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Abstract: This paper presents symbolic time series analysis of observable process variables
for anomaly detection in thermal pulse combustors. The anomaly detection method has
been tested on the time series data of pressure oscillations, generated from a non-linear
dynamic model of a generic thermal pulse combustor. Results are presented to exemplify early
detection of combustion instability due to reduction of friction coefficient in the tailpipe, which
eventually leads to flame extinction.
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1 INTRODUCTION patterns in pulse combustors owing to the gradual
reduction in the friction coefficient in the tailpipe.
The rationale for selecting the tailpipe frictionThermal pulse combustors are known to have a

significantly higher thermal efficiency, higher heat coefficient as a parameter for anomaly detection
[4, 8] is summarized as follows.transfer rate, and lower pollutant emission than

steady flow combustors. As a result of strong coupling
1. The combustor performance is strongly influenced

between thermofluid dynamics in the combustor and
by the tailpipe drag force which is expressed in

the tailpipe, pulse combustors are often subjected to
terms of the friction coefficient in the present low-

self-sustained pressure oscillations [1]. Knowledge of
dimensional model [1]. Variations in the drag

the non-linear dynamics of the underlying process
force may result from gradual changes in com-

is essential for prediction of potential instabilities in
bustor flow conditions as well as from wear and

combustors [2]. From this perspective, the non-linear
corrosion upon prolonged operation.

dynamics of pulse combustors have been investi-
2. Small changes in the friction coefficient are

gated both analytically and experimentally by several
difficult to detect at early stages but can be

researchers [3, 4].
estimated by observing the effects of its changes

Gradual occurrence of parametric and non-
on the system response (e.g. pressure oscillations).

parametric changes in the combustion process may
3. Early detection of changes in the tailpipe friction

cause unpredictable anomalies (i.e. deviations from
coefficient potentially facilitates synthesis of real-

the nominal behaviour) and thereby lead to signifi-
time control strategies for life-extending control

cant degradation in the combustor performance over
and damage mitigation [5, 9, 10].

time [5]. The resulting evolution of anomalies is often
4. Changes in other parameters (e.g. wall tem-

very difficult to detect from measurements of the
perature) produce transitions of combustion

process variables unless the embedded statistical
characteristics that are similar to that observed

information is extracted via analytical tools of signal
owing to changes in the friction coefficient [11].

processing and pattern identification [6, 7]. Time
Hence, the conclusions of this investigation can

series analysis of measured variables (e.g. combustor
be generalized and extended to other anomalies

pressure) can be used for identification of behaviour
also.
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friction coefficient. The time series data of com- schematic diagram of the combustor consisting of
the combustion zone and the tailpipe. The com-bustor pressure oscillations are processed and
bustor model largely characterizes self-sustainedsubsequently converted from the domain of real
pressure oscillations that accrue from the strongnumbers into the domain of (discrete) symbols.
coupling between combustion dynamics and gasThe resulting symbol sequence is a transform of the
flow in the tailpipe. The mechanism driving theseoriginal time series sequence such that the loss of
oscillations is briefly described below.information is minimized in the sense of maximized

Following the initial transients, both the pressureentropy. Then, tools of computational mechanics
and the temperature start to increase within the[12, 13] are used to find patterns in the symbolic
combustor, accompanied by a decrease in the fuelsequences through construction of a finite state
mass fraction. The increased pressure leads to anmachine [13].
enhanced rate of mass efflux into the tailpipe. As theSymbolic time series analysis (STSA) for anomaly
outflow rate exceeds the inflow rate, the combustordetection is an information-theoretical pattern identi-
pressure starts to drop. Similarly, increased gasfication tool that is built upon a fixed-structure
temperature enhances the reaction rate, causing aMarkov chain, called the D-Markov machine [13].
reduction in the fuel mass fraction. This phenomenonRecent literature [14, 15] has reported experimental
reduces the reaction rate, with consequent decreasesvalidation of STSA-based pattern identification by
in gas temperature and pressure. As the combustorcomparison with other existing techniques such as
pressure falls below the tailpipe pressure, flowprincipal component analysis (PCA) and artificial
reversal takes place. Meanwhile, the fuel concen-neural networks (ANNs); STSA has been shown
tration builds up owing to continuous inflow of theto yield superior performance in terms of early
reacting mixture and reduced rate of fuel consump-detection of anomalies, robustness to noise, and
tion due to lower temperature. The fuel build-upreal-time execution in different applications such
resumes a vigorous chemical reaction, leading toas electronic circuits, electric motors, and fatigue
repetition of the above cycle.damage in polycrystalline alloys.

The drag force is represented in the present modelThe paper is organized in five sections including
by the tailpipe friction coefficient [10]. The frictionthe present section. Section 2 describes the simu-
coefficient has also been used as a parameter forlation model of the combustion process in a generic
controlling chaos [5]. In this paper, the tailpipethermal pulse combustor [1]. Section 3 describes the
friction coefficient is assumed to decrease owing

underlying concepts and essential features of STSA
to wear, fatigue, and corrosion in the mechanical

for anomaly detection [13]. Section 4 presents the
structure of the tailpipe (see section 1); consequently,

results of STSA-based anomaly detection. The paper
the flow conditions are altered. The details of the

is summarized and concluded in section 5.
friction coefficient computation are not presented in
this paper.

Since the focus of the paper is to demonstrate an
2 DESCRIPTION OF COMBUSTOR MODELLING application of STSA to detect small changes in the

critical system parameter(s) in thermal pulse com-
This section presents a non-linear dynamic model bustors, a low-dimensional model that has been
of a generic thermal pulse combustor, originally shown to capture the essential dynamics of the

system [1, 5, 10] has been adopted.formulated by Richards et al. [1]. Figure 1 shows a

Fig. 1 Schematic diagram of a generic thermal pulse combustor with specified inlet and tailpipe
parameters
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The major assumptions in the development of the where B is a kinetic constant, T
a

is the activation
temperature, and n

0
is the stoichiometric oxygen–fuelpulse combustor model are as follows:

ratio by mass [1]. As such, equations (2) and (6) yield(a) perfect mixing and macroscopic homogeneity in
the chemical reaction timethe combustor;

(b) constant specific heat and ideal gas properties
tc=CB∞Dhc

C
p
T
0

P̃2

T̃ 3/2
Y 2f expA− T̃a

T̃ BD−1 (7)for the reactants and the products of combustion;
(c) slug flow in the tailpipe;

where the constant terms are merged into B∞. An(d) single-step Arrhenius model for chemical kinetics;
expression for Z

e
, which is needed to close the(e) convective heat transfer from gas to the com-

system of equations, is obtained from conservationbustor wall.
of mass within the tailpipe as

With these assumptions, the non-linear dynamic
model is described in terms of four first-order

Ze=r0
ũ

tf

P̃e
T̃e

(8)
coupled differential equations, resulting in four
dimensionless state variables: temperature T̃, pressure

Finally, flow in the nozzle connecting the com-P̃, fuel mass fraction Y
f
, and exit velocity ũ. While a

bustor and the tailpipe is assumed to be isentropic,detailed derivation of the model equations has been
owing to the short length of this section, althoughreported in reference [1], the governing equations are
irreversibilities are present in both the combustorsummarized below.
and the tailpipe. Thus, the pressure and temperatureLumped representation of conservation of energy
in the tailpipe are related to the combustor variablesin the reactor yields
through isentropic relations as

dT̃

dt
=
cT̃

P̃ A 1tf+ 1

th
+

1

tcB T̃e=T̃−
ũ2L2c2

2C
p
T
0
t2f

, P̃e=P̃AT̃eT̃ Bc/(c−1) (9)

The pulse combustor model follows the type and−
T̃ 2

P̃ C 1tf+ (c−1)Ze
r
0

+
c

T̃wthD (1)
geometry reported in reference [1]; the kinetic
parameters are listed in Table 1. Propane is used asThe characteristic time parameters, flow time t

f
, heat

the fuel stoichiometrically mixed with air. To initiatetransfer time t
h

, and chemical reaction time t
c
, are

the reaction, the initial temperature is raised to fivedefined as
times the ambient temperature. The choice of the
initial time step affects only the initial transients thattf=

r
0

Zi
, th=

Lc1r0Cp
hT̃w

, tc=
r
0
C
p
T
0

ṘfDhc
(2)

last for a period t∏0.2 s. The anomaly detection
analysis, presented in this paper, is based on timeCombining equation (1) with conservation of mass
series data in the range of 1.0 s∏t∏1.2 s. Theyields the pressure dynamics as
dynamic characteristics of all the state variables,
i.e. temperature, pressure, fuel mass fraction, and exitdP̃

dt
=cA 1tf+ 1

th
+

1

tcB−cT̃ AZer0+ 1

T̃wthB (3)
velocity, are similar. However, for data acquisition in
the experimental environment, the measurementConservation of fuel mass yields the dynamics of
devices (i.e. sensors and ancillary equipments) mustfuel mass fraction as
be tolerant of high temperatures and have very small
response times. Therefore, temperature and fueldYf

dt
=

T̃

P̃

1

tf
(Yfi−Yf)−

C
p
T
0

Dhc

T̃

P̃A 1tcB (4)
mass fraction measurements are not considered for

Finally, momentum balance yields the gas velocity
Table 1 Model parameters

dynamics in the tailpipe as
Parameter Value Parameter Valuedũ

dt
=

RT
0
tf

Lc2L tp

T̃e
P̃e

(P̃e−1)−
f |ũ|ũLc2
2Dtptf

(5)
A

s
0.0167 m2 h 120 W/m2 K

V 1.985×10−4 m3 P
0

1×105 Pa
B∞ 3.85×108 T

a
50 KThe combustion time t

c
is calculated on the

C
p

1200 J/kg K T
0

300 Kbasis of single-step global Arrhenius kinetics for D
tp

0.0178 m T
w

1000 K
stoichiometric mixtures at the inlet such that L

c1
0.0119 m c 1.27

L
c2

0.7434 m r
0

1.12 kg/m3

L
tp

0.61 m t
f

0.027 s
Ṙf=−Bn

0
T 1/2r2Y 2f expA−Ta

T B (6) Y
fi

0.06 Dh
c

4.6×107 J/kg
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analysis as the corresponding sensors may not combustion dynamics, takes place on the slow
timescale (possibly of the order of months) andsurvive in the harsh environment of the combustion
is essentially invariant on the fast time scalechamber and/or may suffer from relatively slow
(approximately of the order of seconds orresponse. Hence, the time series data of combustor
minutes).pressure have been used in this paper for anomaly

detection. Nevertheless, the notion of fast and slow time-
The governing equations are solved as a system of scales is dependent on the specific application,

coupled non-linear ordinary differential equations exogenous excitation, and operating environment. As
using the library function ODE45 of the commercial such, from the perspective of combustion stability
package MATLAB. This function uses a fourth-order monitoring, sensor data acquisition is carried out on
variable-step Runge–Kutta method. The data sampling the fast timescale at different slow time epochs.
rate is about 0.1 MHz. Thus, the generated data set Further details are presented in section 4.
is sufficiently large for post-processing analysis.

3.1 Transformation from continuous to symbolic
domain

A time series data sequence is converted to a symbol3 SYMBOLIC TIME SERIES ANALYSIS
sequence by partitioning a compact region V of the
phase space, over which the trajectory evolves, intoThis section presents the underlying concepts and
finitely many discrete blocks as seen in Fig. 2. Letessential features of STSA [16] for anomaly detection
{W

1
, W

2
, … , W

m
} be a partitioning of V, such that itin complex dynamic systems. While the details have

is exhaustive and mutually exclusive, and thusbeen reported in previous publications [13, 17], the
key features of STSA are succinctly described below

p
m

j=1
W
j
=V, W

j
o W

k
=B Yj≠k (10)for clarity and completeness.

The sampling frequency for data acquisition is
Each block W

j
is labelled as a symbol s

j
µS,required to be at least twice the highest frequency

where the symbol set S is called the alphabetof the process response, while the evolution of
consisting of m different symbols (i.e. m=|S|). Asanomalies (e.g. reduction in the tailpipe friction
the system evolves in time, the trajectory travelscoefficient) occurs gradually over a much longer time
through various blocks in its phase space and theperiod compared with the process response time.
corresponding symbol s

j
µS is assigned to it,Therefore, the anomaly monitoring and detection

thus converting the time series data sequenceprocess is formulated as a two-time scale problem.
to a symbol sequence , s

i
i

s
i
2

, s
i
k

, . Thus, the
symbol sequences represent coarse graining of the1. The fast timescale is related to the response time
trajectories’ time evolution [18]. Once the symbolof thermo-acoustics (i.e. pressure oscillations).
sequence is obtained, the next step is the con-Over the span of a given time series data
struction of the finite state machine (see section 3.3)sequence, the combustion dynamics essentially
and calculation of the state visit frequencies toremain invariant, i.e. the process is assumed to
generate the state probability vector as depicted inexhibit stationary dynamics on the fast timescale.
Fig. 2 by the histograms. The comparison of theseIn other words, the variations in the statistical
state probability vectors at different time epochsbehavior of combustion dynamics are negligible
from the nominal condition determines the changeson the fast timescale.
in the patterns of system dynamics on the slow2. The slow timescale is related to the time span over
timescale.which the process may exhibit non-stationary

behaviour (e.g. owing to gradual evolution of
3.2 Wavelet-based partitioning for symbolwear, fatigue, and corrosion in the mechanical

generationstructures). In other words, an observable non-
stationary behaviour can be associated with A crucial step in STSA is partitioning of the phase
anomalies evolving on the slow timescale. In space for symbol sequence generation [16]. Several
general, a long time span on the fast timescale is partitioning techniques have been reported in
a tiny (i.e. many orders of magnitude smaller) literature for symbol generation [6, 19, 20], primarily
interval on the slow timescale. For example, based on symbolic false neighbours. These techniques
evolution of reduction in the tailpipe friction rely on partitioning the phase space and may

become cumbersome and extremely computationcoefficient, causing a detectable change in the
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Fig. 2 Example of space partitioning

intensive if the dimension of the phase space is
large. Moreover, if the time series data are noise
corrupted, then the symbolic false neighbours would
rapidly grow in number and require a large symbol
alphabet to capture the pertinent information on the
system dynamics. Therefore, symbolic sequences as
representations of the system dynamics should be
generated by alternative methods because phase-
space partitioning might prove to be a difficult task
for systems of high dimensions and in the presence
of noise. The wavelet transform [21] largely alleviates
these shortcomings and is particularly effective
with noisy data from high-dimensional dynamic
systems [17, 22].

This paper has adopted a wavelet-based partition- Fig. 3 Wavelet-space maximum-entropy partitioning
ing approach [13] for construction of symbol
sequences from time series data. In this method, the
time series data are first converted to the wavelet sparse information are partitioned coarsely. This is
domain, where wavelet coefficients are generated achieved by maximizing the Shannon entropy [23],
on different scales and at various time shifts. which is defined as
These coefficients are stacked at selected time-shift
positions, starting with the smallest value of the scale S=− ∑

|S|

i=1
p
i
log( p

i
) (11)

and ending with its largest value and then back from
the largest value to the smallest value of the scale at where p

i
is the probability of the ith state and the

summation is taken over all possible states. Thethe next instant of time shift.
The above one-dimensional array of rearranged uniform probability distribution of states is a con-

sequence of maximum entropy that makes thewavelet coefficients is termed as the scale series data,
which are structurally similar to time series data. The partition coarser in regions of low data density and

finer in regions of high data density. Figure 3 showsdata sequence is partitioned into |S| segments of
wavelet coefficients on the ordinate separated by an example of the maximum-entropy partitioning in

the wavelet space for alphabet size |S|=8, where thehorizontal lines, as seen in Fig. 3. The partitioning
is carried out such that the regions with more partition segments are indicated by symbols ranging

from 0 to 7.information are partitioned finely and those with
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Once the partitioning has been made with requiring more computation power. In this paper, the
parameters are chosen as D=1 and |S|=8, leadingalphabet size |S| at the nominal condition (time

epoch t
0
), it is kept constant for all (slow time) epochs to a finite state machine with eight states, which is

very fast in computation and is also capable of early{t
1
, t

2
, … , t

k
, … }, i.e. the structure of the partition is

fixed at the nominal condition. In other words, the detection of anomalies (e.g. changes in the tailpipe
friction coefficient). Using the symbol sequencepartitioning structure generated at the nominal con-

dition serves as the reference frame for data analysis generated from the time series data, the state
machine is constructed on the principle of slidingat subsequent slow time epochs.
block codes [24], as explained below.

The window of length D in the symbol sequence3.3 State machine construction
, s

i
1

s
i
2

, s
i
k

, is shifted to the right by one
The partitioning as described in the previous section

symbol, such that it retains the last D−1 symbols of
is performed at the slow time epoch t

0
of the nominal

the previous state and appends it with the new
condition, which is chosen to be the healthy state

symbol s
i
l

at the end. The symbolic permutation in
having zero anomaly measure. A finite state machine

the current window gives rise to a new state. The
is then constructed, where the states of the machine

machine constructed in this fashion is called the
are defined corresponding to a given alphabet set S

D-Markov machine [13], because of its Markov
and window length D. The alphabet size |S| is the

properties.
total number of partition segments while the window
length D is the length of consecutive symbol Definition 1
words [13], which are chosen as all possible words

A symbolic stationary process is called D-Markov ifof length D from the symbol sequence. Each state
the probability of the next symbol depends only onbelongs to an equivalence class of symbol words of
the previous D symbols, i.e.length D or more, which is characterized by a word

of length D at the leading edge. Therefore, the P(s
i
0

|s
i
−1

, s
i
−D

s
i
−D−1

,)=P(s
i
0

|s
i
−1

, s
i
−D

)
number n of such equivalence classes (i.e. states) is

The finite state machine constructed aboveless than or equal to the total permutations of the
has D-Markov properties because the probabilityalphabet symbols within words of length D, i.e.
of occurrence of symbol s

i
l

on a particular staten∏|S|D ; some of the states may be forbidden
depends only on the configuration of that state,with zero probability of occurrence. For example, if
i.e. the previous D symbols. Once the alphabetS={0, 1}, i.e. |S|=2, and if D=2, then the number
size |S| and word length D are determined at theof states is n∏|S|D=4, and the possible states are
nominal condition (i.e. time epoch t

0
), they are kept00, 01, 10, and 11, as shown in Fig. 4.

constant for all slow time epochs {t
1
, t

2
, … , t

k
, …}The choice of |S| and D depends on specific

(see section 3.2). That is, the partitioning and theexperiments, noise level, and also the available
state machine structure generated at the nominalcomputation power. A large alphabet may be noise
condition serve as the reference frame for datasensitive while a small alphabet could miss the
analysis at subsequent slow time epochs.details of signal dynamics [17]. Similarly, while a

The states of the machine are marked by the corre-larger value of D is more sensitive to signal distortion,
sponding symbolic word permutation and the edgesit would create a much larger number of states,
joining the states indicate the occurrence of a
symbol s

i
l

. The occurrence of a symbol at a state may
keep the machine in the same state or move it to a
new state. For D=1, the set of states bears a bijective
relation to the alphabet S of symbols.

Definition 2

The probability of transitions from state q
j

to state q
k

belonging to the set Q of states under a transition
d : Q×S�Q is defined as

p
jk
=P(sµS|d(q

j
, s)� q

k
), ∑

k
p
jk
=1 (12)

Thus, for a D-Markov machine, the irreducible
Fig. 4 Finite state automaton with D=2 and S={0, 1} stochastic matrix [25] P¬[p

ij
] describes all transition
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probabilities between states such that it has at most length r. The stopping rule makes use of the Perron–
Frobenius theorem [25] to establish a relation|S|D+1 non-zero entries. The left eigenvector p corre-

sponding to the unit eigenvalue of P is the state between the vector p(r) and the matrix P(r). Since
the matrix P(r) is stochastic and irreducible, thereprobability vector under the (fast time scale) station-

ary condition of the dynamic system [13]. On a given exists a unique eigenvalue l=1 and the correspond-
ing left eigenvector p(r) (normalized to unity in thesymbol sequence , s

i
1

s
i
2

, s
i
l

, generated from
the time series data collected at a slow time epoch, sense of absolute sum). The left eigenvector p(r)

represents the state probability vector, provided thata window of length D is moved by keeping a count
of occurrences of word sequences s

i
1

, s
i
D

s
i
D+1

and the matrix parameters have converged after a
sufficiently large number of iterations. That iss

i
1

, s
i
D

, which are denoted by N(s
i
1

, s
i
D

s
i
D+1

) and
N(s

i
1

,s
i
D

) respectively. Note that, if N(s
i
1

,s
i
D

)=0,
p(r)=p(r)P(r) as r�2 (15)

then the state q¬s
i
1

, s
i
D

µQ has zero probability
Following equation (14), the absolute errorof occurrence. For N(s

i
1

, s
i
D

)≠0, the transitions
between successive iterations is obtained such thatprobabilities are then obtained by these frequency

counts as
d(p(r)−p(r+1))d

2
=dp(r)(I−P(r))d

2
∏

1

r
(16)

p
jk
¬P(q

k
|q
j
)=

P(q
k
, q
j
)

P(q
j
)
=

P(s
i
1

, s
i
D

s)

P(s
i
1

, s
i
D

) where dΩd
2

is the max norm of the finite-
dimensional vector Ω.

[p
jk
#

N(s
i
1

, s
i
D

s)

N(s
i
1

, s
i
D

)
(13) To calculate the stopping point r

stop
, a tolerance of

g(0<g∏1) is specified for the relative error such that
where the corresponding states are denoted by
q

j
¬s

i
1

s
i
2

, s
i
D

and q
k
¬s

i
2

, s
i
D

s. The time series d(p(r)−p(r+1))d
2

d(p(r))d
2

∏g Yr�rstop (17)
data under the nominal condition (set as a bench-
mark) generates the state transition matrixP0 which, The objective is to obtain the least conservative
in turn, is used to obtain the state probability estimate for r

stop
such that the dominant elements of

vector p0 whose elements are the stationary prob- the probability vector have smaller relative errors
abilities of the state vector, where p0 is the left eigen- than the remaining elements. Since the minimum
vector of P0 corresponding to the (unique) unit possible value of d(p(r))d

2
for all r is 1/n, where n is

eigenvalue. Subsequently, state probability vectors the dimension of p(r), the best worst-case value of
p1, p2, … , pk, … are obtained at slow time epochs the stopping point is obtained from equations (16)
t

1
, t

2
, … , t

k
, … based on the respective time series and (17) as

data. As stated earlier, the machine structure and
partitioning are the same at all slow time epochs. rstop¬ intAngB (18)

3.4 Stopping rule for determining symbol where int(Ω) is the integer part of the real number Ω.
sequence length

3.5 Anomaly evolution and pattern identificationThis section presents a stopping rule that is necessary
to find a lower bound on the length of symbol Behavioural pattern changes may take place in
sequence required for parameter identification of the dynamic systems owing to accumulation of faults
stochastic matrix P. The stopping rule [26] is based and progression of anomalies. The pattern changes
on the properties of irreducible stochastic matrices are quantified as deviations from the nominal pattern
[25]. The state transition matrix is constructed at (i.e. the probability distribution at the nominal con-
the rth iteration (i.e. from a symbol sequence of dition). The resulting anomalies (i.e. deviations of the
length r) asP(r) that is an n×n irreducible stochastic evolving patterns from the nominal pattern) are
matrix under stationary conditions. The state characterized by a scalar-valued function, called the
probability vector p(r)¬[ p

1
(r) p

2
(r) , p

n
(r)] is anomaly measure y. The anomaly measures at slow

obtained as time epochs {t
1
, t

2
, …} are obtained as

yk¬d(pk, p0)p
i
(r)=

r
i

Wn
j=1

r
i

(14)

where d(Ω, Ω) is an appropriately defined distance
function. In this case, the distance function has beenwhere r

i
is the number of symbols in the ith

state such that Wn
i=1

r
i
=r for a symbol sequence of chosen to be the norm of the difference between
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the probability vector at slow time epoch t
0

and the 4 RESULTS OF STSA-BASED ANOMALY
DETECTIONprobability vector at the nominal condition so that

a possible choice for anomaly measure is
This section presents the results of anomaly detection
based on simulated time series data of pressureyk¬dpk−p0d

2
(19)

oscillations in the pulse combustor model at different
values of the tailpipe friction coefficient f , which iswhere dΩd

2
is the Euclidean norm of Ω.

assumed to be quasi-stationary on the fast timescaleThe major advantages of STSA for anomaly
but gradually changing on the slow timescale. Thedetection are as follows:
desired goal of the pulse combustor model is to attain
constant-amplitude self-sustained oscillations, which(a) robustness to measurement noise and spurious
is considered as the nominal behaviour [5].signals [17];

(b) adaptability to low-resolution sensing due to
coarse graining in space partitions [13]; 4.1 Simulation runs and STSA analysis

(c) capability for early detection of anomalies
The governing equations of the pulse combustorbecause of the sensitivity to signal distortion and
model are solved as a system of coupled non-linearreal-time execution on commercially available
ordinary differential equations (see section 2). Simu-inexpensive platforms [14, 15].
lation runs are conducted to generate time series
data of pressure oscillations during the period
1.0 s∏t∏1.2 s after the initial transients have died3.6 Summary of STSA anomaly detection
out such that the results are not sensitive to the

The STSA procedure of anomaly detection is choice of the initial conditions. The combustor
summarized as follows: pressure exhibits self-sustained oscillations at

f#0.0300, which is considered as the desired
nominal behaviour.(a) acquisition of time series data from appropriate

response variable(s) under the nominal con- The friction coefficient is monotonically decreased
by D f=0.0005 from the nominal value of f=0.0300dition at slow time epoch t

0
, when the system

is assumed to be in the healthy state (i.e. zero to represent a gradual reduction in the drag force at
consecutive slow time epochs. Thus, the timeanomaly measure);

(b) generation of the wavelet transform coefficients, series data profiles of pressure oscillations are
obtained from a family of simulation runs at differentobtained with an appropriate choice of the wave-

let basis [17, 22]; values of f ranging from 0.0300 down to 0.0235.
Each member of this family of time series data is(c) maximum entropy partitioning of the wavelet

space at the nominal condition (see section 3.2), analysed using the STSA-based anomaly detection
procedure as described in section 3 (in particular,and generation of the corresponding symbol

sequence (note that the partitioning is fixed for see section 3.6) to generate the corresponding state
probability vectors. Anomaly measures are thensubsequent time epochs);

(d) construction of the D-Markov machine states calculated following equation (19).
As stated earlier in section 3.3, the alphabet sizefrom the symbol alphabet size |S| and the

window length D, and generation of the state for partitioning and the window depth are chosen to
be |S|=8 and D=1 respectively (see sections 3.2probability vector p0 at time epoch t

0
;

(e) time series data acquisition at subsequent slow and 3.3). Further increase in the alphabet size |S| and
depth D creates a larger number of states, many oftime epochs, t

1
, t

2
, … , t

k
, … , and their con-

version to the wavelet domain to generate them having very small or zero probabilities with no
significant gain in performance.respective symbolic sequences based on the

partitioning at time epoch t
0
; The STSA algorithm allows detection of a small

reduction in f and is computationally very fast in(f) generation of the state probability vectors
p1, p2, … , pk, … at slow time epochs, t

1
, t

2
, … , the sense that the code execution time is insignificant

relative to the time interval between consecutivet
k
, … from the respective symbolic sequences

using the finite state machine constructed at slow time epochs. The wavelet basis for partitioning
is chosen to be gaus2 [27] (see section 3.2) whichtime epoch t

0
;

(g) computation of scalar anomaly measures provides better results than the wavelet bases of
the Daubechies family [21] because the gaus2y1, y2, … , yk, … at time epochs t

1
, t

2
, … , t

k
, … .
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wavelet base closely matches the shape of the at f#0.0300. Since these oscillations yield higher
rates of heat transfer and lower pollutant emissionpressure oscillations [17]. The length of each symbol
than steady combustion, f=0.0300 is considered tosequence used in this paper is 20 000, which satisfies
be a design parameter for the nominal operatingthe stopping rule in equation (18) for tolerance
condition. As f gradually decreases owing to changesg=4×10−4 and the number n of states equal to 8.
in the drag force and due to wear, fatigue and
corrosion in the mechanical structures of the tailpipe,4.2 Effect of friction coefficient on combustor
fluctuations in the pressure oscillation amplitudedynamics
start to evolve. This phenomenon is seen in the first

As seen in the upper left-hand plot of Fig. 5, the com- and third rows of plots in Fig. 5. The flame is seen to
be extinguished abruptly at f#0.0255, as seen inbustor pressure exhibits self-sustained oscillations

Fig. 5 Profiles of pressure oscillations and corresponding histograms of state probability
distribution
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the upper plot of the pair in Fig. 5(f). The rationale ( f=0.0300) when the anomaly measure is taken to
be zero, which is considered as the reference point.for these effects on the combustor dynamics due to

changes in friction coefficient f is briefly explained As seen in the plot, the combustor model yields
(nearly) constant-amplitude pressure oscillations.below [1].

It is evident from equation (5) that the role The uniform distribution is seen from the histogram
at the lower plot of the pair in Fig. 5(a), which hasof the friction coefficient f is to retard the gas

flow in the tailpipe in both the forward and the largest entropy [23], implying that the least
amount of statistical information on anomaliesthe reverse directions. For a high friction coefficient

(e.g. f>0.035), the gas flow is significantly slowed, and incipient faults can be extracted from the
corresponding time series data.which essentially damps out the oscillations. This

phenomenon reduces the temperature and hence the The pressure responses in the upper plots of the
pairs in both Fig. 5(b) and Fig. 5(c) obtained atamplitude of pressure oscillations, ultimately leading

to steady combustion [1]. As the friction coefficient f=0.0290 and f=0.0280 respectively show alternate
pulses with lower peak amplitudes. This phenomenondecreases to f=0.030, sustained oscillations at nearly

constant amplitude are observed. The state of is one of the possible routes to chaos [28]. Such
effects in thermal pulse combustors have also beenconstant-amplitude pressure oscillations, which is the

desired mode of operation in pulse combustors, is reported by Daw et al. [3] and In et al. [10]. The
corresponding lower plots exhibit deviations fromidentified as the nominal condition. Upon reduction

in the friction coefficient below the nominal value, the uniform probability distribution (see the lower
plot of the pair in Fig. 5(a)). This is evidence thati.e. f<0.030, the efflux of hot gases from the

combustion chamber increases. This phenomenon small changes in the values of friction coefficient are
reflected in the patterns of probability distributionleads to inadequate mixing of hot gases with fresh

reactants and lowers the combustor temperature. histograms. As f decreases, the changes in the
statistics of time series data are captured in the newReduction in the tailpipe friction coefficient implies

lower retardation and hence delayed flow reversal. patterns of histograms that have diminishing
entropy, implying more information on anomalies orThus, at sufficiently low values of friction coefficient,

the returning gases do not enter the combustion incipient faults.
The pressure oscillations in the upper plots in thechamber soon enough to reignite the fresh charge.

Upon further reduction in the friction coefficient pairs in Figs 5(d) and (e) obtained at f=0.0270 and
f=0.0260 respectively exhibit the appearance ofbelow the critical value, i.e. f<0.0255, the flame is

extinguished with initial transient period of inter- oscillations of varying amplitudes and the com-
bustion process tends to become irregular. Themittent combustion, which is characterized by

extinction and re-ignition events. histograms of probability distributions in the corre-
sponding lower plots shows further deviation from
the uniform distribution at f=0.0300.

4.3 Discussion of pertinent results
The upper plot in the pair in Fig. 5(f) exhibits the

steady state pressure response at f=0.0255. At thisThe six pairs of plots in Fig. 5 show steady state time
series data for the time range 1.0 s∏t∏1.2 s of the point, initial intermittent combustion, which is

characterized by extinction and re-ignition events,combustor pressure response and the corresponding
histograms of state probability distribution at six takes place. Thereafter, the flame is extinguished

owing to the rapid drop in combustor temperature.different values of the tailpipe friction coefficient,
f=0.0300, 0.0290, 0.0280, 0.0270, 0.0260, and 0.0255, The plot, however, shows only the steady state

response, which indicates flame extinction with noexhibiting gradual reduction. In each pair of plots
Figs 5(a) to (f), the upper plot exhibits the zero pressure oscillations. The corresponding lower plot

shows the delta distribution (i.e. zero entropy), indi-mean steady state time series data of pressure
response. Histograms in the corresponding lower cating complete loss of pressure oscillations as all

data fall into a single state that includes zero. At thisplots show the evolution of the state probability
vector resulting from monotonic reduction in f . This point, complete information on the anomaly pattern

is available.observation signifies how the patterns, represented by
probability distribution histograms, gradually change The wavelet space data at the nominal condition

f=0.0300 were partitioned using the maximum-from a uniform distribution (i.e. maximum entropy)
to a delta distribution (i.e. minimum entropy). entropy principle, which led to uniform probability

distribution (i.e. maximum entropy) among theThe upper plot of the pair in Fig. 5(a) shows
the pressure response at the nominal condition states as shown in the lower plot of the pair in Fig. 5(a).
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In contrast, for f=0.0255, the entire probability 5 SUMMARY AND CONCLUSIONS
distribution is concentrated in only one state as
seen in the lower plot of the pair in Fig. 5(f), which Early detection of gradually evolving anomalies

(i.e. deviations from the nominal behaviour) isindicates complete attenuation of the pressure signal
due to flame extinction. Therefore, as the tailpipe essential for enhancement of structural integrity,

operation reliability, and performance monitoringfriction coefficient decreases, the uniform distribution
(i.e. maximum entropy) under nominal condition in thermal pulse combustors. This paper presents

the STSA of observable process variables for detectiondegenerates towards the delta distribution (i.e. zero
entropy) for flame extinction. In the intermediate of precursors leading to combustion instability

and eventual flame extinction. Time series data ofstages, gradual degradation can be quantitatively
evaluated using the information from the state pressure fluctuations, generated from a non-linear

dynamic model of a thermal pulse combustor [1],probability vectors. The sharp change in pressure
response between f=0.0260 and f=0.0255 is are analysed using STSA for detection of statistical

pattern changes relative to the nominal conditionpossibly due to a bifurcation in the combustion
dynamics, which is also analogous to a phase occurring in the data due to changes in the tailpipe

friction coefficient.transition in the thermodynamic sense [18, 29].
Figure 6 exhibits the profile of normalized anomaly The algorithm of STSA-based anomaly detection

is built upon the principles of information theorymeasures obtained by STSA of pressure oscillations.
The region towards the right of f=0.0255 in Fig. 6 and symbolic dynamics. A comparison of the STSA

approach with other pattern recognition techniques,is the flame extinction region with no pressure
oscillations and the region towards the left consists such as PCA and ANNs, has been recently reported

in the literature for electronic circuits [14] andof self-oscillation modes. In the self-oscillation
region, small changes in the anomaly parameter f mechanical systems [15], where the superior per-

formance of STSA was demonstrated in terms of earlycan be detected, as seen in the increasing deviation
in the anomaly measure from the nominal value detection of anomalies in real time.

Preliminary evaluation of the method has beenat which anomaly measure is zero. It is observed
from the anomaly profile that the slope of the conducted by simulation experiments on a lumped-

parameter model of a generic thermal pulse com-anomaly measure sharply changes between f=0.0260
and f=0.0255, indicating a transition from self- bustor for early detection of combustion instability.

The adopted model has been widely used withoscillations to flame extinction. Once the flame is
extinguished, the anomaly measure profile becomes small modifications for simulation of the non-linear

dynamics in thermal pulse combustors [1–5, 11]. Theflat with indication of no further change. It is
emphasized that the anomaly measure is relative to simulation results show that gradual reduction in

the tailpipe friction coefficient can be identifiedthe nominal condition which is chosen a priori and
should not be construed as the actual damage at an from the derived patterns sufficiently in advance of

flame extinction. Since the transition to unstableabsolute level.
combustion dynamics due to variations in different
parameters are found to follow similar routes, the
conclusions of the paper can also be useful for
detecting other types of anomalies in experimental
combustors.

Further theoretical, computational, and experi-
mental research is necessary before the STSA-based
anomaly detection tool can be considered for
incorporation into the instrumentation and con-
trol system of commercial-scale pulse combustors.
Specifically, the lumped-parameter model needs to
be augmented by a computational fluid dynamics
model of a thermal pulse combustor before experi-
mental validation of the STSA-based anomaly
detection on a laboratory-scale apparatus. The STSA
method for anomaly detection is a pattern identifi-
cation tool that is independent of the signal typeFig. 6 Anomaly measure for decreasing tailpipe friction

coefficient and source.
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18 Beck, C. and Schlögl, F. Thermodynamics of chaotic3 Daw, C. S., Thomas, J. F., Richards, G. A., and
systems: an introduction, 1993 (Cambridge UniversityNarayanaswamy, L. L. Chaos in thermal pulse
Press, Cambridge).combustion. Chaos, 1995, 5, 662–670.

19 Davidchack, R., Lai, Y., Bolt, E., and Dhamala, H.4 Edwards, K. D., Finney, C. E. A., Nguyen, K.,
Estimating generating partitions of chaotic systemsand Daw, C. S. Application of nonlinear feedback
by unstable periodic orbits. Phys. Rev. E, 2000, 61,control to enhance the performance of a pulsed com-
1353–1356.bustor. In Proceedings of the 2000 Spring Technical

20 Kennel, M. and Buhl, M. Estimating good discreteMeeting of the Central States Section of the Com-
partitions form observed data: symbolic falsebustion Institute, Indianapolis, Indiana, USA, 2000,
nearest neighbors. Phys. Rev. E, 2003, 91(8), 84–102.pp. 249–254.

21 Mallat, S. A wavelet tour of signal processing,5 Rhode, M., Rollins, R., Markworth, A., Edwards, K.,
2nd edition, 1998 (Academic Press, New York).Nguyen, K., Daw, C., and Thomas, J. Controlling

22 Rajagopalan, V. and Ray, A. Wavelet-based spacechaos in a model of thermal pulse combustion.
partitioning for symbolic time series analysis. InJ. Appl. Physics, 1995, 78, 2224–2232.
Proceedings of 44th IEEE Conference on Decision6 Abarbanel, H. The analysis of observed chaotic data,
and control and European Control Conference,1996 (Springer-Verlag, New York).
Seville, Spain, December 2005, pp. 5245–5250 (IEEE7 Kantz, H. and Schreiber, T. Nonlinear time series
New York).analysis, 1996 (2nd edition, 2004 Cambridge

23 Cover, T. M. and Thomas, J. A. Elements of infor-University Press, Cambridge).
mation theory, 1991 (John Wiley, New York).8 Edwards, K. D., Nguyen, K., and Daw, C. S.

24 Lind, D. and Marcus, M. An introduction to symbolicEnhancing the operation of a pulsed combustor with
dynamics and coding, 1995 (Cambridge Universitytrajectory correction control. In Proceedings of the
Press, Cambridge).Second Joint Meeting of the U.S. Sections of the

25 Bapat, R. and Raghavan, T. Nonnegative matricesCombustion Institute, Oakland, California, USA,
and applications, 1997 (Cambridge University Press,2002, 107.
Cambridge).9 Khatkhate, A., Gupta, S., Ray, A., and Keller, E. Life

26 Ray, A. Signed real measure of regular languages forextending control of mechanical systems using
discrete event supervisory control. Int. J. Control,symbolic time series analysis. In Proceedings of the
2005, 78(12), 949–967.American Control Conference, Minnesota, USA,

27 MATLAB Wavelet Toolbox, 2006 (Mathworks Inc.,2006, pp. 3765–3770.
Natick, Massachusetts).10 In, V., Spano, M., Neff, J., Ditto, W., Daw, C.,

28 Hilborn, R. C. Chaos and nonlinear dynamics,Edwards, K., and Nguyen, K. Maintenance of chaos
2nd edition, 2000 (Oxford University Press, Oxford).in a computational model of thermal pulse com-

29 Goldenfeld, N. Lectures on phase transitions andbustor. Chaos, 1997, 7, 605–613.
the renormalization group, 1992 (Perseus Books,11 Datta, S., Mukhopadhyay, A., and Sanyal, D.
Reading, Massachusetts).Modeling and analysis of the nonlinear dynamics

of a thermal pulse combustor. In Proceedings of
the 42nd AIAA–ASME–SAE–ASEE Joint Propulsion
Conference, Sacramento, California, USA, July 2006,

APPENDIXpaper AIAA-2006-4396.
12 Crutchfield, J. P. and Young, K. Inferring statistical

complexity. Phys. Rev. Lett., 1989, 63, 105–108. Notation
13 Ray, A. Symbolic dynamic analysis of complex

A
e

tailpipe cross-sectional area (m2)systems for anomaly detection. Signal Processing,
2004, 84(7), 1115–1130. A

s
combustor surface area (m2)

JSCE256 © IMechE 2006Proc. IMechE Vol. 220 Part I: J. Systems and Control Engineering



351Anomaly detection in thermal pulse combustors

T
a

activation temperature (K)B pre-exponential factor for single-step
T

e
temperature at the tailpipe entrance (K)chemical kinetics (m3/kg K1/2 s1)

T
w

wall temperature in the combustion zoneC
p

specific heat at constant pressure (J/kg K)
(K)D window length on a symbolic sequence

T̃
e

normalized tailpipe temperature=T
e
/T

0
D

tp
diameter of the tailpipe (m)

(dimensionless)f friction coefficient (dimensionless)
T̃

w
normalized wall temperature=T

w
/T

0
h convective heat transfer coefficient

(dimensionless)(W/m2 K)
T

0
ambient temperature (K)L

c1
first characteristic length=V/A

s
(m)

u gas velocity in the tailpipe (m/s)L
c2

second characteristic length=V/A
e

(m)
ũ =u/(L

c2
/t

f
) (dimensionless)L

tp
length of the tailpipe (m)

V volume of the combustor (m3)m size of the alphabet set=|S|
Y

f
average fuel mass fraction in theṁ

e
mass flowrate at combustor exit (kg/s)

combustor chamber (dimensionless)ṁ
i

mass flowrate at combustor inlet (kg/s)
Y

fi
fuel mass fraction at the combustor inletpk state probability vector at time epoch t

k (dimensionless)P pressure in the combustion zone (Pa)
Z

e
=ṁ

e
/V (kg/m3 s)P(Ω) probability of the event Ω

Z
i

=ṁ
i
/V (kg/m3 s)P̃ normalized pressure=P/P

0
(dimensionless)

P
e

pressure at the tailpipe entrance (Pa)
c ratio of specific heats (dimensionless)

P̃
e

normalized tailpipe pressure=P
e
/P

0 Dh
c

enthalpy of combustion (J/kg)
(dimensionless)

n
0

stoichiometric oxygen-fuel ratio by mass
P

0
ambient pressure (Pa) (dimensionless)

q
j

jth state of the finite state machine Pk state transition matrix at time epoch t
kQ set of all states of the finite state machine r density in the combustion zone (kg/m3)

R gas constant=(c−1)C
p

/c (J/kg K) r
0

ambient density (kg/m3)
Ṙ

f
fuel reaction rate (kg/m3 s) s symbol in a symbolic sequence

S dynamic systems entropy of the symbol S alphabet set
sequence t

c
characteristic chemical reaction time (s)

t continuous time (s) t
f

characteristic flow time (s)
t

k
slow time epoch t

h
characteristic heat transfer time (s)

T temperature in the combustion zone (K) yk anomaly measure computed at time epoch
T̃ normalized temperature=T /T

0
t

k
V phase space of a dynamic system(dimensionless)
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