain a good estimate p̂pij of pij from independent
Bernoulli trials of generating events. Critical issues in
this situation are: (i) how much data are needed; and
(ii) when to stop if adequate data are available. The
next section 5-B addresses these issues.

5.2. Stopping rules for recursive learning

A stopping rule is necessary to find a lower bound on the
number of experiments to be conducted for identifica-
tion of the e&&-matrix parameters. This section presents
two stopping rules that are discussed below.

The first stopping rule is based on an inference
approximation having a specified absolute error bound
" with a probability 	. The objective is to achieve a
trade-off between the number of experimental observa-
tions and the estimation accuracy.

A bound on the required number of samples is
estimated using the Gaussian structure of the binomial
distribution that is an approximation of the sum of a
large number of independent and identically distributed
(i.i.d.) Bernoulli trials of ~̂��~��ijðtÞ. The central limit theorem
yields ~̂��~��ij  Nð ~��ij , ~��ijð1� ~��ijÞ=NÞ, where N indicates
normal (or Gaussian) distribution with E½ ~̂��~��ij� � ~��ij and
Var½ ~̂��~��ij� � �

2 � ~��ijð1� ~��ijÞ=N, provided that the number
of samples N is sufficiently large. Let � ¼ ~̂��~��ij � ~��ij , then
�=�  Nð0, 1Þ. Given 0 < "� 1 and 0 < 	� 1, the
problem is to find a bound Nb on the number N of
experiments such that Pfj�j 
 "g � 	. Equivalently,

P
j�j

�


"

�

� 

� 	 ð44Þ

that yields a bound Nb on N as

Nb 


�1ð	Þ

"

� 	2

~��ijð1� ~��ijÞ, ð45Þ
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where 
ðxÞ � 1�
ffiffiffiffiffiffiffiffi
2=�
p Ð x

0e
�ðt2=2Þ dt. Since the parameter

~��ij is unknown, one may use the fact that ~��ijð1� ~��ijÞ �
0:25 for every ~��ij 2 ½0, 1� to (conservatively) obtain a
bound on N only in terms of the specified parameters
" and 	 as

Nb 


�1ð	Þ

2"

� 	2

: ð46Þ

The above estimate of the bound on the required
number of samples is less conservative than that
obtained from the Chernoff bound and is significantly
less conservative than that obtained from Chebyshev

bound which does not require the assumption of any
specific distribution of � except for finiteness of the
rth (r ¼ 2) moment.
The second stopping rule, which is an alternative to

the first stopping rule, is based on the properties of
irreducible stochastic matrices. Following equation (41)
and the state transition function � of the DFSA, the
state transition matrix is constructed at the kth iteration
as PðkÞ that is an n� n irreducible stochastic matrix
under stationary conditions. Similarly, the state prob-
ability vector pðkÞ � ½p1ðkÞ p2ðkÞ 	 	 	 pnðkÞ� is obtained
by following equation (41)

piðkÞ ¼
NiðkÞP

j2IQ
NjðkÞ

: ð47Þ

The stopping rule makes use of the Perron–Frobenius
Theorem to establish a relation between the vector pðkÞ
and the irreducible stochastic matrix PðkÞ.

Theorem 5: Perron–Frobenius Theorem (Senata 1973,
Plemmons and Berman 1979) Let PðkÞ be an n� n
irreducible matrix, then there exits an eigenvalue r such

that

(1) r 2 R and r > 0.
(2) r can be associated strictly positive left and right

eigenvectors.
(3) r 
 	 8 eigenvalue 	 6¼ r.
(4) The eigenvectors associated with r are unique to

constant multiples.
(5) If 0 � B � PðkÞ and � is an eigenvalue of B, then
j�j � jrj. Moreover, j�j ¼ r implies B ¼ PðkÞ.

(6) r is a simple root of the characteristic equation of

PðkÞ.

Corollary 1: Corollary to Perron–Frobenius Theorem

min
i

Xn
j¼1

PijðkÞ � r � max
i

Xn
j¼1

PijðkÞ

with equality on either side implying equality throughout.

Since PðkÞ is a stochastic matrix, i.e.,
Pn

j¼1 PijðkÞ ¼ 1,
and PðkÞ is irreducible, there is a unique eigenvalue
r ¼ 1 and the corresponding left eigenvector pðkÞ (nor-
malized to unity in the sense of absolute sum) represent-
ing the state probability vector, provided that the matrix
parameters have converged after sufficiently large
number of iterations. That is,

kpðkÞ I� PðkÞð Þk1 �
1

k
! 0 as k!1:

Equivalently,

k pðkÞ � pðkþ 1Þð Þk1 �
1

k
! 0 as k!1: ð48Þ

Taking the expected value of kpðkÞk1 to be 1=n, a
threshold of �=n is specified, where n is the number of
states and 0 < �� 1 is a constant. A lower bound on
the required number of samples is determined from
equation (48) as

Nstop � Integer
n

�

� 	
ð49Þ

based on the number of states, n, and the specified
tolerance �.

6. Usage of the language measure

The two methods of language measure computation,
presented in x 3, have the same computational com-
plexity, Oðn3Þ, where n is the number of states of the
DFSA. However, each of these two methods offer
distinct relative advantages in specific contexts. For
example, while the closed form solution in x 3.1 is
more amenable for analysis and synthesis of decision
and control algorithms, the recursive solution in x 3.2
might prove very useful for construction of executable
codes in real time applications. The following two sub-
sections present usage of the language measure for con-
struction of metric spaces of formal languages and
synthesis of optimal discrete-event supervisors.

6.1. Vector space of formal languages

The language measure can be used to construct a
vector space of sublanguages for a given DFSA Gi �

hQ,�, �, qi,Qmi. The total variation measure j�j
(Rudin 1987) (see Appendix I) induces a metric on this
space, which quantifies the distance function between
any two sublanguages of LðGiÞ.

Proposition 1: Let LðGiÞ be the language of a DFSA
Gi ¼ hQ,�, �, qi,Qmi. Let the binary operation of
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exclusive-OR �: 2LðGiÞ � 2LðGiÞ ! 2LðGiÞ be defined as

ðK1 � K2Þ ¼ K1

[
K2

� �
� K1

\
K2

� �
ð50Þ

8K1,K2 � LðGiÞ. Then ð2
LðGiÞ,�Þ is a vector space over

Galois field GF ð2Þ.

Proof: It follows from the properties of exclusive-OR
that the algebra ð2LðGiÞ,�Þ is an Abelian group where ;
is the zero element of the group and the unique inverse
of every element K � 2LðGiÞ is K itself because K1�

K2 ¼ ; if and only if K1 ¼ K2. The associative and
distributive properties of the vector space follows by
defining the scalar multiplication of vectors as:
0� K ¼ ; and 1� K ¼ K . œ

The collection of singleton languages made from each
element of LðGiÞ forms a basis set of vector space
ð2LðGiÞ,�Þ over GF ð2Þ. It is shown below, how total var-
iation (Rudin 1987) of the signed measure � can be used
to define a metric on above vector space.

Proposition 2: Total variation measure j�j on 2LðGiÞ is
given by j�jðLÞ ¼

P
s2L j�ðfsgÞj 8L � LðGiÞ.

Proof: The proof follows from the fact that �kj�ðLkÞj

attains its supremum for the finest partition of L which
consists of the individual strings in L as elements of the
partition. œ

Corollary 2 (to Proposition 2): Let LðGiÞ be the lan-
guage of a DFSA Gi � hQ,�, �, qi,Qmi. For any
K 2 2LðGiÞ, j�jðKÞ � ��1 where � ¼ 1� k&k1 and & is
the state transition cost matrix of the DFSA.

Proof: The proof follows from Proposition 2 and
Corollary 1. œ

Definition 16: Let LðGiÞ be the language of a DFSA
Gi � hQ,�, �, qi,Qmi. The distance function d : 2LðGiÞ�

2LðGiÞ ! ½0,1Þ is defined in terms of the total variation
measure as 8K1,K2 � LðGiÞ

dðK1,K2Þ ¼ j�j K1

[
K2

� �
� K1

\
K2

� �� �
ð51Þ

The above distance function dð 	, 	 Þ quantifies the dif-
ference between two supervisors relative to the super-
vised performance of the DFSA plant.

Proposition 3: The distance function defined above is a
pseudo-metric on the space 2LðGiÞ

Proof: Since the total variation of a signed real
measure is bounded (Rudin 1987), 8K1,K2 � LðGiÞ,
dðK1,K2Þ ¼ j�jðK1 � K2Þ 2 ½0,1Þ; also by Definition
16, dðK1,K2Þ ¼ dðK2,K1Þ. The remaining property of
the triangular inequality follows from the inequality
j�jðK1 � K2Þ � j�jðK1Þ þ j�jðK2Þ which is based on the

fact that ðK1 � K2Þ � ðK1 [ K2Þ and j�jðK1Þ � j�jðK2Þ

8K1 � K2. œ

The pseudo-metric j�j: 2LðGiÞ ! ½0,1Þ can be converted

to a metric of the space ð2LðGiÞ,�Þ by clustering all lan-

guages that have zero total variation measure as the

null equivalence class N � fK 2 2LðGiÞ: j�jðKÞ ¼ 0g.

This procedure is conceptually similar to what is done

for defining norms in the Lp spaces. In that case, N
contains all sublanguages of LðGiÞ, which terminate on

non-marked states starting from the initial state, i.e.,

N ¼ f; [ ð[qj =2Qm
Li,jÞ. In the sequel, j�jð 	 Þ is referred

to as a metric of the space 2LðGiÞ. Thus, the metric

j�jð 	 Þ can be generated from dð 	, 	Þ as:

j�jðKÞ ¼ dðK , JÞ 8K 2 2LðGiÞ 8J 2 N . Unlike the norms

on vector spaces defined over infinite fields, the metric

j�jð 	 Þ for the vector space ð2LðGiÞ,�Þ over GFð2Þ is not
a functional. This interpretation of language as a

vector and associating a metric to quantify distance

between languages, may be useful for analysis and

synthesis of discrete-event supervisory (DES) control

systems under different settings.

6.2. Optimal control of regular languages

The (signed) language measure � could serve as the per-

formance index for synthesis of an optimal control

policy that maximizes the performance of a supervised
sublanguage. The salient concept is briefly presented

below.
Let S � fS0,S1, . . . ,SNg be a set of supervisory con-

trol policies for the unsupervised plant automaton G

where S 0 is the null controller (i.e., no event is disabled)

implying that LðS 0=GÞ ¼ LðGÞ. Therefore, the controller

cost matrix &ðS 0Þ ¼ &0 that is the &-matrix of the

unsupervised plant automaton G. For a supervisor
Sk, k 2 f1, 2, . . . ,Ng, the control policy is required to

selectively disable certain controllable events so that

the following (elementwise) inequality holds.

&k � &ðSkÞ � &0 and LðSk=GÞ � LðGÞ, 8Sk 2 S:

The task is to synthesize an optimal cost matrix
&� � &0 that maximizes the performance vector

l� � ½I�&���1X, i.e., l� 
 lk � ½I�&k�
�1X 8 &k �&0

where the inequalities are implied elementwise. While

the details of the underlying theory are available in

recent literature (Ray et al. 2004), a synthesis procedure

for optimal control of regular languages is succinctly

presented below.
Let the DFSA model G of the unsupervised plant

have the state transition cost matrix: &0 � & (see

Definition 7) and the characteristic vector X (see

Definition 5). Then, the performance vector at the
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iteration k ¼ 0 is given as

l0 ¼ ½�0
1 �0

2 . . . �0
n�
T
¼ ðI �&0Þ

�1X

where the jth element �0
j of the vector �

0 is the perform-

ance of the unsupervised plant language, with state qj as
the initial state. Then, �0

j < 0 implies that, if the state qj
is reached, then the plant will yield bad performance
thereafter. Intuitively, the control system should attempt
to prevent the automaton from reaching qj by disabling

all controllable events that lead to this state. Therefore,
the optimal control algorithm starts with disabling all

controllable events that lead to every state qj for which
�0
j < 0. This is equivalent to reducing all elements

of the corresponding columns of the &0-matrix by dis-
abling those controllable events. In the next iteration,

i.e., k ¼ 1, the updated cost matrix &1 is obtained as:
&1 ¼ &0 � D0 where D0


 0 (the inequality being
implied elementwise) is composed of event costs corre-

sponding to all controllable events that have been
disabled.
It has been shown in Ray et al. (2004) that lk�1 �

lk � ½I �&k�
�1 X elementwise for all k 
 1. Although

all controllable events leading to every state correspond-

ing to a negative element of l1 are disabled, some of the
controllable events that were disabled at k ¼ 0 may now
lead to states corresponding to positive elements of l1.

Performance could be further enhanced by re-enabling
these controllable events. For k 
 1, &kþ1 ¼ &k þ Dk

where Dk

 0 is composed of the state transition costs

of all re-enabled controllable events at k. It is also

shown in Ray et al. (2004) that the number of iterations
to reach optimality does not exceed the number, n, of

DFSA states. Therefore, the computational complexity
of the optimal control algorithm is polynomial n.
In the optimal control algorithm in Ray et al. (2004),

if l0 
 0, i.e., there is no state qj such that l0j < 0, then

the plant performance cannot be improved by event dis-
abling and the null controller S 0 (i.e., no disabled event)

is the optimal controller for the given plant. Therefore,
the cases are considered where �0

j for some state qj.

Starting with k ¼ 0 and &0 � &plant, the control
policy is constructed by the following two-step
procedure:

Step 1: For every state qj for which �0
j < 0, disable

controllable events leading to qj. Now, &1 ¼ &0 � D0,

where D0

 0 is composed of event costs corresponding

to all controllable events, leading to qj for which l0j ,
which have been disabled at k ¼ 0.

Step 2: For k 
 1, if �k
j 
 0, re-enable all controllable

events leading to qj , which were disabled in Step 1. The

cost matrix is updated as: &kþ1 ¼ &k þ Dk for k 
 1,
where Dk


 0 is composed of event costs corresponding

to all currently re-enabled controllable events. The itera-
tion is terminated if no controllable event leading to qj
remains disabled for which �k

j > 0. At this stage, the
optimal performance l� � ½I �&���1X.

7. An application example

Ray and Phoha (2003) and Ray et al. (2004) have
adopted the closed form method of language measure

(see x 3.1) as a performance index for optimal super-
visory control of a twin-engine unmanned aircraft that
is used for surveillance and data collection. The

language measure was computed and verified based on
both closed form and recursive techniques given in x 3;
the results were identical as expected. Engine health

and operating conditions, which are monitored in real
time based on observed data, are classified into three
mutually exclusive and exhaustive categories:

. good;

. unhealthy (but operable);

. inoperable.

In the event of any observed abnormality, the supervisor
may decide to continue or abort the mission. The finite
state automaton model of the plant in figure 2 has 13

states (excluding the dump state), of which three are
marked states, and nine events, of which four are
controllable and the remaining five are uncontrollable.

All events are assumed to be observable. The states
and events of the plant model are listed in table 1 and
table 2, respectively. The state transition function �
and the state-based event cost ~��ij (see Definition 6) are
entered simultaneously in table 3. The values of ~��ij
were selected by extensive experiments on engine simula-
tion models and were also based on experience of gas
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Figure 2. Unsupervised plant, i.e., no disabling of

controllable events.
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turbine engine operation and maintenance. The dump

state and any transitions to the dumped state are not

shown in table 3. The elements of the characteristic

vector (see Definition 5) were chosen as signed real

weights based on the perception of each marked state’s

role on the engine performance.
The characteristic (�) values of the 13 states

are assigned as: X ¼ ½0 0 0 0 0 0 0 0 0 0 �0:05 þ0:25
�1:0�T . These parameters are selected by the designer

based on his/her perception of each marked state’s

role in the system performance. As the states 1 to 10

in in table 1 are not marked, the first 10 elements of

the characteristic vector X are zeros. The implication

is that event strings terminating at states 1 to 10

have no bearing on the system performance and

hence have zero measure. The state 12 is a good

marked state having a positive � value and the bad

marked states 11 and 13 have negative � values.

Therefore, event strings terminating at state 12 have

positive measure and those terminating at states 11

and 13 have negative measure.
Four supervisory controllers were designed indepen-

dently using a graphical interactive package (Wang

et al. 2003) based on the following specifications.

(1) Specification #1: At least one of the two engines

must be in good condition for mission continuation.
(2) Specification #2: None of the two engines must be in

inoperable condition for mission continuation.
(3) Specification #3: Both engines must be in good con-

dition for mission continuation.
(4) Optimal Control: The control policy is optimized

following the two-step procedure in x 6.2.

The supervised plant automata under specifications

#1, #2, #3 and optimal control are displayed in

figures 3, 4, 5 and 6, respectively, where dashed lines

indicate disabled controllable events. Notice that none

of the controllable events are disabled in the unsuper-

vised plant (see figure 2) and the four supervisors

disable different sets of controllable events, as seen in

figures 3–6.

Table 1. Plant automation states.

State Description

1 Safe in base

2 Mission executing — two good engines

3 One engine unhealthy during mission execution

4 Mission executing — one good and one unhealthy engine

5 Both engines unhealthy during mission execution

6 One engine good and one engine inoperable

7 Mission execution with two unhealthy engines

8 Mission execution with only one good engine

9 One engine unhealthy and one engine inoperable

10 Mission execution with only one unhealthy engine

11 Mission aborted/not completed (Bad Marked State)

12 Mission successful (Good Marked State)

13 Aircraft destroyed (Bad Marked State)

Table 2. Plant event alphabet.

Event

Event

description

Controllable

event

s Start and take-off
p

b A good engine becoming unhealthy

t An unhealthy engine becoming inoperable

v A good engine becoming inoperable

k Keep engine(s) running
p

a Mission abortion
p

f Mission completion

d Destroyed aircraft

l Landing
p

Table 3. State transition and event cost matrix.

s b t v k a f d l

1 0.50(2) 0.02(1)

2 0.05(3) 0.01(6) 0.80(12) 0.10(13)

3 0.45(4) 0.45(11)

4 0.12(5) 0.16(6) 0.10(9) 0.50(12) 0.12(13)

5 0.45(7) 0.45(11)

6 0.45(8) 0.45(11)

7 0.25(9) 0.50(12) 0.20(13)

8 0.20(9) 0.01(13) 0.3(12) 0.4(13)

9 0.45(10) 0.45(11)

10 0.35(13) 0.20(12) 0.40(13)

11 0.95(1)

12 0.95(1)

13

Signed real measure of regular languages 963



The performance measure �1 (i.e., with the initial
state 1) of the unsupervised (i.e., no disabling of control
events) plant is 0.0823 and for three supervised plants
under specifications #1, #2, #3 and the optimally

supervised plant are evaluated to be: 0.0807, 0.0822,
0.0840 and 0.0850, respectively. Therefore, the perfor-
mance of the supervised plant under specifications #1,
#2 and #3 is inferior, similar, and superior, respectively,
to that of the unsupervised plant. As expected, the opti-
mal supervisor has better performance than that of
Supervisor #3. Notice that Supervisor #3 does disable
the controllable event k from the state 3 to state 4 and
the optimal supervisor does not. That is, the optimal
supervisor allows continuing operation of an unhealthy
engine while the remaining engine is in good condition.

8. Summary, conclusions, and future research

This paper reviews the concept, formulation and valida-
tion of a signed real measure for regular languages and
their sublanguages based on the principles of automata
theory and real analysis. While the domain of the mea-
sure �, i.e., 2LðGiÞ, is partially ordered, its range, which is
a subset of R � ð�1,1Þ, becomes totally ordered. As a
result, the relative performance of different supervisors
can be quantitatively evaluated in terms of the real
signed measure of the supervised sublanguages.
Positive weights are assigned to good marked states
and negative weights to bad marked states so that a con-
trollable supervisor is rewarded (penalized) for deleting
strings terminating at bad (good) marked states. In
order to evaluate and compare the performance of dif-
ferent supervisors a common quantitative tool is
required. To this effect, the proposed procedure com-
putes the measure of the supervised sublanguage gener-
ated by a supervisor using the event cost and
characteristic function assigned for the unsupervised
plant. Cost assignment to each event based on the
state, where it is generated, has been shown similar to
the conditional probability of the event. On the other
hand, the characteristic function is chosen based on
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Figure 3. Supervised plant under specification #1.
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Figure 4. Supervised plant under specification #2.
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Figure 5. Supervised plant under specification #3.
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Figure 6. Optimally supervised plant, i.e., with best

performance.
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the designer’s perception of the individual state’s impact
on the system performance. Two techniques are pre-
sented to compute the language measure for a DFSA.
One of them yields a closed form solution that is
obtained as the unique solution of a set of linearly inde-
pendent algebraic equations. The other is based on a
recursive procedure. The computational complexity of
both language measure algorithms is identical and is
of polynomial order in the number of states of the
DFSA. As such it is relatively straight-forward to
develop software analysis tools in standard languages
such as Matlab, C, and Java (Wang et al. 2003).

8.1. Recommendations for future research

Optimal discrete-event supervisory control can be
enhanced through appropriate usage of the language
measure. For example, in the current configuration of
the optimal control algorithm (Ray et al. 2004), if
there is no state qj such that �0

j < 0, then the plant
performance cannot be improved by event disabling
and the null controller S0 (i.e., no disabled event) is
the optimal controller for the given plant. This restric-
tion can be lifted through an appropriate performance
index that would be a function of the language measure
l but not identically equal to l as reported in Ray et al.
(2004). Work in this direction is in progress and is
expected to be reported in a forthcoming publication.
Synthesis of supervisory control systems may become

a significant challenge if some of the events are delayed,
intermittent, or not observable at all, possibly due to
sensor faults or malfunctions in network communica-
tion links. In that case, the control algorithms may
turn out to be computationally very complex because
of delayed or lost information on the plant dynamics.
Future work in this direction should involve research
on construction of language measures under partial
observation (Chattopadhyay and Ray 2004) and
synthesis of optimal control policies under partial obser-
vation to mitigate the detrimental effects of loss of
observability. The latter research could be an extension
of the earlier work on optimal control under full
observation (Ray et al. 2004).
It would be a challenging task to extend the concept

of (regular) language measure for languages higher up
in the Chomsky Hierarchy (Martin 1997) such as con-
text free and context sensitive languages. This extension
would lead to controller synthesis when the plant
dynamics is modelled by non-regular languages such
as the Petri-Net. The research thrust should focus
on retaining the polynomial order of computational
complexity.
Another critical issue is how to extend the language

measure for timed automaton, especially if the events
are observed with varying delays at different states.

Another research topic that may also be worth investi-
gating is: how to extend the field GFð2Þ, over which
the vector space of languages has been defined, to
richer fields like the set of real numbers.

Other areas of future research include applications of
the language measure in anomaly detection, model
identification, model order reduction, and analysis and
synthesis of interfaces between the continuously-
varying and discrete-event spaces in the language-
measure setting.

Appendices A: Measure theory

This appendix introduces the concepts of standard
measure-theoretic quantities that are used to establish
the language measure in the main body of this paper.

Definition A.1: A �-algebra M of a nonempty
language LðGiÞ � �� is a collection of subsets of LðGiÞ

which satisfies the following three conditions.

(i) LðGiÞ 2M;
(ii) If K 2M, then ðLðGiÞ � KÞ 2M;
(iii) [1j¼1Kj 2M if Kj 2M 8j.

Definition A.2: An at most countable collection fLkg

of members of a �-algebra M is a partition of a
member L 2M if L ¼ [kLk and Lk \ Lj ¼ ; 8k 6¼ j.

Definition A.3: Let M be a �-algebra of LðGiÞ. Then,
the set function �: M ! R � ð�1, þ1Þ, is called a
signed real measure if the following two conditions are
satisfied (Rudin 1987):

(i) �ð;Þ ¼ 0;
(ii) �ð[1j¼1LjÞ ¼

P1
j¼1 �ðLjÞ for every partition fLjg on

any member L 2M.

Note that, unlike a positive measure (e.g., the Lebesgue
measure), � is finite such that the series in part (ii) of
Definition A.3 converges absolutely in R and the result
is independent of any permutation of the terms under
union.

Definition A.4: Relative to the signed real measure �,
a sublanguage L 2M is defined to be

(i) null, denoted as L ¼ 0 , if �ðL \ JÞ ¼ 0, 8J 2M;
(ii) positive, denoted as L > 0, if L 6¼ 0 and

�ðL \ JÞ 
 0, 8J 2M;
(iii) negative, denoted as L, if L 6¼ 0 and �ðL \ JÞ � 0,
8J 2M.

Definition A.5: Total variation j�j on a �-algebra M is
defined as

j�jðLÞ ¼ sup
X
k

j�ðLkÞj ð52Þ
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8L 2M where the supremum is taken over all partitions
fLkg of L.

Proposition A.1: Total variation measure j�j of any
regular language L is non-negative and finite i.e., j�jðLÞ 2
½0,1Þ. The proof follows from standard theorems on
complex measures (Rudin 1987).

Total variation can be, in general, defined for complex
measures (Rudin 1987) but it is restricted to a signed
real measure in this paper. The total variation of a
real signed measure �, can be represented as j�j ¼
�þ þ �� where �þ and �� are called positive and nega-
tive variations of � and are defined as

�þ ¼ 1
2
ðj�j þ �Þ and �� ¼ 1

2
ðj�j � �Þ: ð53Þ

Both �þ and �� are positive measures on M. It also
follows from the above equation that � ¼ �þ � ��.
This representation of � as the difference of positive
measure �þ and �� is known as the Jordan
Decomposition of � (Rudin 1987).

Proposition A.2: Every sublanguage L 2M can be
partitioned as L ¼ L0 [ Lþ [ L� where the mutually
exclusive sublanguages L0, Lþ and L� are called null,
positive, and negative, respectively, relative to a signed
real measure �.

Proof: The proof is based on the Hahn Decomposition
Theorem (Rudin 1987). œ

As a consequence of the above result, the following rela-
tions hold 8L 2M for positive and negative variations:

�þðLÞ ¼ � L
\

Lþ
� �

and ��ðLÞ ¼ �� L
\

L�
� �

:

ð54Þ

Appendix B: Convergence of the language measure

This appendix establishes necessary and sufficient condi-
tions for finiteness of the measure �, based on certain
properties of non-negative matrices, which are stated
without proof. Details of these results are available in
(Senata 1973, Plemmons and Berman 1979).

Definition B.1: Let A and B be real square matrices of
the same order n. Then, the notations for inequalities are
as follows:

A 
 B if aij 
 bij, 8i, j
A > B if A 
 B, A 6¼ B
A� B if aij > bij , 8i, j:

If the matrix A satisfies the condition A > 0, i.e. the
null matrix, then A is called a non-negative matrix

and if the condition A� 0 is satisfied, then it is called

a positive matrix.

Definition B.2: A square matrix A of order n is cogra-

dient to a matrix E if PAPT ¼ E for a permutation

matrix P; and A is called reducible if A is cogradient to

E ¼
B 0

C D

� 
,

where B and C are square matrices, or if n ¼ 1 and

A ¼ 0. Otherwise, A is irreducible.

It follows from the above definition that a positive

matrix is always irreducible.

Proposition B.1: A non-negative matrix A is irreducible

if and only if, for every ði, jÞ there exists a natural number

k such that a
ðkÞ
ij > 0, where a

ðkÞ
ij denotes the ði, jÞth element

of Ak.

Proposition B.2: If A 
 0 is irreducible and B 
 0, then

Aþ B is irreducible.

Another characterization of irreducibility of a

non-negative square matrix has a graph-theoretic

interpretation. This relationship can help to determine

under what conditions a given finite state automaton

G, which represents the supervised or unsupervised

plant model is irreducible by looking at connectivity of

its states. The following definitions are needed to

arrive at this conclusion.

Definition B.3: The associated directed graph, GðA) of

a square matrix A of order n, consists of n vertices

P1,P2, . . . ,Pn where an edge leads from Pi to Pj if and

only if aij 6¼ 0.

Definition B.4: A directed graph G is strongly con-

nected if for any ordered pair ðPi,PjÞ of vertices of G,

there exists a sequence of edges which leads from Pi

to Pj.

Proposition B.3: Given a matrix A, it is irreducible if

and only if GðAÞ is strongly connected.

If A is a non-negative square matrix, then the following

relationship holds between the spectral radius (i.e.,

maximum absolute eigenvalue)  of non-negative

matrices.

Proposition B.4: If 0 � A � B and Aþ B is irreducible

then ðAÞ < ðBÞ.

Definition B.5: A square matrix S of order n is called

(row) stochastic if it satisfies

sij 
 0,
Xn
j¼1

sij ¼ 1, 1 � i � n: ð55Þ
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Proposition B.5: The maximum eigenvalue of a stochas-
tic matrix S is one, i.e. ðSÞ ¼ 1. A non-negative matrix A
is stochastic if and only if e is an eigenvector of A corre-
sponding to the eigenvalue one, where e is the vector all of
whose entries are equal to one.

In order to show that ðI �&Þ�1 is invertible it suffices to
show that ð&Þ < 1.

Theorem B.1: If ð&Þ < 1 then there exists at least one
i, 1 � i � n, such that

Pn
j¼1 �ij < 1.

Proof: Proof follows from the fact that if
Pn

j¼1 �ij ¼ 1
8i, then & would be a stochastic matrix by Definition
B.5. Hence, by Proposition, B.5 ð&Þ ¼ 1) ðI �&Þ�1

is not invertible. œ

Theorem B.2: If
Pn

j¼1 �ij < 1 8i, 1 � i � n, then ð&Þ.

Proof: Let �i ¼ ð1�
Pn

j¼1 �ijÞ=n > 0. Let S be a matrix
of order n which is defined in the following manner

sij ¼ �i þ �ij , 81 � i, j � n:

It is clear that S � 0 and hence S is irreducible. Also S
is a stochastic matrix and by Proposition B.5, the spec-
tral radius ðSÞ ¼ 1. Since 0 � & < and &þ S is irredu-
cible by Proposition B.2, it follows that ð&Þ < ðSÞ ¼ 1
from Proposition B.4. œ

The above sufficiency condition is more strict than the
necessary condition required in Theorem B.1.
However, the necessary condition is not sufficient as
seen from the following example.

& ¼

0:2 0 0:8 0
0 0:2 0:3 0:5

0:5 0 0:5 0
0:1 0:2 0:4 0

0BB@
1CCA:

This matrix & satisfies conditions as required in
Theorem B.1, but ð&Þ ¼ 1. It is possible to relax the
strict inequality

Pn
j¼1 �ij < 1 8i, 1� i� n in Theorem

B.2, but with additional conditions on structure of &.
For example, under such relaxed conditions, if &þ S
is irreducible, then still ð&Þ < 1. This follows from
the fact that application of Proposition B.4, only
requires irreducibility of &þ S. In order to determine
the irreducibility of a matrix, the graph-theoretic
interpretation, described earlier, can be a useful tool.
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