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This paper investigates correlation properties of fluctuations in fatigue crack g

polycrystalline materials, such as ductile alloys, that are commonly encountered in s

and machinery components of complex electromechanical systems. The model of crac

measure indicates that the fluctuations of fatigue crack growth are characterized b

correlation patterns within short-time scales and are uncorrelated for larger time sc

two correlation regimes suggest that the 7075-T6 aluminum alloy, analyzed in this

characterized by a micro-structure which is responsible for an intermittent correlated

of fatigue crack growth within a certain scale. The constitutive equations of the

measure are built upon the physics of fracture mechanics and are substant

Karhunen–Loève decomposition of fatigue test data. Statistical orthogonality of the

damage measure and the resulting estimation error are demonstrated in a Hilbert spac
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The fracture of solids and the growth of cracks is a typical instability phe
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notion of fractal statistics to describe the correlation of the fluctuations
fatigue crack growth in polycrystalline materials, such as ductile alloys. In th
we have investigated the fatigue fracture properties of 7075-T6 aluminum a
The importance of this investigation is that, in both physics and eng

literature, the fluctuations around fatigue crack growth in a typical mater
always been assumed to be random or uncorrelated noise. Consequen
associated models include uncorrelated random processes. For exam
agreement with the existent theory of micro-level fatigue cracking, Bogdan
Kozin [1] proposed a Poisson-like uncorrelated-increment jump model of
crack phenomena. An alternative approach to stochastic modeling of fatig
damage is to randomize the coefficients of an existing deterministic m
represent material inhomogeneity [2]. A third approach has been to
deterministic model of fatigue crack growth in addition to a random process
example Refs. [3–5].
The fatigue crack growth process can also be modeled by nonlinear st

differential equations using Itô statistics [6] that again presuppose randomne
fluctuations. Specifically, the Kolmogorov forward and backward d
equations, which require solutions of nonlinear partial differential equatio
been proposed to generate the statistical information required for risk an
mechanical structures [7,8]. These nonlinear partial differential equations h
been solved numerically and the numerical procedures are computationally i
as they rely on fine-mesh models using finite-element or combined finite-d
and finite-element methods [9]. Casciati et al. [10] have analytically approxim
solution of the Itô equations by Hermite moments to generate a pro
distribution function of the crack length.
Several studies have determined that the stochastic fluctuations obse

innumerable natural phenomena are not simply random, i.e., uncorrelated n
present correlation patterns that reveal complex and alternative dynamic
material microstructures. Thus, the purpose of the present research is to d
whether uncorrelated stochastic models such as those previously discusse
literature are realistic in describing the fluctuations around fatigue crack gr
polycrystalline materials, or whether such fluctuations present patterns tha
reveal complex material micro-structure requiring alternative correlated st
models. Two main classes of correlation patterns are commonly observed in
time series and these are denoted as short- and long-time correlations. Sh
correlations are characterized by phenomena that rapidly lose memory of
distant events. This happens, for example, when the autocorrelation functio
time series decays exponentially in the time separation between two elem
contrast, long-time correlations are characterized by autocorrelation functi
decay more slowly than (negative) exponentials; one example is the inverse
law decay.
A simple model, which has been extensively used in the interpretation of st

fluctuations in a time series fxig with i ¼ 1; 2; . . . ;N, is based on the evaluatio
mean-square displacement of the diffusion-like processes generated by tra



X nðtÞ defined as

(1)

rownian
rated by
function

(2)

nhanced
chaotic
sordered

wth) or
ynamics
bility of
eversing
bility of
eversing
growth,
n to the
random
rges to a
s, a real
order of

omalous
ely long
t in the
m walk.
in time
ise [15].
hat are
e second
t on all
am [12]
n of the
of the

urbulent
law of

, rainfall
[14,21],

ARTICLE IN PRESS

N. Scafetta et al. / Physica A 359 (2006) 1–23 3
X nðtÞ ¼
Xt

j¼1

xnþj .

If fxig is a white random sequence, the diffusion process is a well-known B
motion. The central limit theorem applied to the diffusion distribution gene
trajectories X nðtÞ yields a probability density that converges to a Gaussian
whose mean-square displacement converges asymptotically to

hX ðtÞ2i / ta ,

with a ¼ 1. In general, it is possible to have anomalous behavior yielding e
diffusion (a41) that has been known for 20 years to arise in dynamically
systems [11], or sublinear diffusive growth (ao1) that is familiar from di
fractal materials [12].
Anomalous diffusion reveals persistent (for an enhanced diffusive gro

antipersistent (for a sublinear diffusive growth) correlation patterns in the d
of a random walk. A persistent random walk is characterized by a proba
stepping in the direction of the previous step that is greater than that of r
directions. An antipersistent random walk is characterized by a proba
stepping in the direction of the previous step that is less than that of r
directions. Sometimes a momentarily initial enhanced or sublinear diffusive
lasting up to a certain time-scale, is generated by the statistical transitio
asymptotic regime of the diffusion process. For example, a simple discrete
walk is described by a binomial distribution that only asymptotically conve
Gaussian while initially presenting an enhanced diffusive growth [13]. Thu
autocorrelated time series will lose its correlation patterns if the temporal
the sequence is randomized.
There are a number of different theoretical approaches that explain the an

diffusion depicted in (2). One such explanatory model is that of an infinit
correlated random walk in which a ¼ 2H, where H is the Hurst exponen
interval 0pHp1 with the case H ¼ 0:5 corresponding to a simple rando
This model has been used extensively in the interpretation of fluctuations
series in the physical and life sciences [14] and is called fractional Gaussian no
Another kind of anomalous diffusion has to do with taking steps t
uncorrelated in time, but on a random or fractal, not a regular lattice. In th
model, an anomalous diffusion occurs because geometrical obstacles exis
length scales and such obstacles inhibit transport. Havlin and Ben-Avrah
point out that the anomalous exponent a is related to the fractal dimensio
random walk path on the lattice. There is a third possible explanation
anomaly in (2) called a Lévy walk [16] that was first used to understand t
diffusion [16] and yields a 
 3, which is consistent with Richardson’s
enhanced diffusion [17].
Physical examples of anomalous diffusion processes are earthquakes [18]

[16,19], turbulent fluid flow [20], relaxation of stress in viscoelastic materials



solar flares [22–24], and other processes with slip-stick dynamics. Recently, a multi-
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scaling comparative analysis to distinguish Lévy walk intermittent noise from
Gaussian intermittent noise was suggested by Scafetta and West [25].
Finally, a physical system might be characterized by different values of th

exponent a at different scales [26]. Usually, this means that one sy
characterized by a non-self-affine structure. The scale at which the transiti
one scaling regime to another occurs indicates the scale at which the s
changes. In this work we determine that the fluctuations around the ballistic
of fatigue cracks in ductile alloys present such a scale transition from a
correlated regime at short-time scales to a random regime at longer tim
Properties, such as grain size distribution, degree of heterogeneity, the exis
microscopic defects, inclusions, twin boundaries and dislocations, of polycr
materials may contribute to the micro-mechanisms of fatigue fracture rev
the present analysis.
This paper is organized into six sections, including the present one,

appendix. Section 2 provides the underlying phenomenology of the st
damage measure. Section 3 presents Karhunen–Loève (KL) decompos
fatigue test data to formulate an estimate of the stochastic measure, w
statistically orthogonal to the estimation error. Section 4 focuses on identific
the model parameters and their probability distributions. Section 5 pres
results of model prediction by Monte Carlo simulation. The paper is sum
and concluded in Section 6 with recommendations for future research.
2. Measure of fatigue crack damage
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Traditionally fatigue crack growth models have been formulated b
estimated mean values of fatigue crack length ât, generated from ensemble
of experimental data, as functions of time in units of cycles [27,28]. R
Patankar [29] have formulated the state-space modeling concept of crack
based on fracture-mechanistic principles of the crack-closure concept [30]. T
space model has been validated by fatigue test data for variable-amplitud
loading, see for example Refs. [28,31,32].
The three panels in Fig. 1 show test data of cumulative fatigue crack grow

7075-T6 aluminum alloy under different cyclic loading [33]. It is important
that the crack growth curves do not increase smoothly, but they exhibit fluc
around an ideal smooth curve of crack growth representing ballistic growth
context, a major objective of the paper is to investigate the autoco
properties of these fluctuations with the smooth curve removed. In the follo
briefly review the theory and the standard phenomenological equations that
the fatigue crack growth.
In linear fracture mechanics, it is assumed that the stressed material remain

and undamaged everywhere, except in a small domain in the vicinity of the c
However, this view is not confirmed by experimental evidence and the process o
damage accumulation could occur throughout the stressed volume. Paris and
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Fig. 1. Experimental data of 7075-T6 aluminum alloy. (a) R ¼ 0:6 and Max stress ¼ 70:65MPa; (b)
R ¼ 0:6 and Max stress ¼ 69:00MPa; (c) R ¼ 0:6 and Max stress ¼ 47:09MPa.
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[27] originally developed a phenomenological model of crack growth rate, which
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depends on the stress history and is thus represented by a continuum rate
having the hereditary structure. This model has been subsequently modified
researchers (see, for example, citations in Refs. [34–36]) in the following form:

dât � ât � ât�dt ¼ hðDK
eff
t Þdt ,

with hð0Þ ¼ 0 and ât040 for tXt0, where ât is the estimated mean of the crack
time t during a stress cycle and dt is the time duration of the stress cycle; and DK

stress intensity factor range at time t, which is given by the experimentally v
empirical model

DK
eff
t ¼ DSt

ffiffiffiffiffiffiffiffiffiffiffiffi
pât�dt

p
F ðât�dtÞ ,

where DSt is the range (i.e., the difference between maximum and minimum v
the stress cycle at time t, which is directly related to the applied load. Expe
observations suggest that both duration and shape of a stress cycle are not rele
crack growth in ductile alloys at room temperature. A stress cycle is only char
by the minimum stress Smin and the maximum stress Smax, respectively, and is
as the ordered pair ðSmin;SmaxÞ. The empirical relation F ð
Þ in Eq. (4) repre
geometry of the crack tip; for center-cracked specimens of half-width w with 0
at all tXt0, the structure of F ð
Þ has been experimentally determined as [35]

F ðât�dtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sec

p
2w

ât�dt

� �r
.

The function hð
Þ in Eq. (3) is a non-negative Lebesgue-measurable functio
dependent on the material and geometry of the stressed component. It has bee
in the fracture mechanics literature [35,36] that, for center-cracked specimens o
alloys, the function hð
Þ obeys the power law:

hðDK
eff
t Þ ¼ ðDK

eff
t Þ

m ,

where the exponent parameter m is dependent on the material of the
component; for ductile alloys, m is in the range of 2.5–5.0 [35].
Eqs. (3)–(6) are now combined to formulate a mean-value model of fatig

growth for center-cracked specimens of ductile alloy materials:

dât / DSt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ât�dt sec

p
2w

ât�dt

� �r� �m

dt ,

with ât040 and tXt0.
Following Sobczyk and Spencer [9] and the pertinent references cited the

randomize the deterministic mean-value model, Eq. (7), to obtain a stochast
for the rate of crack growth. The stochastic model of continuous crack lengt
upon the model structure proposed by Ray [29,37], and is given by

dctðzÞ ¼ Oðz; tÞ DSt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ctðzÞ

cosððp=2ÞctðzÞÞ

s" #m

dt ffi Oðz; tÞ
ðDSt

ffiffiffiffiffiffiffiffiffi
ctðzÞ

p
Þ
m

1� mððp=4ÞctðzÞÞ
2
d
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which a fatigue test is conducted; the dimensionless stochastic crack
ctðzÞ is normalized with respect to the half width w, i.e., the mean value ĉt

Eq. (8) is a continuous stochastic version of Eq. (7), where the dif
of the stochastic crack length dctðzÞ is a function of the crack leng
at time t and the normalized stress DSt � DSe

t=Sy, where Sy is the yie
of the material. The condition 0oct0pcto4=p

ffiffiffiffi
m

p
is imposed to

non-negativity of the crack length increment almost surely, i.e., dctðzÞ
almost all samples z. The stochastic process of crack growth is largely de
on the second-order random process Oðz; tÞ and the exponent paramet
Eq. (8).
To investigate the stochastic properties of the fatigue crack growth pro

separate Oðz; tÞ into two parts as

Oðz; tÞ ¼ O0ðzÞ½1þ O1ðz; tÞ� ,

where the time-independent component O0ðzÞ represents uncertainties in m
turing, for example in machining, and makes a major contribution to the
component of the crack growth; the time-dependent component O1ðz; tÞ re
uncertainties in the material micro-structure and crack length measureme
may vary with crack propagation in a sample z. This latter component is p
responsible for the small fluctuations around the ballistic component o
growth whose autocorrelation properties we study.
We postulate that O0 and O1 in Eq. (9) are statistically independent of one

for all tXt0, where t0 is the initial time. The rationale for this indep
assumption is that inhomogeneity of the material micro-structure and meas
noise, associated with each test specimen and represented by O1ðz; tÞ, are un
by the uncertainty O0ðzÞ due, for example, to machining operations. Withou
generality, we assume that the fluctuations in time have a zero mean va
hO1ðz; tÞi ¼ 0 for all tXt0. Furthermore, non-negativity of the crack grow
dctðzÞ in Eq. (8) is assured in the almost sure (a.s.) sense by imposing the co
O0ðzÞX0 with probability 1 (w.p. 1).
For notational brevity, let us suppress the term z in random processes l

and Oðz; tÞ. A combination of Eqs. (8) and (9) and few simple algebraic ste
the following equation for each sample point z:

c
�m=2
t � m

p
4

� �2
c
2�m=2
t

� �
dct ¼ ðDStÞ

mO0½1þ O1ðtÞ�dt w:p: 1 .

Pointwise integration of Eq. (10) yields the solution of fatigue damage in
from the initial time t0 to the current time t as

cðt; t0Þ ¼
Z t

t0

ðDSt0 Þ
mO0½1þ O1ðt0Þ�dt0 w:p: 1 .



An explicit expression of the stochastic diffusion process cðt; t0Þ is obtained by
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integrating the left-hand side of Eq. (10) and is given by

cðt; t0Þ �
c
1�m=2
t � c

1�m=2
t0

1� m=2

" #
� m

p
4

� �2 c
3�m=2
t � c

3�m=2
t0

3� m=2

" #
,

where cðt; t0Þ represents a dimensionless non-negative measure of fatigu
damage increment from the initial instant t0 to the current instant t as a fun
the normalized crack length. The constant parameter m in (12) is in the
2.5–5 for ductile alloys and metallic materials ensuring that ð1� m=2Þ
ð3� m=2Þ40. The diffusion process cðt; t0Þ is almost surely continuous beca
a continuous function of the crack length process ct w.p. 1. Both ct and cð
measurable functions although their (probability) measure spaces are diffe
essence, the probability of cðt; t0Þ, conditioned on the initial crack length ct0 ,
a stochastic measure of fatigue crack damage increment at the instant t start
the initial instant t0.
For a constant stress range DS, we carry out the time integration in Eq

obtain

cðt; t0Þ ¼ ðDSÞm½O0ðt � t0Þ þYðt; t0Þ� ,

where the second term on the right-hand side is the time integral

Yðt; t0Þ � O0

Z t

t0

O1ðt0Þdt0 .

Thus, the stochastic diffusion process cðt; t0Þ according to model (13) is give
sum of a random component, linear in time, plus a time-fluctuating com
proportional to the diffusion process Yðt; t0Þ.
The objective is to validate the model in Eq. (11) by decomposing the

increment measure cðt; t0Þ into two parts that are mutually statistically inde
and, at the same time, equivalent to the two components of the right-hand
Eq. (13). That is, we would like to obtain an estimate ĉðt; t0Þ of the st
damage increment measure cðt; t0Þ and of the fluctuations ~cðt; t0Þ around
from the initial instant t0 to the current instant t such that

cðt; t0Þ ¼
ms ĉðt; t0Þ þ ~cðt; t0Þ ,

where ĉðt; t0Þ is statistically equivalent to DSmO0ðt � t0Þ, and ~cðt; t0Þ is sta
equivalent to ðDSÞmYðt; t0Þ of Eq. (13).
To test the validity of the above postulate that the two component

multiplicative random process O0ðzÞ and O1ðz; tÞ in Eq. (9) are sta
independent, we require that the zero-mean estimation error ~cðt; t0Þ be sta
orthogonal to the estimate of the increment measure ĉðt; t0Þ in the Hilbe
L2ðPÞ defined by the probability measure P. As such ĉðt; t0Þ is the best linear
of the stochastic diffusion process. Based on mean-square continuity of the
measure cðt; t0Þ, the next section elaborates on the model structure laid
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decomposition [38–40] that guarantees the above statistical orthogonality am
components of the decomposition. In Section 4 we also use these experimen
sets to identify the model parameters.
3. Karhunen–Loève decomposition of experimental data
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In this section we analyze fatigue test data via KL decomposition [40] to ju
model structure postulated in Eqs. (11) and (12). We use the experimental
random fatigue crack growth in the 7075-T6 aluminum alloy [33] and con
tests under different constant load amplitudes at ambient temperature.
experiments the half-width is w ¼ 50:8mm, the initial crack length is at0

and, therefore, the initial dimensionless crack length is ct0 ¼ at0=w ¼ 0
probability 1. The Ghonem data sets were generated for 60 center-cracked sp
each at three different constant load amplitudes: (i) Set #1 with peak nomin
of 70.65MPa (10.25 ksi) and stress ratio R � Smin=Smax ¼ 0:6 for 54,000 cy
effective stress range DSe ¼ 15:84MPa; (ii) Set #2 with peak nominal s
69.00MPa (10.00 ksi) and R ¼ 0:5 for 42,350 cycles, and DSe ¼ 17:80MPa;
Set #3 with peak nominal stress of 47.09MPa (6.83 ksi), R ¼ 0:4 for 73,50
and DSe ¼ 13:24MPa. The three experimental data sets [33] are shown in t
panels of Fig. 1.
The KL decomposition requires the mean and covariance of the st

measure of damage increment cðt; t0Þ which are expressed as

mcðt; t0Þ � hcðt; t0Þi ,

Cccðt1; t2; t0Þ � h½cðt1; t0Þ � mcðt1; t0Þ�½cðt2; t0Þ � mcðt2; t0Þ�i .

The covariance function Cccðt1; t2; t0Þ in Eq. (16) is continuous at t1 ¼ t2 ¼

tXt0. Hence, the process cðt; t0Þ is mean-square (ms) continuous based on a s
theorem of mean-square calculus [38,39]. The mean and covariance are calc
the 60 available center-cracked specimens in each case.
Since only finitely many data points at n discrete instants are availab

experiments, an obvious approach to the analysis of the damage estima
discretize over the finite time horizons ½t0; t� so that the stochastic proces
becomes the n-dimensional random vector c. Consequently, the covariance
Cccðt1; t2; t0Þ in Eq. (16) is reduced to a real semipositive-definite ðn � nÞ sy
matrix Ccc. Since the experimental data were collected at sufficiently close i
Ccc contains pertinent information of the crack damage process. The n (r
negative) eigenvalues of Ccc are ordered as l1Xl2X � � �Xln, with the corres
eigenvectors, j1;j2; . . . ;jn, which form an orthogonal basis of Rn fo
decomposition. The KL decomposition also ensures that the n random coeffi
the basis vectors are statistically orthogonal, i.e., they have zero mean
mutually uncorrelated. These random coefficients form a random vec
½x1; x2; . . . ; xn�

T having the covariance matrix CXX ¼ diagðl1; l2; . . . ; lnÞ, lead



decomposition of the discretized signal as

(17)

d by the
envector
of the
essed as
utually

(18)

ipal and

(19)

(20)

und the

(21)

(22)

1 for all

, closely
hown in
discrete
nable to
efficient
endix, a
derived

(23)

ARTICLE IN PRESS

N. Scafetta et al. / Physica A 359 (2006) 1–2310
c¼
ms
hci þ

Xn

j¼1

xjf
j .

It was observed by Ray [37] that the statistics of crack length are dominate
random coefficient corresponding to the principal eigenvector (i.e., the eig
associated with the largest eigenvalue) and that the combined effects
remaining eigenvectors are small. Therefore, the signal c in Eq. (17) is expr
the sum of a principal part and a (zero-mean) residual part that are m
statistically orthogonal:

c¼
ms
hci þ x1f

1

principal part

þ
Xl

j¼2

xjf
j

residual part

.

Thus, as Eq. (15) requires, the vector c is expressed as the sum of the princ
residual parts with equality in the mean square (ms) as

c¼
ms ĉþ ~c ,

where the principal part is the damage estimate

ĉ � hci þ x1f
1 ,

the residual part is the estimation error representing the fluctuations aro
mean damage estimate (20)

~c �
Xn

j¼2

xjf
j ,

and the resulting (normalized) mean square error [40] is

e2rms �
TracefCov½c� ĉ�g

TracefCov½c�g
¼

Pn
j¼2ljPn
j¼1lj

.

The KL decomposition of fatigue test data sets reveals that 0:01pe2rmsp0:
three data sets.
The principal eigenvector f1ðtÞ, associated with the largest eigenvalue l1

fits the ramp function ðt � t0Þ for each of the three data sets in Fig. 1; this is s
Fig. 2 for the data set 1. Comparing the terms on the right-hand side of the
model in Eq. (19) with those of the continuous model in Eq. (13), it is reaso
have the random variable DSm½O0 � m0� equal (in ms sense) to the random co
x1 of the principal eigenvector j1ðtÞ. Applying the lemma from the app
mean-square equivalence between the KL decomposition model in Eq. (19)
from the test data and the postulated model in Eq. (17) is established as

hcðtÞi
discrete model ðtest dataÞ



ms

DSmm0ðt � t0Þ
continuous model ðconstitutive relationÞ

,
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Fig. 2. (a) Curves cðtÞ obtained with Eq. (12) for the experimental data of 7075-T6 aluminum alloy for set
#1. The value of m used is m ¼ 4:0. (b) Principal part of the KL decomposition against (c) the linear
approximation of the continuous model made in Eqs. (23) plus (24) of the curves cðtÞ.
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discrete model ðtest dataÞ continuous model ðconstitutive relationÞ

Xn

j¼2

xjf
j

discrete model ðtest dataÞ



ms

ðDSÞmYðt; t0Þ
continuous model ðconstitutive relationÞ

.

Thus, we have ĉ ¼ hcðtÞi þ x1f
1
ðtÞ 
 DSmO0ðt � t0Þ, and ~c ¼

Pn
j¼

DSmYðt; t0Þ as assumed in Eq. (15). The two entities on the left-hand side
(24) and (25) are mutually statistically orthogonal by construction. Similarly
of Eq. (15), the zero-mean estimation error ~cðt; t0Þ is statistically orthog
ĉðt; t0Þ in the Hilbert space L2ðPÞ defined by the probability measure P as
with the stochastic process cðt; t0Þ. As such ĉðt; t0Þ can be viewed as the be
estimate of cðt; t0Þ with the least error ~cðt; t0Þ in the mean-square sense.
It follows from Eqs. (15) to (25) that the uncertainties associated

individual sample resulting from the damage measure estimate ĉðt; t0Þ domi
cumulative effects of material inhomogeneity and measurement noise
estimation error ~cðt; t0Þ unless ðt � t0Þ is small. Therefore, from the perspe
material-health monitoring, risk analysis, and remaining life prediction w
inter-maintenance interval ðt � t0Þ is expected to be large, a reasonably
identification of the mean m0 and variance s

2
0 of the random parameter O0 is

while the role of the diffusion process Yðt; t0Þ is relatively less significa
observation is consistent with the statistical analysis of fatigue test data by D
[2], where the random process described by Eq. (25) is treated as the ze
residual. Ditlevsen [2] also observed largely similar properties by statistical
Nevertheless, the stochastic properties of fluctuating function Yðt; t0Þ, w
investigate, can disclose important information about the material structure
during crack damage.
4. Data analysis

between
and the
er m by
ring the

q. (12).
g to the
s model
ets look
qs. (23)
ion, and
In this section we investigate the stochastic equivalence made in Eq. (25)
the residual component of the signal as obtained by the KL decomposition
linear approximation. The first step is to evaluate the exponent paramet
fitting the data of the crack growth with Eq. (8). The fit is done by conside
crack increments from all 60 cases for each of the three experiments.
By using the empirical values of m it is possible to estimate cðt; t0Þ via E

The three plots in Fig. 2 compare the curve cðt; t0Þ, its principal part accordin
KL decomposition and its linear approximation according to the continuou
made in Eqs. (23) plus (24) for set #1: the figures for the other data s
qualitatively similar. Fig. 3 shows the quality of the equivalence made in E
plus (24) between the discrete model, which makes use of the KL decomposit
the continuous model, which makes use of a linear approximation.



Fig. 3 shows the fitted data and the results for set #1; the figures for the other sets
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are similar. The parameters for all the three sets are listed below.


 OðzÞDSm ¼ 0:0019� 0:0002 and m ¼ 4:0� 0:2 for set #1;

m r set #2;

r set #3.


 OðzÞDS ¼ 0:0022� 0:0002 and m ¼ 3:8� 0:2 fo

 OðzÞDSm ¼ 0:0018� 0:0002 and m ¼ 4:7� 0:2 fo
ual part
residual
, in two
al parts;
tatistical

ðt � 1Þ.
residual
e linear
tandard
hown in
residual
del.
YðtÞ, see
stic part
4.1. Diffusion standard deviation analysis of the fluctuations

We evaluate the stochastic equivalence made in Eq. (25) between the resid
of the discrete model, which makes use of the KL decomposition, and the
part of the continuous model, which makes use of a linear approximation
steps. Step 1 compares the size of the increments of the correspondent residu
and Step 2 adopts the standard deviation analysis (SDA) which is a s
formalism to study the long-time correlation in a fractal time series.
Because YðtÞ ¼ residual part, the increments are given by yt ¼ YðtÞ �Y

We calculate the standard deviation, sy, of the increments fytg for each
component estimated by means of the KL decomposition and of th
approximation, respectively. Finally, we calculate the average of the s
deviation, hsyi, between the 60 sy for each of the three cases. The results s
Table 1 demonstrate the compatibility of the increments obtained with the
parts of the KL decomposition and the residual part of the continuous mo
Now, let us suppose that a generic residual curve is given by the function

Eq. (25), that in this specific case is a kind of random walk around the balli



of the signal, which is the principal component of the KL decomposition or the
g of the

(26)

(27)

d units.
sence of
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(28)
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totically
onent is
this is
n. This
the KL
oes the

ARTICLE IN PRESS

Table 1

Values of the fitting parameters m and s of the lognormal distribution (29) of the histograms shown in
Fig. 7

m s

Set #1 0:58� 0:05 0:20� 0:02
Set #2 0:74� 0:05 0:16� 0:02
Set #3 0:42� 0:05 0:45� 0:04
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linear component of the continuous model. The SDA determines the scalin
standard deviation of the diffusion process defined as

DðtÞ ¼
1

sy

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN�t

t¼0

½Yðt þ tÞ �YðtÞ �Yðt þ tÞ �YðtÞ�2

N � t� 1

vuut ,

where

Yðt þ tÞ �YðtÞ ¼
XN�t

t¼0

Yðt þ tÞ �YðtÞ

N � t
,

N is the number of data points and times t and t are measured in cycle perio
It is easy to realize that Eq. (27) ensures that Dðt ¼ 1Þ ¼ 1. In the pre
fractal statistics we would have, based on the discussion of anomalous diff
Section 1,

DðtÞ / tb ¼ ta=2 .

Fig. 4 shows the SDA for the residual part of the KL decomposition. Eac
graphs concerning the same crack data look quite similar. All three sets o
show that the curves have a initial scaling exponent approximately within t
0:5obo0:9. The mean curve value is represented by the curves with black c
Fig. 4. These early time values of b, interpreted in terms of the random
discussed in Section 1, indicate that the residual parts of the signal ma
persistent behavior, i.e., a persistent correlation that lasts at least 10 con
cycles on average.
For 10oto100 the data present a slight antipersistency with 0:4o

Consequently, the residual process is initially strongly persistent, but asymp
it is almost random. We observe that for 10oto100 the mean scaling exp
approximately H ¼ 0:45 in the case of the linear continuous model and
slightly larger than the scaling exponent in the KL discrete decompositio
change in scaling is due to the fact that the principal part obtained with
decomposition extracts more information from the original signal than d
simple linear approximation.



In Section 1 we have explained that an initial anomalous diffusion that lasts up to
to some
metrical
n shape
vior for
e repeat
at is, for
1Þ, then
w walk
5 shows

ARTICLE IN PRESS

10

1
1 10 100 1 10 100

D
(τ

)

10

1

D
(τ

)

τ

[a1] (crack data 1) K-L

[b1] (crack data 2) K-L

[c1] (crack data 3) K-L

[a2] (crack data 1) Linear

[b2] (crack data 2) Linear

[c2] (crack data 3) Linear

10

1

D
(τ

)

10

1

D
(τ

)

10

1

D
(τ

)

10

1

D
(τ

)

τ

1 10 100
τ

1 10 100
τ

1 10 100
τ

1 10 100
τ

Fig. 4. SDA for the residual part of the KL decomposition (left figures) against SDA for the residual part

of linear approximation (right figures) of the continuous model. Note the scaling transition at t 
 10 from

H 
 0:7 to H 
 0:5 in both cases for all data sets.
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a certain t as detected by Eq. (1) could also be an artifact related not
autocorrelation pattern in the data but to the transition from the initial geo
properties of the distribution of the events fxig of a time series to the Gaussia
of the asymptotic diffusion distribution. To check that the persistent beha
to10 observed in the plots of Fig. 4 expresses real correlation patterns, w
SDA of the data after randomizing the time series of the increments fytg. Th
each crack data first we have the sequence fytg defined as yt ¼ YðtÞ �Yðt �

we shuffle fytg and obtain a new sequence fy0tg and generate a ne
Y0ðtÞ ¼

Pt
i¼1 y

0
i, and finally we apply SDA to the new curve Y0ðtÞ. Fig.



the result for the crack set #1 where the residual part is estimated with the KL
y shows
SDA of
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decomposition; for the other data sets the results are similar. Fig. 5 clearl
that after shuffling of the temporal order of the single increments fytg, the
the new sequence gives a scaling value of approximately H ¼ 0:5 and the p
behavior forto10 observed in Fig. 4 is absent. Thus, we conclude that the p
behavior for to10 observed in Fig. 4 expresses real correlation pattern
fluctuations of crack growth.
Fig. 6 also shows that the distributions of the scaling exponent seems to

uniform in the interval 0:5obo0:9 (with a probability P40:9%) or, per
Fig. 6c shows better, there might be a slight prominence or skewness in favor
value of b. In any case, all figures show that the distribution of the scaling e
for the residual components of the curve obtained with the KL decompositio
linear component of the continuous model practically coincide for all three d
This equivalence suggests that the continuous linear model essentially
not only the dominant properties of the signal, as obtained through
decomposition, see Eq. (24), but also the stochastic properties of the residua
as suggested in Eq. (25).

4.2. Statistics of damage measure estimates

We investigate the statistics of the damage measure estimates using a lo
distribution. This is in keeping with the analysis of several investigato
assumed the crack growth rate in ductile alloys is lognormal-distributed
example, the citations in Sobczyk and Spencer [9]). Other investigators have
the crack length as being lognormal-distributed [37], rather than the



fluctuations. The results of KL decomposition in Eqs. (16)–(19) are consistent with
fatigue
random
t0Þ is a
9] have
lating a
nship to

g to the
as those
ðx;m; sÞ:

(29)

meters m

(30)
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with the KL decomposition and the continuous linear model for each of the three crack data sets. Fig. 7d

shows the histograms of all data.
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these assumptions because O0, which dominates the random behavior of
crack growth, can be considered to be a perfectly correlated (ballistic)
process, whereas the non-negative, multiplicative uncertainty term Yðt;
weakly (positively) correlated random process. Yang and Manning [3
presented an empirical second-order approximation to crack growth by postu
lognormal distribution of a parameter that does not bear any physical relatio
DS but is, to some extent, similar to O0ðDSÞ in the present model.
Fig. 7 shows the histogram of the slopes DSmO0 of the curves accordin

continuous model for the experimental data presented by Eq. (25), such
shown in Fig. 3c. The histograms are fitted with the lognormal distribution p

pðx; m;sÞ ¼
1

x
ffiffiffiffiffiffiffiffiffiffi
2ps2

p exp �
ðlnðxÞ � mÞ2

2s2

� �
.

The measured parameters m and s are recorded in Table 2. Finally, the para
and s are functions of m0 ¼ hxi and s20 ¼ hðx � m0Þ

2
i as follows:

m � lnðm0Þ � s2=2
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Fig. 7. Histogram of the quantities DSmO0 of the continuous model of the experimental data presented by
Eq. (25). The histograms are fitted with a lognormal distribution pðx; m; sÞ shown in Eq. (29).
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Table 2

Mean standard deviation of the increments of the residual part obtained with the KL decomposition and

the residual part of the continuous model

KL Linear model

Set #1: hsyi ¼ 0:0024� 0:001 0:0025� 0:001
Set #2: hsyi ¼ 0:0024� 0:001 0:0025� 0:001
Set #3: hsyi ¼ 0:0038� 0:003 0:0043� 0:003
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s2 � ln 1þ
s0
m0

2

.

Since the random parameter DSmO0 is not explicitly dependent on time, its
value is obtained from Eq. (13) as

m0 ¼ hDSmO0i ¼
cðt; t0Þ
t � t0

� �
,

which is readily determined from the ensemble average estimate from eac
data sets. Asymptotically in time we find for the variance of DSmO0

s20 ¼ hðDSmO0 � m0Þ
2
i ¼

cðt; t0Þ
t � t0

� �2* +
� m20 ,

so that the variance can be determined directly from the ensemble average
from each of the data sets.
5. Crack model simulation

ue crack
sis made
uces the
e crack
nerating
mage in
rvations
eps:

ormally
This section presents the results of Monte Carlo simulation of the fatig
damage process based on the model as it emerges from the stochastic analy
in the previous section. The model that we introduce approximately reprod
stochastic properties of both the ballistic or principal part of the fatigu
growth and the associated fluctuations around it. The model consists in ge
independently the fluctuation and the principal part of the fatigue crack da
such a way that they are statistically equivalent to the correspondent obse
and then combining them. The crack model simulation is based on four st


 Principal part or ballistic growth: We generate 60 values of DSmO0, logn

n by the
orded in

is shown

0 fractal
nce and
distributed according to Eq. (29), where the parameters m and s are give
actual fit of the phenomenological distribution shown in Fig. 6 and rec
Table 2. A sample of the curves DSmO0ðt � t0Þ simulating the data set #1
in Fig. 8b.


 Residual part or fluctuations around the ballistic growth: We generate 6
Gaussian noise sequences fy0tg each of length N of the original time seque



with scaling exponent uniformly distributed in the interval 0:5obo0:9. The
iation of
le 1. To
almost
f length
uffle the
ries fytg.
rrelated
the new
he curve
is of an
hown in

tuations
mulated
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Fig. 8. Synthetic data of crack length for set #1. (a) SDA of the residual component; (b) ballistic growth;

(c) damage increment cðtÞ; (d) crack length, compare with Fig. 1a.
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standard deviation of each sequence is set equal to the mean standard dev
the increments of the residual component of the data reported in Tab
simulate the change of scaling exponent from persistent (for to10) to
random (for t410), we section each fractal time series fy0tg into segments o
10 within which the data would conserve the correlation, and finally we sh
position of these segments in the time series to reproduce a new time se
These new time series will have persistent correlation for to10 and unco
randomness for t410. Finally, the curve YðtÞ is obtained by integrating
sequence fytg and by detrending from it its linear component because t
YðtÞ is supposed to have a zero mean. The SDA sample data analys
example of these synthetic residual data simulating the data set #1 is s
Fig. 8a.


 The ballistic growth estimated in the principal part and the associated fluc
of the residual part are combined according to Eq. (18) to obtain a si
ata sets.

ting the
damage increment measure cðt; t0Þ for all 60 sequences and for the three d
Fig. 8c shows the simulated damage increment measure cðt; t0Þ simula
data set #1.




 Finally, by using the respective value of the exponent m, reported in Section 4, for
Eq. (12)
, as seen
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the data set #1 and a one-dimensional root-finding computer algorithm,
is inverted to obtain a simulated normalized crack length growth curves ct

in Fig. 8d. The similitude between Figs. 8d and 1a is noteworthy and th
for the other data sets look qualitatively very similar; hence they are not p
in this paper.

6. Summary and conclusions

This paper presents a stochastic measure of fatigue crack damage. W
focused on the correlation properties of the fluctuations around fatigu
growth in ductile alloys. The model of crack damage measure indicates
fluctuations around fatigue crack growth present strong correlation pattern
short-time scales and are uncorrelated for larger time scales. These findings
that the random stochastic models adopted in the present literature for de
the crack growth dynamics should be augmented with short-time co
stochastic models.
The damage measure is modeled as an anomalous diffusion process

obtained as a continuous function of the current crack length and of the init
length. Perhaps, the randomness in the damage measure estimate accrues p
from manufacturing uncertainties such as defects generated during m
operations because such macro-defects are expected to drive the ballistic gr
cracks. This randomness is captured by a single lognormal-distributed
variable. Instead, the resulting diffusion process of estimated fluctuations
the ballistic growth of fatigue cracks is probably due to the inhomogeneit
structural material because it is primarily associated with the micro-stru
the material, and is represented by a non-stationary fractional Brownian
model. This non-stationarity manifests itself in the two scaling expone
urring at different scales. Specifically, we observe a clear transition in t
dard deviation analysis from an early time slope representing a strong per
b 
 0:7 lasting for approximately t 
 10 to a different slope asymptotically
representing randomness, b 
 0:5. This transition occurring at t 
 10
scaling regime to another indicates the scale at which a structure chang
ductile alloys occurs.
The constitutive equation of the damage measure is based on the ph

fracture mechanics and is validated by KL decomposition of fatigue test
7075-T6 aluminum alloys at different levels of (constant-amplitude) cyclic lo
damage estimate is statistically orthogonal to the resulting zero-mean es
error in the Hilbert space L2ðPÞ defined by the probability measure of the st
damage measure. As such, the damage estimate is often viewed as a best leas
linear estimate. However, we find that the KL decomposition is sta
equivalent to the linear approximation in the continuum model that can be th
to simulate the fatigue crack growth in ductile alloys.
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Appendix: A supporting lemma

yðz; tÞ be
Lemma. Let AðzÞ and BðzÞ be second-order real random variables; xðz; tÞ and
rocesses;
t, for all
zero-mean mean-square continuous (possibly non-separable) real random p

and the real gðtÞ be almost everywhere continuous on an interval D such tha

t 2 D, the following conditions hold:

(i) AðzÞ ¼ms
BðzÞ;
; tÞi ¼ 0.
(ii) hAðzÞxðz; tÞi ¼ 0 and hBðzÞyðz
identity:
Then, the following mean-square
k, 1985.
AðzÞgðtÞ þ xðz; tÞ ¼ms
BðzÞgðtÞ þ yðz; tÞ

yields

xðz; tÞ ¼ yðz; tÞ

hAðzÞyðz; tÞi ¼ 0

hBðzÞxðz; tÞi ¼ 0

9>=
>; 8t 2 D .

Proof. It follows from the above mean-square identity that

Var½fAðzÞ � BðzÞggðtÞ þ fxðz; tÞ � yðz; tÞg� ¼ 0

which may be expanded to yield

Var½AðzÞ � BðzÞ�gðtÞ2 þ Var½xðz; tÞ � yðz; tÞ�

þ hfAðzÞ � BðzÞgfxðz; tÞ � yðz; tÞgigðtÞ ¼ 0 .

A combination of condition (i) and Schwarz inequality yields

Var½xðz; tÞ � yðz; tÞ� ¼ 0

and the remaining two identities follow from condition (ii). &

References

[1] J.L. Bogdanoff, F. Kozin, Probabilistic Models of Cumulative Damage, Wiley, New Yor

[2] O. Ditlevsen, Eng. Fracture Mech. 23 (2) (1986) 467.



[3] Y.K. Lin, J.N. Yang, AIAA J. 23 (1) (1985) 117.

[4] B.F. Spencer, J. Tang, M.E. Artley, AIAA J. 27 (11) (1989) 1628.

er, Berlin,

ork, 1989.

A, 1992.

.

ils, World

ambridge

303.

0.

ntice-Hall,

970.

985.

s, Boston,

ARTICLE IN PRESS

N. Scafetta et al. / Physica A 359 (2006) 1–23 23
[5] H. Ishikawa, A. Tsurui, H. Tanaka, H. Ishikawa, Prob. Eng. Mech. 8 (1993) 43.

[6] P.E. Kloeden, E. Platen, Numerical Solution of Stochastic Differential Equations, Spring

1995.

[7] A. Tsurui, H. Ishikawa, Structural Safety 4 (1986) 15.

[8] V.V. Bolotin, Prediction of Service Life for Machines and Structures, ASME Press, New Y

[9] K. Sobczyk, B.F. Spencer, Random Fatigue: Data to Theory, Academic Press, Boston, M

[10] F. Casciati, P. Colombi, L. Farvelli, Fatigue Fract. Eng. Mater. Struct. 15 (5) (1992) 463

[11] B.V. Chirikov, Phys. Rep. 52 (1979) 265.

[12] S. Havlin, D. Ben-Hvraham, Adv. Phys. 36 (1987) 695.

[13] N. Scafetta, P. Grigolini, Phys. Rev. E 66 (2002) 036130.

[14] B.J. West, Physiology, Promiscuity and Prophecy at the Millennium: A Tale of Ta

Scientific, Singapore, 1999.

[15] B. Mandelbrot, J.W. Van Ness, SIAM Rev. 10 (1968) 422.

[16] M.F. Shlesinger, B.J. West, J. Klafter, Phys. Rev. Lett. 58 (1987) 1100.

[17] L.F. Richardson, Proc. R. Soc. London Ser. A 110 (1926) 709.

[18] B. Gutenberg, C.F. Richter, Bull. Seismol. Soc. 34 (1994) 185;

J.M. Carlson, J.S. Langer, B.E. Shaw, Rev. Mod. Phys. 66 (1994) 657.

[19] O. Peters, C. Hertlein, K. Christensen, Phys. Rev. Lett. 88 (2002) 018701.

[20] U. Frisch, Turbulence: The Legacy of A.N. Kolmogorov, Cambridge University Press, C

USA, 1992.
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