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Abstract
The paper presents the concept and experimental validation of an analytical
tool for fatigue damage monitoring in polycrystalline alloys. Ultrasonic
signals are utilized for early detection of fatigue damage during the crack
initiation period. Small microstructural changes occurring inside the
material during the initial stages of fatigue damage cause attenuation and
distortion of transmitted waves at the receiver end. The anomaly detection
algorithm is based on time series analysis of ultrasonic data and is built upon
the principles of symbolic dynamics, information theory and statistical
signal processing. Experiments have been conducted for both constant
amplitude and block loading of 7075-T6 aluminium alloy compact
specimens on a special-purpose test apparatus that is equipped with
ultrasonics sensors and a travelling optical microscope for fatigue damage
monitoring.
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(Some figures in this article are in colour only in the electronic version)

1. Introduction

Damage due to fatigue phenomenon is one of the most
commonly encountered sources of structural degradation
in human-engineered complex electromechanical systems.
Detection of fatigue damage at an early stage is essential
because the accumulated damage could potentially cause
catastrophic failures in the system, leading to loss of
expensive equipment and human life [1]. Therefore, it is
necessary to develop prognosis capabilities for reliable and
safe operation of the system and for enhanced availability
of its service life. In the current state-of-the-art, direct
measurements of fatigue damage at an early stage (e.g.,
crack initiation) are not feasible due to lack of analytical
models and sensing devices. This paper attempts to address
this inadequacy by taking advantage of the sensitivity of
the ultrasonic impedance to small microstructural changes
occurring inside the material during the crack initiation
period.

Several model-based approaches have been developed for
structural health monitoring and life prediction of mechanical
structures [2–7]. Apparently, no existing model, solely based
on the fundamental principles of molecular physics [8], can
adequately capture the dynamical behaviour of fatigue damage
at the grain level. In general, these models are critically
dependent on the initial defects in the materials which are
difficult to identify and model. Specifically in the short crack
region the appearance of many crack nucleation sites can be
treated as random events. Moreover, uncertain usage patterns
(e.g., random overloads) and fluctuations under environmental
conditions (such as temperature and humidity) may adversely
affect the performance of mechanical systems leading to
unanticipated failures. The random distribution of flaws
in identically manufactured structural components leads to
different behavioural patterns of fatigue damage evolution
[1, 9]. Consequently, the analysis of time series data from
available dedicated sensors is essential for monitoring the
evolving fatigue damage in real time [10].
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Several techniques based on various sensing devices (e.g.,
ultrasonics, acoustic emission and eddy currents) have been
proposed in the recent literature for fatigue crack monitoring
[11–13]. Ultrasonic sensing methodology has been effectively
utilized for microstructural analysis in polycrystalline alloys
to examine the fatigue phenomenon [14, 15]. Impedance
of the ultrasonic signals was shown to be sensitive to small
microstructural changes occurring during the early stages of
fatigue damage [16, 17]. However, the issues of fatigue
monitoring during all stages of fatigue life with appropriate
signal processing and data analysis tools were not addressed.

Symbolic time series analysis (STSA) is based on
conversion of time series data to discrete symbol sequences
[18, 19]. Anomaly detection using STSA [20] is a pattern
recognition method that has been recently developed [21],
and a comparative evaluation of this novel analytical method
shows its superior performance relative to other existing
pattern recognition tools in terms of early detection of small
changes in dynamical systems [22, 23] and robustness to noisy
environments [24].

The paper presents and validates the novel concept of
STSA for fatigue damage monitoring in polycrystalline alloys.
It emphasizes the need for online updating of information
derived from sensing devices that are sensitive to small
microstructural changes and are capable of issuing early
warnings during fatigue damage evolution [25]. To this end,
ultrasonic sensors have been adopted for early detection of
fatigue damage during the crack initiation period. The STSA
method has been experimentally validated on a fatigue damage
testing apparatus [23]. The computer-controlled apparatus
is equipped with a variety of sensing instruments such as
ultrasonic transducers, optical microscope and extensometers
[26]. Information obtained by symbolic time series analysis of
ultrasonic data is utilized in this paper for real-time monitoring
of fatigue damage under both constant and block loading
conditions on compact specimens made of 7075-T6 aluminium
alloy.

The paper is organized in five sections, including the
present section, and an appendix. Section 2 presents the
underlying concepts and essential features of symbolic time
series analysis for anomaly detection and is supported by the
appendix that introduces the concepts of symbolic dynamics
and encoding to provide the necessary background. Section 3
describes the experimental apparatus which is designed and
constructed for fatigue monitoring using multiple sensing
instruments. Section 4 describes the experimental procedure
and presents the results and discussion of fatigue monitoring
using symbolic time series analysis of ultrasonic data. The
paper is concluded in section 5 along with recommendations
for future research.

2. Symbolic time series analysis (STSA)

This section presents the underlying concepts and essential
features of STSA [20] for anomaly detection in complex
dynamical systems [21]. While the details are reported in
previous publications [21, 24], the essential concepts of STSA
and construction of a finite state machine from the generated
symbol sequence are briefly described in the appendix for
completeness of this paper.

In STSA, a data sequence is converted to a symbol
sequence by partitioning a compact region of the phase space
of the dynamical system, over which the trajectory evolves,
into finitely many discrete blocks. Each block is labelled as
a symbol, where the symbol set � is called the alphabet set
that consists of |�| different symbols. (Note |�| � 2.) As the
system evolves in time, it travels through various blocks in its
phase space and the corresponding symbol σ ∈ � is assigned
to it, thus converting a data sequence to a symbol sequence
(see the appendix).

2.1. Methodology for anomaly detection

Fatigue damage monitoring is formulated as a two time scale
problem. The fast time scale is related to the response time
of machinery operation. Over the span of a given time series
data sequence, the structural dynamic behaviour of the system
is assumed to remain invariant, i.e. the process has stationary
dynamics at the fast time scale. In other words, the variations
in the internal dynamics of the system are assumed to be
negligible on the fast time scale. The slow time scale is related
to the time span over which the process may exhibit non-
stationary dynamics. Observable non-stationary behaviour
can be associated with the anomalies evolving at a slow time
scale. In general, a long time span in the fast time scale
is a tiny (i.e. several orders of magnitude smaller) interval
in the slow time scale. For example, evolution of fatigue
damage in structural materials (causing a detectable change
in the dynamics of the system) occurs on the slow time scale;
the fatigue damage behaviour is essentially invariant on the
fast time scale. Nevertheless, the notion of fast and slow
time scales is dependent on the specific application, loading
conditions and operating environment. From the perspective
of fatigue monitoring, sensor data sets are collected on the fast
time scale at different slow time epochs separated by regular
intervals. Further details are presented in section 4.

Symbolic time series analysis for behavioural pattern
identification requires the following steps.

• Time series data acquisition from appropriate sensors at
different slow time epochs.

• Transformation of time series data from the continuous
domain to the symbolic domain by partitioning the data
sequences into finitely many discrete blocks [18, 19]
and calculation of respective state probability vectors at
different time epochs (see section 2.3).

• Statistical pattern identification based on the deviation of
this vector information from the nominal condition.

2.2. Wavelet space (WS) partitioning

A crucial step in the symbolic time series analysis is
partitioning of the phase space for symbol sequence generation
[20]. Several partitioning techniques have been reported in
the literature for symbol generation [10, 27, 28], primarily
based on symbolic false neighbours. These techniques rely on
partitioning the phase space and may become cumbersome and
extremely computation intensive if the dimension of the phase
space is large. Moreover, if the time series data are noise-
corrupted, then the symbolic false neighbours would rapidly
grow in number and require a large symbol alphabet to capture
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the pertinent information on the system dynamics. Therefore,
symbolic sequences as representations of the system dynamics
should be generated by alternative methods because phase-
space partitioning might prove to be a difficult task in the
case of high dimensions and presence of noise. The wavelet
transform [29] largely alleviates these shortcomings and is
particularly effective with noisy data from high-dimensional
dynamical systems [24].

This paper has adopted a wavelet-based partitioning
approach [21, 24] for construction of symbol sequences from
the time series data. In this method, the time series data are
first converted to wavelet domain, where wavelet coefficients
are generated at different time shifts. The wavelet space is then
partitioned with alphabet size |�| into segments of coefficients
on the ordinate separated by horizontal lines. The choice of
|�| depends on specific experiments, noise level and also the
available computation power. A large alphabet may be noise-
sensitive while a small alphabet could miss the details of signal
dynamics. The partitioning is done such that the regions
with more information are partitioned finer and those with
sparse information are partitioned coarser. This is achieved by
maximizing the Shannon entropy [30], which is defined as

S = −
|�|∑
i=1

pi log(pi), (1)

where pi is the probability of the ith state and summation is
taken over all possible states. Each partition region is identified
as a state qj ∈ Q (for further details, see the appendix).
Uniform probability distribution of states is a consequence of
maximum entropy that makes the partition coarser in regions
of low data density and finer in regions of high data density.

2.3. Calculation of the state probability vectors

Once the partitioning is done with the alphabet size |�| under
the nominal condition (time epoch t0), it is kept constant for all
(slow time) epochs {t1, t2, . . . , tk, . . .}, i.e. the structure of the
partition is fixed under the nominal condition. Therefore, the
partitioning structure generated under the nominal condition
serves as the reference frame for the data analysis at subsequent
slow time epochs.

Definition 2.1. The probability of transitions from the state qj

to state qk belonging to the set Q of states under a transition
δ : Q × � → Q is defined as

πjk = P(σ ∈ � | δ(qj , σ ) → qk),
∑

k

πjk = 1. (2)

Thus, the irreducible stochastic matrix Π ≡ [πij ]
describes all transition probabilities between the states. The
left eigenvector p corresponding to the unit eigenvalue of
Π is the state probability vector under the (fast time scale)
stationary condition of the dynamical system [21]. The time
series data under the nominal condition are set as the reference
point. The state transition matrix Π0 is generated to obtain the
state probability vector p0 whose elements are the stationary
probabilities of the state vector, where p0 is the left eigenvector
of Π0 corresponding to the (unique) unity eigenvalue. (See
the appendix and the two figures therein for more explanation.)
Subsequently, state probability vectors p1, p2, . . . , pk, . . . are
obtained at slow time epochs t1, t2, . . . , tk, . . . based on the
respective time series data.

2.4. Weighted partition

The gradual evolution of the probability vector on the slow time
scale represents small increments in fatigue damage. To this
end, the elements of the state probability vector are weighted
because the states may not be uniformly sensitive to evolving
anomalies. Based on the fact that the amplitude of ultrasonic
signals is very sensitive to small microstructural changes
[16, 17], it is logical to assign larger weights to the higher-
energy segments of the partition, which are more sensitive
to perturbations during the early stages of crack initiation.
Similarly, smaller weights are assigned to lower-energy
segments of the partition, which are less sensitive because
they bear useful information only at the crack propagation
stage when the ultrasonic signal becomes much less effective
due to signal attenuation. The remaining partition segments
are assigned weights of intermediate magnitude. As such,
the state weights are directly related to the partitioning of the
signal space (i.e. the space of wavelet coefficients), where
the range of coefficients is partitioned at discrete values of
{γj : j = 0, 1, . . . , |�|}. Each segment of the partition (see
section 2.2) is assigned a corresponding weight wj as defined
below.

Definition 2.2. The weight matrix W , with a positive-definite
diagonal structure, is defined as

W = Diag

{
wj = ϑj∑

ϑj

; j = 1, . . . , |�|
}

(3)

such that

0 � wj � 1 and
∑

j

wj = 1,

where the segment energy

ϑj =
(γj + γj−1

2

)2
.

This is still an active area of research based on
thermodynamic formalism of dynamical systems [31]. A
statistical mechanical analogy has been recently reported,
where it is shown that the partition regions can be represented
by thermodynamic energy states and the weights are analogous
to the corresponding values of energy [32]. The review of the
thermodynamic analogy is beyond the scope of this paper and
is not discussed any further.

2.5. Damage evolution and pattern identification

Behavioural pattern changes occur in electro-mechanical
systems due to accumulation of faults and progression of
anomalies. The pattern changes are quantified as deviations
from the nominal behaviour (i.e. the probability distribution
under the nominal condition). The resulting anomalies (i.e.
deviations of the evolving patterns from the nominal pattern)
are characterized by a scalar-valued function, called the
anomaly measure ψ , that is quasi-static in the fast time scale
and is monotonically non-decreasing in the slow time scale.

The state probability vector at any time instant
corresponds to a singleton point on the unity-radius
hypersphere. During fatigue damage evolution, the tip of
the probability vector moves along a path on the surface
of this hypersphere. The initial starting point of the path

1965



S Gupta et al

is the probability vector with uniform distribution obtained
with maximum entropy partitioning (see section 2.2). As
the damage progresses, the probability distribution changes;
eventually when a very large crack is formed, complete
attenuation of the ultrasonic signal occurs and consequently
the tip of the probability vector reaches a point where all states
have zero probabilities of occurrence except the one which has
a probability 1 (i.e. a delta-distribution); this state corresponds
to the partition region where all data points are clustered due
to complete attenuation of the signal.

In the context of fatigue damage, the anomaly measure is
formulated on the following assumptions.

• Assumption 1. The damage evolution is an irreversible
process (i.e. with zero probability of self-healing) and
implies the following conditions:

ψ(t) � 0; ψ(t + δ) − ψ(t) � 0 ∀t � t0 ∀δ > 0. (4)

• Assumption 2. The damage accumulation between the
two time epochs is a path function, i.e. dependent on the
path traversed to reach the target state from the initial
state.

In the context of fatigue damage in polycrystalline alloys
at room temperature, the crack length is traditionally defined
by a straight line joining the starting point to the tip of the
crack but, in reality, the actual crack follows a complicated
path (possibly fractal in ductile materials). In fact, at the
initial stages of fatigue damage, there can be multiple short
cracks oriented in different directions. Therefore, the crack
length alone does not provide complete information on fatigue
damage evolution. Since ultrasonic signals are highly sensitive
to small microstructural changes, signal distortion is a good
index of anomaly growth. The tip of the probability vector,
obtained through a symbolic time series analysis, moves along
a curved path on the surface of the unity-radius hypersphere
between the initial point p0 (i.e. uniform distribution obtained
under maximum entropy partitioning) and the final point
at very large crack formation pf (i.e. δ-distribution due to
complete attenuation of the signal). Phenomena such as piling
up of dislocations, strain hardening or reflections from multiple
crack surfaces affect the ultrasonic signals in a variety of
ways. An increase of the ultrasonic amplitude is also observed
during very early stages of fatigue damage due to hardening
of the material. On the other hand, ultrasonic signals attenuate
sharply at the crack propagation stage upon development of
a large crack. As such, distortion of ultrasonic signals at a
single time epoch may not uniquely determine the state of
fatigue damage. The rationale is that two signals may exhibit
similar characteristics but, in terms of actual incurred damage,
the states are entirely different. Consequently, fatigue damage
is a path function instead of being a state function. This
assessment is consistent with assumption 1 implying that the
damage evolution is irreversible. That is, at two different
time epochs, the damage cannot be identical unless the net
damage increment is zero. Consequently, by assumption 2,
the anomaly measure should follow the traversed path of the
probability vector, not the straight line joining the end points
(i.e. the tips of the probability vectors).

The anomaly measure, based on the path between the
nominal state and the completely damaged state, can be
different even for identical test samples and under the

same loading conditions because of the stochastic nature of
fatigue phenomena. As such, analysis of a stochastic data set
collected under identical experimental conditions is essential
for identification of variations in different data sets. This
problem is still under active investigation and will be reported
in a forthcoming publication.

The following distance function is derived between
probability vectors at two time epochs:

d(pk, pl ) ≡
√

(pk − pl)T W(pk − pl). (5)

The algorithm for computation of the anomaly measure
ψ compensates for spurious measurement and computation
noise in terms of the sup norm ‖e‖∞ ≡ max(|e1|, . . . , |em|)
of the error in the probability vector (i.e. the maximum error
in the elements of the probability vector). The algorithm is
presented below.

(i) ψ0 = 0, δψ1 = 0, p̃ = p0, k = 1;
(ii) if ‖pk − p̃‖∞ > ε then δψk = d(pk, p̃) and p̃ ← pk;

(iii) ψk = ψk−1 + δψk;
(iv) k ← k + 1, δψk = 0; go to step (ii).

The real positive parameter ε, associated with robustness
of the anomaly measure for measurement and computation
noise, is identified by performing an experiment with a sample
with no notch. Since there is no notch there is practically
no stress augmentation and relatively no fatigue damage. As
such, the parameter ε is estimated as

ε ≈ max
l∈{1,...,N}

(‖pl+1 − pl‖∞) (6)

from N consecutive observations with N 	 1. The algorithm
works in the following fashion: the reference point p̃ is
initialized to the starting point p0 and the anomaly measure
ψ0 is set to 0. At any slow time epoch tk , if the state
probability vector moves such that the distance travelled in
any particular direction (i.e. the sup norm ‖•‖∞) is greater
than ε as specified in step (ii), then the anomaly measure is
incremented by δψk = d(pk, p̃) and the reference point is
shifted to the current point pk . The procedure is repeated at
all slow time epochs. As such, the total path travelled by the
tip of the probability vector represents the deviation from the
nominal condition and the associated damage.

2.6. Summary of STSA anomaly detection

The STSA procedure of anomaly detection is summarized
below.

• Time series data acquisition from appropriate sensor(s) at
time epoch t0, i.e. the nominal condition, when the system
is assumed to be in the healthy state (i.e. zero anomaly
measure).

• Generation of the wavelet transform coefficients, obtained
with an appropriate choice of the wavelet basis.

• Maximum entropy partitioning of the wavelet space under
the nominal condition (see section 2.2) and generation of
the corresponding symbol sequence. The partitioning is
fixed for subsequent time epochs.

• Generation of the state probability vector p0 at time
epoch t0.
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Figure 1. Schematic of the fatigue damage test bed.

• Time series data acquisition at subsequent slow time
epochs, t1, t2, . . . , tk, . . . and their conversion to the
wavelet domain to generate respective symbolic
sequences based on the partitioning at time epoch t0.

• Generation of the state probability vectors p1, p2, . . . ,

pk, . . . , at slow time epochs, t1, t2, . . . , tk, . . . from the
respective symbolic sequences.

• Computation of scalar anomaly measures ψ1, ψ2, . . . ,

ψk, . . . , at time epochs, t1, t2, . . . , tk, . . . .

3. Description of experimental apparatus

This section briefly describes the experimental apparatus
which is designed to study the fatigue damage in mechanical
structures. Figure 1 shows the schematic of the test bed
consisting of the fatigue damage test apparatus embedded with
multiple sensing devices along with the software interfaces for
control and real-time damage monitoring. The experimental
apparatus, shown in figure 2, is a special-purpose uniaxial
fatigue testing machine, which is operated under load control
or strain control at speeds up to 12.5 Hz; a detailed description
of the apparatus and its design specifications are reported
in [26]. The test specimens are subjected to tensile–tensile
cyclic loading by a hydraulic cylinder under the regulation
of computer-controlled electro-hydraulic servo-valves. The
feedback signals that are generated from the load cell and
the extensometer are processed by signal conditioners that
include standard amplifiers and signal processing units. The
controller governs the hydraulic servo-valve for operation
under specified load and position limits. The damage
estimation and life prediction subsystem consists of data
analysis algorithm and the associated computer hardware. The
process instrumentation and the control module of the fatigue
test apparatus are briefly described below.

• Closed loop servo-hydraulic unit and controller. The
instrumentation and control of the computer-controlled
uniaxial fatigue test apparatus includes a load cell, an
extensometer, an actuator, the hydraulic system and the
controller. The servo-hydraulic unit can excite the system
with either random loads or random strains at variable
amplitudes. The control module is installed on a computer
which is dedicated to machine operation. The controller
operates the machine according to a schedule file which
contains the specifications of loading profile and the

Ultrasonic
Transducers

Load Cell

Microscope

Specimen

Hydraulic
Cylinder

Figure 2. Computer-instrumented apparatus for fatigue testing.

Figure 3. Cracked specimen with a side notch.

number of load cycles. The real-time data from the
extensometer and load cell are supplied to the controller
for operation under specified position and load limits.

• Subsystem for data acquisition, signal processing and
engineering analysis. In addition to the computer for
controlling the load frame, a second computer is used for
real-time image data collection from the microscope to
monitor the growth of surface cracks. The instrumentation
for ultrasonic flaw detection scheme is connected to a
third computer. The real-time ultrasonic data collected
on this computer are transferred at regular intervals to a
fourth computer on which the data analysis algorithm is
installed. The algorithm based on symbolic time series
analysis generates the anomaly measures at different
slow time epochs, and the plots are displayed on the
screen. These laboratory computers are interconnected
by a local dedicated network for data acquisition, data
communications and control.

Figure 3 shows a compact specimen of the 7075-T6
aluminium alloy used for testing in the fatigue damage test
apparatus. The specimens are 3 mm thick and 50 mm wide
with a slot on one side of 1.58 mm diameter and 4.57 mm
length. The notch is made to increase the stress concentration
factor that ensures crack initiation and propagation at the notch
end. The test specimens have been subjected to sinusoidal
loading under tension–tension mode (i.e. with a constant
positive offset) at a frequency of 12.5 Hz. The dc offset
is provided in the load cycling to ensure that the specimen is
always under tension. Since inclusions and flaws are randomly

1967



S Gupta et al

Figure 4. Schematic of ultrasonic sensors on a test specimen.

distributed across the material, small cracks appear at these
defects and propagate and join at the machined surface of the
notch even before microscopically visual cracks appear on the
surface.

The test apparatus is equipped with a variety of dedicated
sensors for monitoring the fatigue damage. Two types of
sensors that have been primarily used for damage detection
are as follows.

(1) Travelling optical microscope. The travelling optical
microscope, shown as part of the test apparatus in figure 2,
provides direct measurements of the visible portion of a crack.
The resolution of the optical microscope is about 2 µm at a
working distance of 10 to 35 cm. The growth of the crack is
monitored continuously by the microscope which takes images
of the surface of the specimen at regular intervals. The crack
length can be calculated automatically by movement of the
microscope from the notch end to the tip of the crack. The
data acquisition software also allows for manual operation and
image capture at the desired moment.

(2) Ultrasonic flaw detector. A piezoelectric transducer is
used to inject ultrasonic waves in the specimen, and a receiver
transducer is placed on the other side of the notch to measure
the transmitted signal, as seen in figure 4. The ultrasonic
signals produced are 10 MHz sinusoidal waves and they are
triggered during a very short portion at the peak of every load
cycle. Ultrasonic measurements are taken at stress levels that
exceed the crack opening stress and this causes maximum
attenuation of the ultrasonic waves. Note that if crack closure
occurs at low loads, then an alternative method would be
needed to detect anomalies.

Since material characteristics (e.g., voids, dislocations
and short cracks) influence ultrasonic impedance, a small
fault in the specimen is likely to change the signature of
the signal at the receiver end. Therefore, the signal can
be used to capture minute changes during the early stages
of fatigue damage [25]. A significant amount of internal
damage (e.g., dislocations, short cracks and microstructural
defects) occurs before the crack appears on the surface of
the specimen when it is observed by the microscope [33].
This internal damage inside the specimen can cause detectable
attenuation and/or distortion of the ultrasonic waves [16]. An
elaborate description of the properties of ultrasonic waves in
solid media is provided by Rose [34]. The crack propagation
stage starts when this internal damage eventually develops
into a single large crack. Subsequently, the crack growth
rate increases rapidly and when the crack becomes sufficiently
large, complete attenuation of the ultrasonic signal occurs at
the receiver end.

The ultrasonic flaw detection technique is easy to install
at the potential damage site and is capable of detection
of fatigue damage before the onset of widespread fatigue
crack propagation. An optical microscope is only capable

Table 1. Load scheduling for type II loading.

Blocks Number of cycles Maximum load

B0 Until 500 µm crack 81.0 MPa
B1 10 000 cycles 67.0 MPa
B2 10 000 cycles 50.0 MPa
B3 10 000 cycles 39.8 MPa
B4 Until failure 74.1 MPa

of detecting cracks when they appear on the front surface of
the specimen. Therefore, the study in this paper is based on
analysing the ultrasonic data for monitoring fatigue damage
during both crack initiation and crack propagation stages.

4. Experimental results and discussion

The fatigue tests have been conducted on 7075-T6 aluminium
specimens where the aim of the experiments is fatigue damage
monitoring using ultrasonic sensing technique before the onset
of widespread fatigue leading to fracture. The tests have been
performed at 12.5 Hz frequency under two different types of
loading conditions:

type I: constant loading
type II: block loading (see table 1).

For type I loading, the specimens (see section 3) are
subjected to a sinusoidal load where the maximum and
minimum loads are kept constant at 89.3 MPa and 4.85 MPa,
respectively. For type II loading, the sample is initially loaded
with a sinusoidal loading with maximum amplitude of 81 MPa.
As soon as the microscope detects the crack and the crack
length reaches 500 µm, the load cycling is shifted to block
loading which consisted of four blocks from B1 to B4. The
minimum load in all regions is kept the same at 4.85 MPa. The
loading schedule is summarized in table 1.

Ultrasonic waves at 10 MHz are triggered at the peak of
each sinusoidal load cycle where the stress is maximum and the
crack is open causing maximum attenuation of the ultrasonic
waves. Since the ultrasonic frequency is much higher than the
load cycling frequency, data collection is performed for a very
short interval in the time scale of load cycling. The slow time
epochs have been chosen to be 1000 load cycles (i.e. ∼80 s)
apart. At the onset of each slow time epoch, the ultrasonic
data points are collected on the fast time scale of 50 cycles
(i.e. ∼4 s), which produced a string of 15 000 data points.
It is assumed that during the fast time scale of 50 cycles, the
system remains in a stationary condition and no major changes
occur in the fatigue crack behaviour. These sets of time series
data points collected at different slow time epochs have been
analysed using the STSA method to calculate the anomaly
measures at those slow time epochs.

The nominal condition at the slow time epoch t0 is chosen
to be ∼0.5 kilocycles to ensure that the electro-hydraulic
system of the test apparatus has come to a steady state,
and it is assumed that no significant damage occurs till that
point. This nominal condition is chosen as a benchmark where
the anomaly measure is chosen to be zero. The anomalies
at subsequent slow time epochs, t1, t2, . . . , tk, . . . , are then
calculated using the procedure summarized in section 2.6.
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Figure 5. Profiles of anomaly measures exhibiting evolving fatigue damage obtained by symbolic time series analysis of ultrasonic data for
two experiments. Left plate: constant loading and right plate: block loading.

Any particular value of the anomaly measure greater than zero
indicates that the tip of the probability vector has moved along
a path starting from the nominal condition which signifies that
changes have occurred inside the specimen. It is emphasized
that the anomaly measure is relative to the nominal condition
which is fixed in advance and should not be confused with the
actual damage at an absolute level. However, inferring fatigue
damage from the observed anomaly measure is an inverse
problem that is a topic of future research.

The alphabet size for partitioning has been chosen to be
|�| = 8 while the wavelet basis is chosen to be ‘gaus2’ [35]
(see section 2). Absolute values of the wavelet scale series
data have been used to generate the partition because of the
symmetry of the data sets about their mean. Increasing the
alphabet size |�| does not improve the results and creates a
large number of states, many of them having very small or
zero probabilities. This algorithm enables detection of crack
initiation with only eight states and is computationally very
fast in the sense that the code execution time is several orders
of magnitude smaller than the process response time. The
wavelet basis, ‘gaus2’, provides better results than the wavelet
bases of the Daubechies family [29] because the ‘gaus2’
wavelet basis closely matches the shape of the sinusoidal
ultrasonic signals.

Figure 5 exhibits the plots of anomaly measures obtained
by symbolic time series analysis of ultrasonic data for two
loading conditions: (a) constant loading and (b) block loading.
The left plate of figure 5 shows the fatigue damage evolution
under constant amplitude loading. The first appearance of
a surface crack as observed by the microscope occurred at
∼15.4 kilocycles which is indicated by the vertical dashed line.
The region towards the right of this vertical line is described
as the crack propagation phase and the region towards the left
is described as the crack initiation phase. During the crack
initiation phase, multiple small cracks coalesce together to
form a single large crack. It is observed from the plot that the
slope of anomaly measure changes sharply during the end of
crack initiation phase which indicates the transition from crack
initiation to crack propagation. This occurs approximately
upon appearance of a surface crack. An abrupt increase in
the slope (i.e. a sharp rise in the curvature) of the anomaly
measure profile provides a clear insight into a forthcoming
failure. In the crack propagation region, the growth of fatigue

damage takes place significantly faster than the crack initiation
as shown by the slope of the anomaly measure. After a
sufficiently large crack has developed, the ultrasonic signals
attenuate completely leading to a complete failure. However,
the crack initiation region towards the left of the vertical line
is of significant importance because the microscope is unable
to show any sign of damage during this phase.

The right plate of figure 5 shows the fatigue damage
evolution under block loading. Five different blocks are shown
in the figure, each with different amplitude sinusoidal loading
as described in table 1. The first appearance of a surface crack
as observed by the microscope occurred at ∼45.1 kilocycles
which is indicated by the vertical dashed line. The crack
appeared on the surface when it was ∼200 µm long. The crack
length reached ∼500 µm at ∼46.9 kilocycles when the loading
was shifted from that of block B0 to block B1. Thereafter, each
block was shifted after a period of 10 000 cycles. The load
is reduced from 81.0 MPa to 67.0 MPa after a 500 µm long
crack developed. In the region of block B1, the slope of the
anomaly measure indicated a small drop for a few cycles, but
then it went up high because the specimen is already in the
crack propagation phase. As the load is further reduced to
50.0 MPa during block B2, the slope of the anomaly measure
dropped as compared to that in block B1 indicating the
slowing down of the crack propagation. Further reduction
of the load to 39.8 MPa during block B3 again decreased
the anomaly measure slope indicating further slow down
of fatigue crack growth. Finally, the load was increased
to 74.1 MPa during block B4 which caused an increase in
the anomaly measure and a rapid growth of fatigue crack
till failure. These observations indicate that the ultrasonic
signals are able to capture different growth rates of fatigue
damage under different loading conditions. As similar to a
constant amplitude loading case, there is significant rise of
the anomaly measure during crack initiation region towards
the left of the vertical dashed line. This shows that the
subsurface microstructural changes that occur before the onset
of widespread fatigue crack propagation are captured by the
ultrasonic signals.

The two plates in figure 5 show a relatively large slope
of anomaly measure from the start of cyclic loading to ∼3–5
kilocycles. This is the stage where microstructural damage
(e.g., due to dislocation movements and accumulation, and
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persistent slip band formation) induces hardening of the
strained components [33]. The ultrasonic impedance changes
sharply due to these deformities causing a sharp rise of the
slope of the anomaly measure in the very early cycles. After
these initial effects subside, a modest reduction of the slope
takes place for the remaining part of the crack initiation phase.
Similar phenomena have been reported by Berkovits and Fang
[36] in acoustic emission experiments on smooth specimens
of Incoloy 901 at room temperature. Further experiments
and microstructural analysis are necessary to confirm these
findings.

5. Conclusions and future work

This paper validates a novel tool of real-time anomaly
detection, which relies on symbolic time series analysis
(STSA) of measured variables and is built upon the
principles of symbolic dynamics, information theory and
automata theory. Efficacy of the anomaly detection tool
has been demonstrated by experimental validation on a
laboratory apparatus for monitoring fatigue damage in 7075-
T6 aluminium alloy compact specimens under constant
amplitude and block loading. Time series analysis of
ultrasonic sensor signals is capable of detecting early growth
of fatigue damage significantly before the onset of large crack
propagation, as seen by an optical microscope.

The anomaly measure is computed in real time, which is
an indication of microstructural changes occurring inside the
material. The exact correlation between actual damage and
ultrasonic measurement is not provided in this paper and is an
area of future work. Potential scope areas of future research
are summarized below.

• Validation of the STSA technique for early detection of
fatigue damage under spectral loading.

• Statistical analysis of time series data of fatigue damage,
collected under identical loading and environmental
conditions, to account for manufacturing and material
uncertainties.

• Interpretation of phase changes in the fatigue damage
evolution analogous to those in statistical mechanics.

• Development of real-time life extending and damage
mitigating control laws based on the damage information
generated by STSA.
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Appendix. Symbolic dynamics, encoding and state
machine construction

This appendix briefly describes the concepts of symbolic
dynamics, encoding nonlinear system dynamics from observed
time series data, and state machine construction. It also
presents a procedure for online computation of the machine
state probability vectors that are representatives of the evolving
fatigue damage.

Figure 6. Partitioning, symbol generation and machine
construction.

Let a continuously varying physical process be modelled
as a finite-dimensional dynamical system in the setting of an
initial value problem:

dx(t)

dt
= f (x(t), θ(ts); x(0) = x0, (A.1)

where t ∈ [0,∞) denotes the (fast-scale) time, x ∈ R
n is the

state vector in the phase space and θ ∈ R

 is the (possibly

anomalous) parameter vector varying in (slow-scale) time ts .
A tool for behaviour description of nonlinear dynamical

systems is based on the concept of formal languages for
transitions from smooth dynamics to a discrete symbolic
description [19]. The phase space of the dynamical system
in equation (A.1) is partitioned into a finite number of cells,
so as to obtain a coordinate grid of the space. A compact
(i.e. closed and bounded) region � ∈ R

n, within which the
(stationary) motion under the specific exogenous stimulus is
circumscribed, is identified. Encoding of � is accomplished
by introducing a partition � ≡ {�1, . . . , �m} consisting of m
mutually exclusive (i.e. �j ∩ �k = ∅ ∀j 
= k) and exhaustive
(i.e.

⋃m
j=1 �j = �) cells. The dynamical system describes an

orbit by the time series data as O ≡ {x0, x1, . . . , xk, . . .}, xi ∈
�, which passes through or touches the cells of the
partition �.

Let the cell, visited by the trajectory at a time instant,
be denoted as a random variable S that takes a symbol value
s ∈ �. The set � of m distinct symbols that label the partition
elements is called the symbol alphabet. Each initial state
x0 ∈ � generates a sequence of symbols defined by a mapping
from the phase space into the symbol space as

x0 → si0si1si2 . . . sik . . . . (A.2)

The mapping in equation (A.2) is called symbolic
dynamics as it attributes a legal (i.e. physically admissible)
symbol sequence to the system dynamics starting from an
initial state. (Note that a symbol alphabet � is called a
generating partition of the phase space � if every legal symbol
sequence uniquely determines a specific initial condition x0,
i.e. every symbolic orbit uniquely identifies one continuous
space orbit.) Figure 6 pictorially elucidates the concepts of
partitioning a finite region of the phase space and mapping
from the partitioned space into the symbol alphabet. This
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Figure 7. Finite state automaton with D = 2 and � = {0, 1}.

represents a spatial and temporal discretization of the system
dynamics defined by the trajectories. Figure 6 also shows the
conversion of the symbol sequence into a finite-state machine
as explained in later sections.

Symbolic dynamics can be viewed as coarse graining
of the phase space, which is subjected to (possible)
loss of information resulting from granular imprecision of
partitioning boxes. However, the essential robust features
(e.g., periodicity and chaotic behaviour of an orbit) are
expected to be preserved in the symbol sequences through
an appropriate partitioning of the phase space [19]. Although
the theory of phase-space partitioning is well developed for
one-dimensional mappings, very few results are known for
two- and higher-dimensional systems [31].

Sole usage of the model in equation (A.1) may not always
be feasible due to unknown parametric and non-parametric
uncertainties and noise. A convenient way of learning the
dynamical behaviour is to rely on the additional information
provided by (sensor-based) time series data [10, 31].

A.1. State machine construction

The partitioning (see figure 6) is performed at the slow
time epoch t0 of the nominal condition that is chosen to be
the healthy state having zero anomaly measure. A finite
state machine is then constructed, where the states of the
machine are defined corresponding to a given alphabet set
� and window length D. The alphabet size |�| is the total
number of partition segments while the window length D is
the length of consecutive symbol words [21], which are chosen
as all possible words of length D from the symbol sequence.
Each state belongs to an equivalence class of symbol words
of length D or more, which is characterized by a word of
length D at the leading edge. Therefore, the number n of
such equivalence classes (i.e. states) is less than or equal to
the total permutations of the alphabet symbols within words
of length D. That is, n � |�|D; some of the states may be
forbidden with zero probability of occurrence. For example,
if � = {0, 1}, i.e. |�| = 2 and if D = 2, then the number of
states is n � |�|D = 4 and the possible states are 00, 01, 10
and 11, as shown in figure 7.

The choice of |�| and D depends on specific experiments,
noise level and also the available computation power. A large
alphabet may be noise-sensitive while a small alphabet could
miss the details of signal dynamics [24]. Similarly, while
a larger value of D is more sensitive to signal distortion,
it would create a much larger number of states requiring
more computation power. In this paper, the window length
is set to D = 1; consequently, the set of states Q is
equivalent to the symbol alphabet �. Therefore, selection

of the parameters D = 1 and |�| = 8 leads to a finite state
machine with eight states, which is very fast in computation
and is also capable of early detection of anomalies. However,
other applications, such as two-dimensional image processing,
may require larger values of the parameter D. Using the
symbol sequence generated from the time series data, the
state machine is constructed on the principle of sliding block
codes [18]. The window of length D on the symbol sequence
. . . σi1σi2 . . . σik . . . is shifted to the right by one symbol, such
that it retains the last (D-1) symbols of the previous state and
appends it with the new symbol σi
 at the end. The symbolic
permutation in the current window gives rise to a new state.
The machine constructed in this fashion is called the D-Markov
machine [21] because of its Markov properties.

Definition A.1. A symbolic stationary process is called D-
Markov if the probability of the next symbol depends only on
the previous D symbols, i.e. P

(
σi0

∣∣σi−1 . . . σi−D
σi−D−1 . . .

) =
P

(
σi0

∣∣σi−1 . . . σi−D

)
.

The finite state machine constructed above has D-Markov
properties because the probability of occurrence of the symbol
σi
 on a particular state depends only on the configuration of
that state, i.e. the previous D symbols. Once the alphabet
size |�| and word length D are determined under the nominal
condition (i.e. time epoch t0), they are kept constant for all
slow time epochs {t1, t2, . . . , tk, . . .} (see section 2.2). That
is, the partitioning and the state machine structure generated
under the nominal condition serve as the reference frame for
data analysis at subsequent slow time epochs.

The states of the machine are marked with the
corresponding symbolic word permutation and the edges
joining the states indicate the occurrence of a symbol σi
 .
The occurrence of a symbol at a state may keep the machine
in the same state or move it to a new state.

On a given symbol sequence . . . σi1σi2 . . . σil . . . generated
from the time series data collected at a slow time epoch,
a window of length D is moved by keeping a count of
occurrences of word sequences σi1 · · · σiDσiD+1 and σi1 · · · σiD

which are respectively denoted by N
(
σi1 · · · σiDσiD+1

)
and

N
(
σi1 · · · σiD

)
. Note that if N

(
σi1 · · · σiD

) = 0, then the
state q ≡ σi1 · · · σiD ∈ Q has zero probability of occurrence.
For N

(
σi1 · · · σiD

) 
= 0, the transitions probabilities are then
obtained by these frequency counts as follows:

πjk ≡ P(qk|qj ) = P(qk, qj )

P (qj )
= P

(
σi1 · · · σiDσ

)
P

(
σi1 · · · σiD

)
⇒ πjk ≈ N

(
σi1 · · · σiDσ

)
N

(
σi1 · · · σiD

) (A.3)

where the corresponding states are denoted by qj ≡
σi1σi2 · · · σiD and qk ≡ σi2 · · · σiDσ .

A.2. Stopping rule for determining symbol sequence length

This section presents a stopping rule that is necessary to
find a lower bound on the length of the symbol sequence
required for parameter identification of the stochastic matrix
Π. The stopping rule [37] is based on the properties of
irreducible stochastic matrices [38]. The state transition matrix
is constructed at the rth iteration (i.e. from a symbol sequence
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of length r) as Π(r) that is an n × n irreducible stochastic
matrix under stationary conditions. Similarly, the state
probability vector p(r) ≡ [p1(r)p2(r) . . . pn(r)] is obtained
as

pi(r) = ri∑n
j=1 ri

, (A.4)

where ri is the number of symbols in the ith state such
that

∑n
i=1 ri = r for a symbol sequence of length r. The

stopping rule makes use of the Perron–Frobenius theorem [38]
to establish a relation between the vector p(r) and the matrix
Π(r). Since the matrix Π(r) is stochastic and irreducible,
there exists a unique eigenvalue λ = 1 and a corresponding left
eigenvector p(r) (normalized to unity in the sense of absolute
sum). The left eigenvector p(r) represents the state probability
vector, provided that the matrix parameters have converged
after a sufficiently large number of iterations. That is,

p(r) = p(r)Π(r) as r → ∞ (A.5)

Following equation (A.4), the absolute error between
successive iterations is obtained such that

‖(p(r) − p(r + 1))‖∞ = ‖p(r)(I − Π(r))‖∞ � 1

r
, (A.6)

where ‖•‖∞ is the max norm of the finite-dimensional
vector •.

To calculate the stopping point rstop, a tolerance of η

(0 < η � 1) is specified for the relative error such that

‖(p(r) − p(r + 1))‖∞
‖(p(r))‖∞

� η ∀r � rstop. (A.7)

The objective is to obtain the least conservative estimate
for rstop such that the dominant elements of the probability
vector have smaller relative errors than the remaining elements.
Since the minimum possible value of ‖(p(r))‖∞ for all r is 1

n
,

where n is the dimension of p(r), the best worst case value of
the stopping point is obtained from equations (A.6) and (A.7)
as

rstop ≡ int

(
n

η

)
, (A.8)

where int(•) is the integer part of the real number •.
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