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A COMPLEX MEASURE FOR LINEAR GRAMMARS

Abstract. The signed real measure of regular languages, introduced and validated
in recent literature, has been the driving force for quantitative analysis and synthesis
of discrete-event supervisory (DES) control systems dealing with finite state automata
(equivalently, regular languages). However, this approach relies on memoryless state-based
tools for supervisory control synthesis and may become inadequate if the transitions in
the plant dynamics cannot be captured by finitely many states. From this perspective,
the measure of regular languages needs to be extended to that of non-regular languages,
such as Petri nets or other higher level languages in the Chomsky hierarchy. Measures for
non-regular languages has not apparently been reported in open literature and is an open
area of research. As a step toward achieving this goal, this paper introduces a complex
measure of linear contexzt free grammars (LCFG) that belong to the class of non-regular
languages. The proposed complex measure becomes equivalent to the signed real measure,
reported in recent literature, if the LOFG is degenerated to a regular grammar.

1. Introduction

Finite state automata (FSA) (equivalently, regular languages) have been
widely used to model and synthesize supervisory control laws for discrete-
event plants [4] because the task of discrete-event supervisory (DES) control
synthesis becomes mathematically tractable and computationally efficient
due to simplicity of regular languages. According to the paradigm of DES
control, a finite-state automaton (e.g., the discrete-event model of a physical
plant) is a language generator whose behavior is constrained by the supervi-
sor to meet a given specification. The (controlled) sublanguage of the plant
behavior could be different under different supervisors that satisfy their own
respective specifications. Such a partially ordered set of sublanguages re-
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quires a quantitative measure for total ordering of their respective perfor-
mance. To address this issue, a signed real measures of regular languages
has been reported in literature [7] to provide a mathematical framework
for quantitative comparison of controlled sublanguages of the unsupervised
plant language. This measure provides a total ordering of the sublanguages
of the unsupervised plant and formalizes a procedure for synthesis of DES
controllers for finite state automaton plants, as an alternative to the proce-
dure of Ramadge and Wonham [4]. Optimal control of finite state automata
has been recently have been reported [5] based on the language measure
and formalizes quantitative analysis and synthesis of DES control laws. The
approach is state-based and the language measure parameters are identi-
fied from physical experiments or simulation on a deterministic finite state
automaton (DFSA) model of the plant [8]. However, using memoryless state-
based tools for supervisory control synthesis may suffer serious shortcomings
if the details of transitions cannot be captured by finitely many states. This
problem has been partially circumvented by Petri nets that can accommo-
date certain classes of non-regular languages [3] in the Chomsky hierarchy
[2]. There is apparently no quantitative tool for supervisory control synthe-
sis of Petri nets compared to what are available for finite state automata [5].
Hence, there is a need for developing measures of non-regular languages as a
quantitative tool of supervisory control synthesis for discrete-event systems
that cannot be represented by regular languages. Toward achieving this goal,
the first step is to construct measure(s) of non-regular languages where the
state-based approach [7] may not be applicable.

This paper first shows that the measure of a regular language proposed
in [7] is equivalent to that of the regular grammar, without referring to
states of the automaton. Then, it extends the signed real measure of regular
languages to a complex measure for the class of non-regular languages [1],
generated by the (deterministic) linear context free grammar (LCFG) that is
a subclass of deterministic pushdown automata (DPDA) [2]. The signed real
measure is extended to a complex measure over the real field, where the mul-
tiplication operation of complex numbers is different from the conventional
one. In this case, the complex space over the real field degenerates to the
union of a pair of one-dimensional real spaces instead of being isomorphic
to the two-dimensional real space. The extended complex-valued language
measure, formulated in this paper, is potentially applicable to analysis and
synthesis of DES control laws where the plant model could be represented
by an LCFG.

The paper is organized in five sections including the present one. Section
2 briefly introduces the basic concepts, notations and background materials
for formal languages. Section 3 discusses the measure of regular grammars
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and shows its equivalence with that of regular languages. Section 4 extends
the measure to linear grammars and the concept is elucidated with an ex-
ample in Section 4. The paper is summarized and concluded in Section 5
with recommendations for future research.

2. Concepts and notations

This section introduces notations and background materials for formal
languages [2] along with definitions of key concepts.

DEFINITION 2.1. A context free grammar (CFG) is a 4-tuple '=(V, T, P, S),
where V and T are mutually disjoint (i.e., VNT = 0) finite sets of variables
and terminals, respectively; and P is a finite set of productions by which
strings are derived from the start symbol S. Each production in P is of the
form v — o, where v € V and oo € (VUT)*".

REMARK 2.1. The language generated by a grammar I' consists of all strings
obtained from legal (i.e., permissible) productions beginning with the start
symbol.

DEFINITION 2.2. A regular grammar is a CFG (V,T, P, S) where every
production in P takes exactly one of the following two alternative pairs of
forms (i.e., there are either right derivations or left derivations but not both):

(1) {‘U—*G’UJ or {v—wua

vV— v—oa
where v,w € V and a € T'U {e}; and ¢ is the empty string.

REMARK 2.2. The generated language for a deterministic finite state au-
tomaton (DFSA) is a regular language [2].

DEFINITION 2.3. A linear grammar is a CFG (V, T, P, S) where every pro-
duction in P takes one of the following forms:

(2) U— aw; U—we VA
where v,w € V and a € T U {¢}.

REMARK 2.3. In view of Remark 2.1 and Definition 2.3, the set of pro-
duction rules P in a linear grammar I' = (V,T, P, S) can be modified as
I = (V,T, P,S) by augmenting the set V' of variables as V =V UA and by
updating the set P of production rules by P. Thatis, p = (v —a) € P is
replaced by ¢ = (v — aa) € P, where v € V, a € TU {¢} and a € A. This
is analogous to the trim operation in regular languages [4].

REMARK 2.4. The modified grammar I = (V,T, P, S) is a superset of the
original grammar I' = (V, T, P, S) in the sense that it contains the generated
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language of I' = (V, T, P, S) and, in addition, has productions of the type v —
aw. The production A — ¢ is added to P in each step of the modification;
and v — € must exist Yv € V.

. REMARK 2.5. Regular grammars have only right (or left) derivations with
a single variable. In contrast, linear grammars include both right and left
derivations with a single variable. This is precisely what allows the linear
grammars to model a certain class of non-regular languages. For example,
a production rule of the type V' — oV} is fundamentally different form a
production V. — Vjo. If V7 is subsequently replaced by a symbol o1, the
order of generation of o and o7 is maintained in the derived string in the
first case and it is reversed in the second. Note that if V — Vjo is the
first right linear production rule used in a particular derivation, then o is
necessarily the last terminal in the derived string.

A geometric approach is adopted in this paper to deal with the presence
of both right and left derivations in an LCFG. The possible non-causality
of derivations is handled by introducing the following notions: imaginary
transitions, generated path, path mapping function, and the event plane.

Generation of a symbol through the right linear production is denoted
by an imaginary transition as opposed to a symbol generated by a left linear
production which is denoted by a real transition. An imaginary transition is
labelled by the prefix ¢ with the generated symbol. For example, V — Vjo
implies 70 has occurred while V' — oV; implies simply ¢ has occurred. The
concept of real and imaginary transitions facilitates the notion of a generated
path.

DEFINITION 2.4. A generated path A € ({¢,4} x X)* is the sequential order
of transitions (real or imaginary) in any particular derivation.

For example, if a derivation proceeds sequentially through the produc-
tion rules V3 — Vaoy, Vo — o39V3, V3 — Vios, Vu — o4V5, then the
generated path \ = i0109i0304.

DEFINITION 2.5. The set of all paths, generated by an LCFG T, is denoted
as PF & 2({6,1:})(2)*. .

A given generated path A corresponds to a particular derived string.
However, in non-regular grammars, a single string may be derived through
more than one path. That is, there exists a surjective mapping from the
set of all generated paths by an LCFG to the set of all derived strings (i.e.,
the language generated by the grammar). In general, the map may not be
injective. However, if the LCFG is regular, then this map becomes injective
and hence bijective.
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DEFINITION 2.6. The path mapping function g : Pr — L(T) is defined as
follows: For any path A € Pr, the corresponding derived string is obtained
by concatenating all the symbols generated by real transitions followed by a
concatenation of the ones generated by imaginary transitions in a reversed

order.
For example, p(io102t0304) — 02040301. In regular grammars, the
absence of imaginary transitions implies that p is the identity map.

An example of the right invariant relation is the well-known Nerode
equivalence relation (N) on a language L which is defined as follows [2]:

(3) Vz,y€L, zNy, f VueX* zue L & yue L.

A language L is regular if and only if there exists a Nerode equivalence
relation of finite index [2]. Applying the notion of Nerode equivalence on
Pr, it follows that if two paths A, A are generated through production
rule sequences { P11, P12, -+, Pin} and {Pa1, Paa, - - -, Pam } such that the final
variable on the righthand side of the derivation is identical (say V) in the
two cases, then AN A2. This follows immediately from noting that if A is a
path initiating from V%, then both A\ and A2\ are elements of Pr, and if
\ e 2(ei*%)" cannot be generated from the variable Vi, then AjA, A2\ ¢
Pr. This observation suggests that, at least in an LCFG@, variables convey
the same meaning as states in the context of regular languages.

In the sequel, the terms state and variable are used interchangeably
as they convey similar meaning in the present context; the same applies
to the terms terminals and events. Note that the context-free nature of
LLCFG implies each variable can be rewritten by the specified production
rules, irrespective of where the variable occurred. This is precisely the kind
of Markov property that associates variables with states and terminals with

events.

DEFINITION 2.7. The event mapping : & — Z is a function that maps the
event alphabet into the set of integers. Let ¥ = {oy,-++,0k, ", 0m}, then

(4) n(ox) = k.

DEFINITION 2.8. The event plane can be viewed as the complex plane itself
on which the trajectory of the discrete-event system is reconstructed as the
strings are generated. The transitions S — ov; and S — v;oy, transfer the
state located at the origin (0,0), to (n(ok),0) and (0,n(ox)), respectively.
Thus, there exists two possible directions in which the same event o may
cause transition from the same state v; depending on whether the event is
causing an imaginary transition or a real transition. Figure 1 illustrates
the above concept of event plane in the formulation of LCFG measure. In
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N b
>S—B >S—
Fig. 1. Derivations on the event plane Fig. 2. Derivations on the event plane for

for L = {a™b" : n € N} having the lin- L = {(ab)*} having the linear grammar S —
ear grammar S — aT;T — Sb aT;T — bS

contrast, the linear grammar in Figure 1 degenerates to the regular grammar
in Figure 2 and it shows how the event plane collapses to the real line. That
is, the derivations always occur along the real axis of the event plane in
Figure 2.

3. Measure of regular grammars

This section first introduces the concept of regular-grammar-based mea-
sures and then shows its equivalence to that of recently reported state-based
measure [7]. In essence, the concept of the state-based language measure
is reformulated in terms of regular grammars, followed by construction of
the measure. While detailed proofs of the supporting theorems are given in
[2], sketches of the proofs that are necessary for developing the underlying
theory are presented here.

THEOREM 3.1. If L is a regular language, then there is a regular grammar
I’ such that either L = L(I") or L = L(I") U {¢}.

Proof. Let G = (Q,%,d,qi,A) be an F'SA. Let us construct the grammar
I' with V = @ and T = X. The set of productions is constructed as follows:

Add g¢; — srqj if 6(gi,sr) = gj

v ‘i? ] E 4 8 e Z,
e €Q o {Add g — sr 1fd(gi, sr) € A. "

THEOREM 3.2. IfT" is a regular grammar, then L(T") is a regular language.
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Proof. Let I' = (V,T,P,S) be a regular grammar. Let us construct a
(possibly nondeterministic) finite state automaton G that exactly accepts
the language L(T). Specifically, let G = (V U {W},T,6,S,{W}) where W
is the only marked state and ¢ is defined as follows:

6(vi, sr) = 61(vs, 8r) U 62(vy, 8r) U 63(vs, Sr)

61(viysr) =v;, if vy —=sv;€ P
where < 62(vi, 87) = {W}, f v; = s, €P
63(vi, 8r) = @, otherwise. "

REMARK 3.1. It follows from Theorem 3.2 and Theorem 3.1 that a language
L is regular iff there is a regular grammar I' such that either L = L(T') or
L = L(T') U {€}. Therefore, there is a regular grammar for every finite state
automaton that exactly generates the language of the regular grammar and
vice versa.

A. Formulation of regular grammar measures

This section follows the same construction procedure as in [7] because
there exists a one-to-one-correspondence between the state set () of an au-
tomaton and the variable set V of the corresponding regular grammar. The
same holds true for the alphabet set ¥ and the terminal T of the regular
grammar. The notion of marked states as well as that of good and bad
marked states translates naturally to this framework. The variable set V
can be partitioned into sets of marked variables Vi, and non-marked vari-
ables V — V., and the set V;, is further partitioned into good and bad marked
variables as V, and V, [7].

DEFINITION 3.1. The language L(I';) generated by a context free grammar
(CF@) T; initialized at state v; € V' is defined as:

(5) L(T;) = {s € T*| there is a derivation of s from I';}.

DEFINITION 3.2. The marked language L, (I';) generated by a CFG I},
initialized at state v; € V, is defined as:

Lin(T;) = {s € £*| there is a derivation of s from I'; which terminates on a
marked variable}.

DEFINITION 3.3. For every v;,vr € V, the set of all strings that, start-
ing from v;, terminate on vy is defined as the language L(v;, vg). That is,
L(v;,v) = {5 € X*| there is a derivation of s from v; that terminates on vy }.
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DEFINITION 3.4. The characteristic function x : V — [~1,1] is defined in
exact analogy with the state based approach [7]:

[-1,0),v € Vi~
Vi eV,  x(w)€q{0}, v¢Vn
0,1], veE Vy"

and thus x assigns a signed real weight to each of the sublanguages L(v;,v).

Similar to the measure of regular languages [7], the characteristic vector
is denoted as: X = [x1 X2 -+ Xn]?, where Xj = Xx(v;), is called the X-vector.
The j-th element x; of X-vector is the weight assigned to the corresponding
terminal state v;. Hence, the X-vector is also called the state weighting
vector in the sequel.

The marked language L, (I';) consists of both good and bad event strings
that, starting from the initial state v;, lead to VI and V-, respectively. Any
event string belonging to the language L°(T;) = L(T';) — Ly (T;) terminates
on one of the non-marked states belonging to V — V;,,; and L% does not
contain any one of the good or bad strings. The regular languages L(T';) and
L (T;) can be expressed as:

(6) L(Ty) = |J L(vi,ve) = | L(vi, we),
v €V k=1
(7) Lm(Ti) = |J L(vi,ve) = LH(T:) UL, (L)
VEEQm

where the sublanguage L(v;,v;) C I';, having the initial state v;, is uniquely
labelled by the terminal state vi, k € T and L(v;,v;) N L(v;,vg) = 0 V§ #
ky and LE = U ep+ L(vi,v) and Ly, = Usev,- L(vi,v) are good and bad
sublanguages of Ly (I';), respectively. Then, L%(I';) = [J,qy,, L(v;,v) and
L(Pi) = LO(I‘i) U L;;(Pz) U Lr_n(Pl)

Now we construct a signed real measure p : 2808 — R = (—o0, +00)
on the o-algebra K = 25 The construction is exactly equivalent to that
for the state-based automata [7]. With the choice of this o-algebra, every
singleton set made of an event string w € L(I';) is a measurable set, which
qualifies itself to have a numerical quantity based on the above decomposition
of L(I';) into L% LT, and L™, respectively called null, positive, and negative
sublanguages. The event costs are defined below.

DEFINITION 3.5. The event cost of the regular grammar I'; is defined as:
71 X* x V — [0,1] such that Yv; € V, Vo; € I, Vs € T,

(1) #loj,vi] =7y € [0,1); 35575 < 1



A compler measure for linear grammars 769

(2) #loj,vi;] = 0 if Pv; — ojur € P, where P is the set of production
rules; and 7[e, v;] = 1;
(3) 7lojw,v;] = Tloj,vs] T|w,vk], where v; — ojv € P.

DEFINITION 3.6. The state transition cost of the regular grammar I';
is defined as: 7 : V x V — [0,1) such that Yuv;,v; € V, 7[v,v5] =
dezﬂvi_,wjep 7iloyv)) = my and m; = 0if {o €L :v; — ov;} NP =0.
The n x n state transition cost matrix, called the IT-matrix, is defined as:

T11 T12 coe Tin
21 7929 e T2
II =
| Tl Tn2 .. Tpp

DEFINITION 3.7. The signed real measure p of every singleton string set
S = {s} € 21T%) where s € L(v;,v) is defined as u(S) = 7(s,v;)x(v). The
signed real measure of the sublanguage L(v;,v) C L(T';) is defined as

®) p(Lwsv) = (Y #ls,vil)x(@).
s€L(vi,v)

The signed real measure of the language of a regular grammar I'; initial-
ized at a state v; € V, is defined as:

(9) pi = w(L) = 3 (L (v, ).

vel
The language measure vector, denoted as: g = 1 pg - -+ in], is called the
J-vector.

Based on the reasoning of the state based approach [7], it follows that:

(10) Wi =Y Tt + Xi-
J

In vector form, g = ITpu + X whose solution is given by:
(11) p=(I-1I)"'X.

REMARK 3.2. The matrix IT is a contraction operator [5] and hence (I — IT)
is invertible. So, the p-vector in Eq. (10) is uniquely defined.

4. Language measure for linear grammars

This section extends the concept of language measure to linear grammars
(V,T, P, S) that are a generalization of regular grammars [2].
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A. Linear grammar measure construction

It follows from Definition 2.6 that, given a path w in the language, the
generated string is obtained by the path mapping p(w). The approach of
. this paper is to construct a measure of the set of all such paths rather
than the measure of strings. This is necessary since any attempt to apply
the Myhill-Nerode theorem on a linear non-regular language results in an
infinite number of equivalence classes (i.e., the Nerode equivalence relation
is not of finite index). However, as we will argue shortly, the language
of all paths (Pr) is regular and hence a right invariant relation of finite
index exists on Ppr. Then, it follows from the reasoning in [7] that a well-
defined signed real measure exists on Pr. In this section, we will construct
a complex measure on Pr allowing one to differentiate between the real and
imaginary transitions and is thus more intuitive in the case of linear non-
regular grammars. Moreover, 1t s argued that the defined complex measure
coincides for the Pr and L(I).

LEMMA 4.1. If there exists a complex measure 9 on Pr with the o-algebra
9Pr .., if (Pr,27r,9) is a well-defined measure space then there exists a
measure 1 on L(T) with the o-algebra 2L(T) such that

(12) 3(Pr) = p(L(D))

Proof. Let (Pr, 2Pr . 9) be a well-defined measure space. Let us define a
map ¢ : L(I') — C as follows:

(13) VweLD), vw) = Y, 9.

Aep~(w)

Note that v is well-defined because (Pr, 2Pr 99) is a measure space and the
mapping function p is surjective (see Definition 2.6). Since ¥ induces a
complex measure [6] 1 oL — C as:

(14) VO C L), w(Q) = Y dWw)
we
on the space L(I"), it follows that

(15) p(LD) = > PWw)

we L(T)
(16) = Y, 9»
Aep~ (L))

(17) = 19(731"). E

.
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REMARK 4.1. The construction of Lemma 4.1 is a natural way of inducing
a measure on the quotient space of a measure space.

LEMMA 4.2. For a linear grammar T, the path language Pr is regular.

Proof. The statement follows from the fact that Pr is a language on the al-
phabet ©1IiY and can be generated by a left-linear grammar with production
rules of the type S — oV or S — iocV. =

We continue with our explicit construction as follows:

Let T ={z:z=a+iband a € [0,1],b € [0,1]}, i.e, T is the closed unit
square on the complex plane C. Let a binary operator % : C xC — C be
defined as: (a + ib) * (c +id) = ac + ibd Va, b,c,d € R. The identity for the
operator * is 1+ i since Vz € C,zx (1 + i) = z and if 2 = a +ib with a # 0
and b # 0, then there exist a a unique z~! e C such that 27! = %—i—z% That
is, z* 271 = (1 +1). The operator x can be extended to multi-dimensional
cases by x : C"¥™ x O — C™<l a5 follows:

IfAeccvm BeCm then AxB =C € C™*! in the sense that
Cij = Lj_10ik * b;. Further, if A= A, +1A;, and B = B, + iB;;, where
the pairs (Ar, Br) and (Aim, Bim) denote the real and imaginary parts of the
matrices A and B, respectively, it follows that Ax B = A; By + iAim Bim-

The identity for the above % operation is (1 +)I where I is the standard
identity matrix of dimension n x n. Let us denote the identity for the
operation by:

(18) IT=(01+19I
where AxZT =T+ A=A VAe(C"*"

REMARK 4.2. The inverse of a matrix A € C™"*™ under the x operation, if
it exists, is given as:

(19) A = (A 4 iAin) T = AT A

that is different from the standard inverse .A~*. Notice that both real (A)

and imaginary (Ain) parts of the matrix A must be individually invertible
in the usual sense for existence of AL

In view of the % operator, definitions of the language measure parameters,
x, 7 and 7, are generalized as follows:

DEFINITION 4.1. The characteristic function x : V' — T is defined as:

(20) Yo eV, x(v)=k(l+1)
kel[-1,0)if ve Vn™
(21) where k=0 if v Vi

ke (0,1 ifveVy,™ .
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The characteristic value x assigns a complex weight to a language L(v,u)
that, starting at the variable v, ends at the variable u. A real weight, in the
range of -1 to +1, is assigned to each state as it was done in the case of
real grammars, and then this weight is made complex by multiplying (in the
* usual sense) with 1 4+ 1.

DEFINITION 4.2. The event cost of the LOFG I is defined as a function
7 (ZUX)* x V — T such that Yoy, v € V, Voj € L,

(1) 7 ~[cr], vg) = Re(7y;) € > Re(fg) < 1;
(2) #lios, vg) = Im(7g;) € i Im(7;;) < 1
(3) 7o, vk] =i if Pup — (Tj’l)e E P;

(4) 7lioj,vk] = 1 if Pvg — ve0; € P,

(5) 7le,ve] = 1+4;

(6) 7lrw,v] = 7T, vg] * 7w, ve]

where 7 € ¥ U i%; w € (X UiX)"; and vy — Tv; if 7 = ¢ and vy — w7 if
T = 10.

DEFINITION 4.3. The state transition cost of the LCFG I' is defined as
m:V XV — 7T such that Yug,v; € V,

(22) [k, V4] :Z Re(7[og, v]) + 4 Z Im(7[oyg, vg))

OpEX: gpEL:
Juy, —TVj €EP Jug —V;0¢ €P

= Tkj

and mp; =0if {c€X: v movjoro €T : v —»vjo}NP=0. Thenxn
complex-valued state transition Il-matrix is defined as:

- -
m1 712 ... Tin
™21 992 e Ton

II =

_7r'n,1 ﬂ-nz “ e ﬂ,nn_

DEFINITION 4.4. Let I';, be a linear grammar, initialized at a state v, € V.
The complex measure y of every singleton path set A = {\} € 27Tk is defined
as: p(A) =7, vk) *X(v). The complex measure u of every singleton string
set 0 = {w} € 22(T'%) is defined as: p(Q) = 2 xp(W)=w T(A V) * X(v). Then,
the complex measure of the sublanguage L(vg,v) C L(I'x) of all strings
terminated at the state v € V is defined as:

(23) p(L(vg, v)) = ( Z fr[w,vk]) * x(v).

w€L(vk,v)
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Complex measure of the language of the linear grammar ['; is defined as:

(24) i = u(L(Tx) = Y p(L(vg,v)).

verl
The language measure vector, denoted as p = [y pg -+ pn]7, is called the
p-vector.

B. Computation of the p-vector

This subsection presents a procedure to formulate the complex measure
of Pr and by Lemma 4.1 it coincides with the complex measure for L(Tk).
Now,

Pr, = (UjOkJPrj) Uk €k
where the null event ¢}, is defined as

. e, if self loop at v;
k -
#, otherwise.

The above expression formalizes the fact that the set of paths from a state
v, is exactly equal to the union of the sets of paths obtained by looking at the
first event and then considering all possible legal paths thereafter. Hence,
if the first event is o, and the current state changes to vj;, then the set of
all paths thereafter is exactly equal to Pr;. The expression is structurally
identical to that given for DF'SA in [7] with the understanding that the
event aej can be either real or imaginary.

Hence,

(25) w(Pr,) = u((Ujo ] Pr,) Uk ex) = n(Uj0) Pr;) + plex)
= Z w(o? Pr,) + x(vi)

J
= mr; * w(Pr;) + x(vr)-
g
The first three steps in Eq. (25) follow from the fact that if the first
symbol for two paths is different, then the paths cannot be identical. How-
ever, the generated strings may still be the same. The fourth step follows
from property (6) of the 7 function in Definition 4.2. The final step triv-
ially follows from Definition 4.4 of the measure. In vector form, the complex
measure y is given by:
(26) w(L(T¥) = w(Pr,) =Hxp+X=(T-M) %X
= (I — ReIl) +4(I — ImIT)) "t x X
= (I — ReIT) 'ReX + (I — ImIT) "' ImX
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where Re and Im refer to the real and imaginary parts of the matrices, re-
spectively; and existence of the matrix inverses is guaranteed by the following
conditions:

S Re(fgg) < 1; Y Im(fy;) <1 k.
J J
A simple example is presented below to illustrate how the complex p is
computed for an LCFG.

C. Example

Let a language L generate all strings of the type {a”b" : n > 0} over the
alphabet ¥ = {a,b}. The non-regular language L can be generated by the
grammar {v — avb|e} that can be rewritten as: v; — avz; and vz — vib.
The resulting event costs (see Definition 4.2) are expressed in the matrix

form as: )
fi-|? °
0 1q

where the parameters p and ¢ can be identified from the experimental time
series data of the system dynamics [8]. The state transition cost matrix (see
Definition 4.3) is then obtained as:

Rell = 0 p and ImlIl = 00 )
0 O qg 0

Assigning characteristic values (i.e., weights) of the two states vy and vy
to be (1 +14)x1 and ((1 + 4)x2 respectively, the complex measure vector of
the language L is evaluated as:

(L) = { (x1 +px2) +ixa } -

xz2 +i(x2 +ax1)

5. Summary, conclusions, and future research

This paper introduces the notion of a quantitative measure of non-regular
languages [1], generated by linear contest free grammars (LCFG) that belong
to the low end of Chomsky hierarchy [2]. It shows that the measure of
regular languages, reported in [7], can be obtained by its generating regular
grammar without referring to states of the automaton. Then, the paper
extends the signed real measure to a complex measure for the class of non-
regular languages, generated by LCFG. The extended language measure is
potentially applicable to quantitative analysis and synthesis of discrete-event
supervisory (DES) control systems, where the plant model of a complex
dynamical system is not restricted to be a finite state machine.
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The quantitative measure of linear context free grammars, introduced in
this paper, is a first step toward development of such measures for higher level
languages in the Chomsky hierarchy, such as Petri nets. Further research is
needed for the next step in two main directions:

e Extension of the notion of the event plane to reveal geometric properties
of formal languages on which little work is reported.

o Construction of closed-form expressions for quantitative measure of
context free languages.
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