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A crucial step in symbolic time series analysis (STSA) of observed data is symbol sequence generation that relies
on partitioning the phase-space of the underlying dynamical system. We present a novel partitioning method,
called wavelet-space (WS) partitioning, as an alternative to symbolic false nearest neighbour (SFNN) partitioning.
While the WS and SFNN partitioning methods have been demonstrated to yield comparable performance for
anomaly detection on laboratory apparatuses, computation of WS partitioning is several orders of magnitude

faster than that of the SFNN partitioning.

PACS: 89.75.—k, 89.70. +c, 07.90. +c

Symbolic time series analysis (STSA) has been
proposed for real-time anomaly detection in complex
systems.[! 73] A crucial step in STSA is partitioning
of the phase space of the underlying dynamical sys-
tem for symbol sequence generation.[! Several tech-
niques have been suggested in the physics literature
for symbol generation, primarily based on phase space
partitioning. 56!

Symbolic  false nearest neighbour (SFNN)
partitioning!” optimizes a generating partition by
avoiding topological degeneracies. The criterion is
that short sequences of consecutive symbols ought to
localize the corresponding state space point as closely
as possible. This is achieved by forming a particu-
lar geometrical embedding of the symbolic sequence
under the candidate partition and minimizing the ap-
parent errors in localizing the state space points. In
a good partition, nearby points in the embedding re-
main close when mapped back into the state space.
In contrast, bad partitions induce topological degen-
eracies where symbolic words map back to globally
distinct regions of state space. The nearest neighbour
to each point in the embedding is found in terms
of Euclidean distance between symbolic neighbours,
where better partitions yield a smaller proportion of
symbolic false nearest neighbours. For convenience
of implementation, the partitions are parameterized
with a relatively small number of free parameters.
This is accomplished by defining the partitions with
respect to a set of radial-basis ‘influence’ functions.
The statistic for symbolic false nearest neighbours is
minimized over the free parameters using ‘differential
evolution’, a genetic algorithm suitable for continuous
parameter spaces.!”]

A major shortcoming of SFNN partitioning is that
it may become extremely computation-intensive if the
dimension of the phase space of the underlying dynam-
ical system is large. Furthermore, if the time series be-
comes noise-corrupted, then the symbolic false neigh-

bours rapidly grow in number and require a large sym-
bol alphabet to capture the pertinent information on
the system dynamics. The wavelet transform largely
alleviates these shortcomings and is particularly effec-
tive with noisy data from high-dimensional dynamical
systems. Gamero et al.®l used wavelet-based multi-
resolution for signal analysis in time-dependent non-
linear systems.

In this Letter, we present a novel concept of
wavelet-space (WS) partitioning that relies on entropy
maximization. The WS and SFNN partitioning meth-
ods are compared from the perspectives of anomaly
detection. The results are obtained based on time se-
ries data generated from two laboratory apparatuses:
(i) a nonlinear electronic system, and (ii) a mechanical
vibration system.

In multi-resolution analysis (MRA) of wavelet
transform, a continuous signal f € H, where H is a
Hilbert space, is decomposed as a linear combination
of time translations of scaled versions of a suitably
chosen scaling function ¢(¢) and the derived wavelet
function (t). Let the sequence {¢;r} belong to
another Hilbert space M with a countable measure,
where the scale s = 27 and time translation 7 = 277 k.
If the sequence {¢, x} is a frame for the Hilbert space
H with a frame representation operator L., then there
are positive real scalars A and B such that

AllflfE < IILAG < BIlfIE YFeH, (1)

where Lf = {(f, ¢, %) : Jj,k € Z} and (z,y) are the
inner products of z and y, both belong to H; and

[ILf| I = \/EJ > l(f,0;k)]? is a candidate norm.

The above relationship is a norm equivalence and
represents the degree of coherence of the signal f with
respect to the frame set of scaling functions. It may be
interpreted as enforcing an approximate energy trans-
fer between the domains H and L(H). In other words,
for all signals f € H, a scaled amount of energy is
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distributed in the coefficient domain where the scale
factor lies between A and B.!°) However, the energy
distribution is dependent on the signal’s degree of co-
herence with the underlying frame {¢; }. For a signal
f, which is coherent with respect to the frame {¢; 1},
norm equivalence in the frame representation neces-
sarily implies that a few coefficients contain most of
the signal energy and hence have relatively large mag-
nitudes. Similarly, pure noise signal w being incoher-
ent with respect to the set {¢; s}, must have a frame
representation in which the noise energy is spread out
over a large number of coefficients. Consequently,
these coefficients have a relatively small magnitude.1"]

Let f be a noise corrupted version of the original
signal f expressed as

f=f+ow, (2)
where w is additive white gaussian noise with zero
mean and unit variance and o is the noise level. Then,
the inner product of f and ¢; 1 is obtained as

(frdik) = (frb50) +0 (w,j1) . (3)
N—— ~——
signal part noise part

The noise part in Eq. (3) may further be reduced by
appropriate choice of the scales over which coefficients
are obtained.

For every wavelet, there exists a certain frequency
called the center frequency F, that has the maximum
modulus in the Fourier transform of the wavelet.[!]
The pseudo-frequency f, of the wavelet at a particu-
lar scale « is given by the following formula:(*1-12]

FC
= Ap (4)

where At is the sampling interval. It is observed from
numerical simulation that the signal to noise ratio can
be improved by a factor of 6 or more through appropri-
ate selection of the wavelet basis function and scales.

The power spectral density (PSD) of the signal
provides the information about the frequency content
of the signal. This information along with Eq. (4) can
be used for scale selection. The procedure for selecting
the scales is summarized as follows: (i) identification
of the frequencies of interest through PSD analysis of

time series data, (ii) substitution of the above frequen-
cies in place of f, in Eq.(4) to obtain the respective
scales in terms of the known parameters F, and At.
The wavelet coefficients of the signal are signif-
icantly large when the pseudo-frequency f, of the
wavelet corresponds to the locally dominant frequen-
cies in the underlying signal. The wavelet coefficients
are obtained upon selection of the wavelet basis and
scale range. These coefficients are stacked at selected
time-shift positions, starting with the smallest value of
scale and ending with its largest value and then back
from the largest value to the smallest value of the scale
at the next instant of time shift. In the sequel, this
one-dimensional array of arranged wavelet coefficients

is called the scale series data, which is structurally
similar to time series data in the phase space. For
symbol generation, the scale series data are handled
in a similar way as time series data.

The objective is to convert the scale series data
to a sequence of symbols. A scheme for partition-
ing based on thresholds was used in Ref.[1]. In this
approach, the maximum and minimum of the scale
series are evaluated. The ordinates between the max-
imum and minimum are divided into equal-sized re-
gions. These regions are obviously mutually disjoint
and thus form a partition. Each region is then labelled
with one symbol from the alphabet. If the data point
lies in a particular region, it is coded with the symbol
associated with that region. Thus, a sequence of sym-
bols is created from a given scale series data set. This
is called the uniform partitioning that is also reported
in Refs.[1,8].

In an alternative form of partitioning, the regions
with rich information are partitioned finer than those
with sparse information. This objective is achieved by
maximization of entropy that induces uniform proba-
bility distribution of the symbols in the alphabet X.
Thus, small changes in the behaviour of the underly-
ing dynamical system are more likely to be captured
from the symbol sequence obtained under maximum
entropy partitioning than under another partitioning.
The procedure for maximum entropy partitioning that
has been adopted in the proposed WS partitioning is
succinctly described in the following.

Let N be the data set length and |X| be the al-
phabet size, i.e., the number of (disjoint) members in
the partition. The data set to be partitioned is sorted
in ascending order. Starting from the first point in
the sorted data set, every consecutive data segment of
length ng—‘J forms a distinct member of the partition.
Here |z| represents the greatest integer less than or
equal to z. Choice of the alphabet size |X| also plays
a vital role in information extraction, and the con-
cept of entropy rate has been used for this purpose, as
explained in the following.

Let H(k) denote the entropy of the symbol se-
quence obtained by partitioning the data set with k
symbols.

i=k
H(k) = - pilog, pi, (5)
i=1

where p; represents the probability of occurrence of
the symbol o; and H(1) = 0. The maximum entropy
of the data set is log, (k) corresponding to the uniform
probability distribution of the k£ symbols. The entropy
rate, with respect to the number of symbols, is given
by

h(k) = H(k) — H(k — 1), Vk>2. (6)

An algorithm for choosing the alphabet size is given
as follows: (1) Set k = 2. Choose a threshold €. (2)
Sort the set of scale series data set (of length N) in
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the ascending order. (3) Every consecutive segment
N
of length LEJ in the sorted data set forms a distinct

element of the partition. (4) Convert the scale series
sequence to a symbol sequence with the partitions ob-
tained in step (3). If the data point lies within or
on the lower bound of a partition, it is coded with
the symbol associated with that partition. (5) Com-
pute the symbol probabilities p;, 1 = 1,2,---,k. (6)
Compute the entropy H(k) = — Ezjfpl log, p; and
compute the entropy rate h(k) = H(k) — H(k — 1).
(7) If h(k) < ep, then exit; else increment k by 1 and
go to step (3).

The choice of the threshold ¢; depends on the sig-
nal characteristics and may vary for individual sys-
tems. A small €, leads to a large size of the sym-
bol alphabet, resulting in increase of computation.
On the other hand, a large €, may fail to capture
the small changes in dynamics because of excessively
coarse graining resulting from a reduced number of
symbols.

The performance of WS partitioning is now eval-
uated by comparison with SEFNN partitioning in the
context of symbolic time series analysis (STSA) for
anomaly detection.[!] The objective of anomaly detec-
tion is to identify small changes in the critical param-
eter(s) as early as possible and well before it manifests
as a drastic change in the behaviour of the dynamical
system. Next, we present some application examples
based on the time series data generated from two lab-
oratory apparatuses.

The first example is built upon on experimen-
tal data, generated from a nonlinear electronic sys-
tem apparatus/'®! that emulates the forced Duffing
equation:!'

d?y

=+ ,BZ—?Z +y(t) + y*(t) = Acos(Qt), (7)

where the dissipation parameter 3 varies slowly with
respect to the response of the dynamical system; 5 =
0.1 represents the nominal condition; and a change in
the value of 3 is considered as an anomaly. With am-
plitude A = 22.0 and 2 = 5.0, a sharp change in the
behaviour is noticed to be around g = 0.29, possibly
due to bifurcation. The phase plots and time-response
plots, depicting this drastic change behaviour, are not
presented here because they are available in earlier
publications.*:2]

The same sets of time series data of the signal y(t),
generated from the nonlinear electronic system appa-
ratus, have been used for symbolic analysis in SEFNN
and WS partitioning. In both the cases, the symbol
alphabet size is chosen to be |X| = 8; the Gaussian
wavelet, gausl, is chosen as the basis function for WS
partitioning. Once the partition is generated at the
nominal condition of 8 = 0.1, it is kept invariant for
subsequent analysis at different values of 3. As the dy-
namical behaviour of the system changes due to vari-

ations in [, the statistical characteristics of the sym-
bol sequences are also altered and so do the symbol
probabilities. A measure is induced on deviations of
the symbol probability vectors obtained under differ-
ent anomalous conditions, to quantify these changes.
Such a measure is called the anomaly measure M.
The metric M} = d(py,p;) is an anomaly measure,
where p, and p,, represent the symbol probability vec-
tors under nominal and anomalous conditions, respec-
tively. A candidate anomaly measure is the angle be-
tween the symbol probability vectors under nominal
and anomalous conditions. This measure is defined as

<p07pk> )) (8)

M, = arccos (7
|1Pol 2P|

where (z,y) is the inner product of the vectors @ and
y; and ||z||2 is the Euclidean norm of .
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Fig.1l. Anomaly Detection on the electronic system
apparatus.

Figure 1 depicts two plots of anomaly measure ver-
sus the dissipation parameter 3, which are obtained
from the same data sets by SFNN partitioning and WS
partitioning. A comparison of the two plots in Fig.1
reveals that the anomaly measure profile derived by
WS partitioning is very close to that derived by SFNN
partitioning. The execution time for SFNN to gener-
ate the partition is found to be about four hours, while
that for WS partitioning is ~ 100 ms on the same com-
puter with identical memory requirement. Therefore,
it is logical to infer that, for this class of nonlinear
electronic systems, WS partitioning is computation-
ally several orders of magnitude more efficient than
SFNN partitioning while both the partitioning meth-
ods yield similar performance from the perspective of
anomaly detection.

The second example is built upon the experimental
data, generated from a multi degree-of-freedom me-
chanical vibration system apparatus.'® Figure2 de-
picts the experimental apparatus.

The apparatus is persistently excited at a fre-
quency of 10.4 Hz, which is a close approximation of
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one of resonance frequencies of the mechanical struc-
ture. Each set of time series data contains 30s of
information under persistent vibratory motion of the
mass-beam system. The resulting cyclic stresses in-
duce (irreversible) fatigue crack damage in the criti-
cal structures, which cause gradual reduction in stiff-
ness. Consequently, the statistics of time series data
undergo changes. The objective here is to detect these
changes as early as possible in real time.

Beam #2 Beam #1

Mass #1

hnrade

Shaker #1

Shaker #2 g

Failure sites
in specimens

Fig. 2. Multi-degree-of-freedom mechanical vibration sys-
tem apparatus.

The first data set, which is dominated by a sinu-
soid of frequency ~ 10.4 Hz and represents the nom-
inal behaviour of the mechanical vibration system, is
considered to be the reference point.
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Fig. 3. Anomaly detection on the mechanical vibration
system apparatus.

Figure 3 depicts the two plots of anomaly measure
versus time, which are obtained by SFNN partition-
ing and WS partitioning from the same data sets and
the same alphabet size |X| = 8. The gaussian wavelet,
gaus9, is chosen as the basis function for WS parti-
tioning. It is observed from the two anomaly measure
profiles in Fig.3 that WS partitioning is comparable

to SFNN partitioning. Similar to the previous ex-
ample in Fig.1, the execution time for WS partition-
ing is about five orders of magnitude less than that
for SFNN partitioning with identical memory require-
ment. Hence, it is inferred from this experiment that
WS partitioning, is better suited for real-time detec-
tion of structural degradation in mechanical vibration
systems. Another advantage of wavelet-based parti-
tioning is that its effectiveness with noisy time series
data. It is observed that the effects of noise can be
significantly mitigated by appropriate selection of the
wavelet basis function and scales.

A major conclusion based on this investigation is
that wavelet-based (WS) partitioning, combined with
appropriate choices of a wavelet basis function, signifi-
cantly enhances computational efficiency and anomaly
detection capabilities higher than those reported in lit-
erature. The field of symbolic time series analysis is
relatively new and its application to anomaly detec-
tion is very recent. Therefore, the proposed method
of partitioning for symbol generation requires contin-
ued theoretical and experimental research. Future
research is recommended in the following areas: (1)
exploration of lifting techniques!'®! for wavelet cus-
tomization, (2) extension of the proposed WS par-
titioning to multi-dimensional time series, (3) blind
noise separation®® in the time series data for robust
partitioning.
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